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Electrons in α−T3 lattices behave as condensed-matter analogies of integer-spin Dirac Fermions.
The three atoms making up the unit cell bestow the energy spectrum with an additional energy
band that is completely flat, providing unique electronic properties. The interatomic hopping term,
α, is known to strongly affect the electronic spectrum of the 2D lattice, allowing it to continuously
morph from graphene-like responses to the behaviour of Fermions in a Dice lattice. For pristine
lattice structures, the energy bands are gapless, however small deviations in the atomic equivalence
of the three sublattices will introduce gaps in the spectrum. It is unknown how these affect transport
and electronic properties such as the energy spectrum of superlattice mini-bands. Here we investigate
the dependency of these properties on the parameter α accounting for different symmetry-breaking
terms and show how it affects band gap formation. Furthermore, we find that superlattices can force
band gaps to close and shift in energy. Our results demonstrate that α− T3 superlattices provide a
versatile material for 2D band gap engineering purposes.

PACS numbers:

I. INTRODUCTION

The isolation of a stable single layer of carbon atoms
arranged in a hexagonal lattice, known as graphene, in
20041 combined with the extraordinary electronic and
transport properties observed in the atomically thin ma-
terial1–4 has motivated many researchers to investigate
and produce other two-dimensional (2D) materials1,5–7.
The peculiar electronic properties of graphene are the
result of charge carriers described by an equation anal-
ogous to the Dirac one for relativistic particles but here
the presence of a variable similar to a spinor represen-
tation, differently from the ”real” one, results only from
the crystal structure instead from an intrinsic property of
the particles. Therefore the charge carriers in graphene
are commonly referenced as pseudospin-1/2 particles8,9.
These particles have a linear energy dispersion where va-
lence and conduction bands touch each other in special
points in reciprocal space called Dirac points2,3,8,9.

2D materials can be subjected to electrostatic poten-
tials with a periodicity significantly larger than the inter-
atomic distance10–13. Because one can easily change the
strength of the electrostatic potential, this method has
been thoroughly investigated as a way to tune electronic
properties of the charge carriers in these 2D systems14–20.
Superlattice potentials are known to increase the num-
ber of Dirac points of graphene16–18,21–24,26 and as such
introduce new physical modes at zero energy, as recently
observed in Ref. [25]. Some relevant applications orig-
inated from the periodic structures are electron beam
supercollimation and electron wave filter24,26.

Recently, novel and distinctive physics has emerged
from 2D systems when adding an additional atom in their
crystal structure27–34, which leads to their charge carri-
ers in a low-energy approach to be described as enlarged
pseudospin Dirac Fermions31,32,35–37. Among these sys-
tems we have Lieb lattice with the additional atom at

edges of a square-lattice, which was recently obtained
by adding carbon monoxide molecules to a substrate28

and the T3 or dice lattice which has an additional atom
at the center of the hexagonal structure. In both, dif-
ferent from graphene, the massless Dirac Fermions are
described as spin-1 particles and an additional flat-band
touching the top of the valence and the bottom of the
conduction linear bands38,39. This flat band has impor-
tant and unusual effects on the electronic properties due
to its dispersionless nature and thus an infinity effective
mass37–44,46. Moreover, flat bands are predicted to be
important in the search for room-temperature supercon-
ductivity47,48.

The graphene hexagonal lattice and T3 or dice lat-
tice are incorporated in the α − T3 model38,42–46. It
allows a tuning between the central atom arrangement
and the hexagonal structure by varying the parameter α.
Graphene and T3 are the limiting cases α = 0 and α = 1,
respectively.

The α− T3 model has been useful to investigate phys-
ical systems presenting Dirac Fermions with a larger
pseudo-spin value. The α − T3 model was originally
proposed to describe the dia- to paramagnetic transition
in the orbital susceptibility in an optical lattice of cold
atoms49,50. The limiting case α = 1 corresponds to the
dice lattice which can be obtained by stacking three lay-
ers of SrTiO3/SrIrO3/SrTiO3

51, or be generated by con-
trolling three laser beams propagating in towards a two-
dimensional layer of cold atoms52. Likewise this model
with appropriate doping and for the case α = 1/

√
3 can

be used to describe the three-dimensional Hg1−xCdxTe
system53,54.

Curiously, systems with charge carriers described as
spin-1 massless Dirac Fermions, for certain energy con-
ditions have an angular independent Klein tunneling
through rectangular electrostatic barriers which is called
super-Klein tunneling (SKT). This isotropic transmission
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is unlike single and bilayer graphene that show highly
anisotropic transmission across such barriers. In addi-
tion, the tunneling into the flat band across a poten-
tial step for generalized pseudospin has been discussed
as well31,36. Previous studies considering Dirac Fermions
across electrostatic potentials in systems with interme-
diate values of α reveal perfect transmission for normal
incidence, and a general trend of enhanced transmission
with increasing α36,45,46. Moreover, when more barriers
are considered, in the case of the dice lattice the tunnel-
ing shows little dependence on the number of barriers,
whereas for graphene the number of barriers strongly af-
fects the tunneling63.
Several studies have been published aiming at a way

to create a band gap in these structures44,55,56,60–62.This
is necessary for practical electronic applications such as
the fabrication of quantum information devices. It was
demonstrated that an additional mass term in α − T3
systems distorts the linear bands around the Dirac cone
and produces an energy gap with a third band in it which
could be flat or dispersive43,44. The position of this band
inside the band gap has important consequences for Klein
tunneling of massive Dirac Fermions across potential bar-
riers.
Motivated by the richness of the tunneling properties

and the peculiar electronic properties of Dirac Fermions
with integer pseudospin, and aiming at understanding
how the band gap in α − T3 systems varies as function
of the tuning parameter α in the presence of super peri-
odicity, we investigate the energy spectra and density of
states (DOS) first in ungapped α− T3 superlattices, and
subsequently we take into account the effect of different
symmetry-breaking terms. In both cases we pay special
attention to the appearance of mini-bands, its band flat-
ness, and its dependence on the coupling parameter α.

This paper is organized as follows. In the second sec-
tion we discuss the electronic properties of charge carri-
ers in α − T3 lattices and how this is affected by small
deviations in the atomic equivalence between the sites
and the presence of mass terms. In the third section
we develop the transfer matrix approach to analyze the
energy spectra of Dirac Fermions in α − T3 in the pres-
ence of a one-dimensional(1D) periodic potential. In the
fourth section we discuss the band gap morphing and
its dependence on (i) the coupling parameter, and (ii)
the symmetry-breaking between the atomic sites by the
inclusion of different mass terms. Conclusions are pre-
sented in the fifth section.

II. FERMIONS IN α− T3 LATTICES

A. Energy spectrum and eigenstates

An α − T3 lattice is formed by the superposition of
three triangular sublattices32. Two of them are formed
by atom sites A and B arranged in a hexagonal lattice
with hopping term t. The additional site C is connected

FIG. 1: Schematic of the α − T3 lattice where the sites of
the three sublattices are coloured differently. The limit α =
0 corresponds to the honeycomb lattice (graphene-like), and
α = 1 corresponds to the dice lattice. The hopping amplitude
between the different atoms is indicated. The region bounded
by the grey lines corresponds to the unit cell.

only to sites B by a hopping term tuned by a parame-
ter α, which is the parameter that provides a continu-
ous transition from the honeycomb (α = 0) to the dice
(α = 1) lattice and determines the strength of coupling
between the C atoms at the center of the honeycomb lat-
tice, as shown in Fig. 1. The distance between the A,
B and C atoms are the same and denoted by a0. The
hopping parameters t, α and a0 depend on the specific
atomic composition of the lattice under consideration and
completely determine the properties of the α−T3 lattice.
The presence of the additional site C centered in the

honeycomb lattice results in some interesting electronic
properties, like e.g. the presence of a flat band in addition
to the linear bands and the larger value of pseudospin of
charge carriers in these lattices31,32,38,42,46,51–54.
The lattice structure determines the kinetic energy of

the Fermions in the material. The low-energy Hamilto-
nian of Fermions in a α− T3 lattice around the K point
is given by the 3 × 3 matrix expressed in the sublattice
basis |Ψ〉 = (|ψA〉, |ψB〉, |ψC〉) as32,42

Ĥkin =







0 fξ(~k) cos θ 0

f∗ξ (
~k) cos θ 0 fξ(~k) sin θ

0 f∗ξ (
~k) sin θ 0






. (1)

In Eq. (1) we introduced the parameter θ = tan−1 α,
where θ = 0 and θ = π/4 corresponds to honeycomb

and dice lattices, respectively. The function fξ(~k) =
vF (ξkx − iky) with vF = 3a0t/2~ the Fermi velocity and
~k = (kx, ky) the wave vector. Here, ξ = ±1 is the val-

ley index for the K and K
′

valleys, respectively32,42. In
the absence of external potentials, the eigenstates of the
Hamiltonian are given by

|Ψ±〉 =





cos θeiφk

±1
sin θe−iφk



 , (2)

with eigenvalues E± = ±~vF k, where ± indicates the
conduction and valence bands, respectively. The angle
φk = tan−1(ky/kx) corresponds to the angle associated
with the momentum vector. In addition, a flat band state
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FIG. 2: Energy spectrum of massless Dirac fermions in the
α−T3 lattice (a) in the full first Brillouin zone, and (b) around
the K point.

is found

|Ψ0〉 =





cos θeiφk

0
sin θe−iφk



 , (3)

with eigenvalue E = 0 corresponding to strongly de-
generate states31,51,52, as represented in Fig. 2. Notice
that the energy eigenvalues E do not depend on θ. The
parameter is solely affecting the eigenstates.

B. Introduction of a band gap

The Dirac point at E = 0 in the pristine α−T3 lattice
is triple degenerate as seen in Fig. 2. This degeneracy
is produced by the equivalence of the three sub-lattices.
Breaking this equivalence will lead to a lifting of the de-
generacy and the introduction of a band gap. In general,
one can include this in the Hamiltonian by a term pro-
portional to Û that enters as follows:

Ĥ = Ĥkin +∆Û , (4)

with Ĥkin given by Eq. (1), and ∆ measures the strength
of the symmetry breaking. The Hamiltonian in Eq. (4)
is obtained from an expansion of the tight-binding model
to nearest neighbors of the α − T3 lattices around the
K point of the first Brillouin zone when different on-site
energies are considered38,42,52. In this work, we consider
two different forms of Û , respectively, given by

Û1 =





1 0 0
0 −1 0
0 0 1



 , Û2 =





1 0 0
0 0 0
0 0 −1



 . (5)

The effects of the inclusion of the terms Û1 and Û2 on
the energy spectrum are shown in Fig. 3 and Fig. 4, re-
spectively.
The term Û1 introduces a site energy on the different

sub-lattices as has been discussed for photonic crystals
and optical lattices55,56. The solution of ĤΨ = EΨ for
this case gives the eigenenergies

E0 = ∆ , E = ±
√

∆2 + ~2v2Fk
2 . (6)

FIG. 3: Energy spectrum of Dirac Fermions for arbitrary
values of the parameter θ in the α − T3 lattice when the
symmetry-breaking term Û = Û1 is used in Eq. (4). (a) Full
first Brillouin zone, and (b) spectrum around the K point.

Correspondingly, the wave-functions in this case are
given by

|ψ0〉 =





cos θeiφk

0
sin θe−iφk



 , |ψ±〉 =





α cos θe−iφk

γ
α sin θeiφk



 , (7)

where α =
√
E +∆, and γ =

√
E −∆.

Similar sublattice symmetry breaking systems have
been discussed suggesting that such mass potential term
is attainable by depositing graphene on specif substrates,
such SiC57,58, and h-BN59. In Eq. (6) we find the pres-
ence of a gap 2∆ opening in the energy spectrum. This
results in massive Dirac Fermions with an effective mass
defined as m = ∆/v2F . Since Eq. (6) does not depend on
the parameter θ the energy spectrum remains the same
for all α − T3 lattices, as shown in Fig. 3. Moreover,
as long as the equivalence between the sites A and C is
maintained, the flatband is shifted and touches only the
bottom of the conduction band. Notice that now the bot-
tom of the conduction band and the top of the valence

band are quadratic in ~k.
On the other hand, the term Û2 defined in Eq. (5)

has been used to describe the effect of a pseudomagnetic
field60,61, and the dispersion relations for this case are
obtained from a solution of the non-linear equation

E(∆2 − E2) + k2(∆ cos 2θ + E) = 0, (8)

and the eigenstate for the conduction and valence band
are given by

|ψ〉 =





α′ cos θeiφk

γ′

β sin θe−iφk



 , (9)

with α′ =
√

1 + 2∆/(E −∆), γ′ =
√

1 + ∆cos(2θ)/E

and β =
√

1− 2∆/(E +∆).
Unlike the previous case, there is no longer equivalence

between the site C and the other sites of the crystal struc-
ture, which means that small deviations of the coupling
parameter α results in different eigenenergies as depicted
in Fig. 4. In this case the flat band is dispersionless only
when θ = π/4 (dice lattice) and is located in the center
of the energy gap61,62, as shown in Fig. 4(a).
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FIG. 4: Energy spectrum of Dirac Fermions in the α − T3

lattice for different values of θ when the symmetry-breaking
term Û = Û2 is used in Eq. (4). The full first Brillouin zone
is shown at the top and bellow the energy spectrum around
the K point for (a) θ = 0 (graphene-like case), (b) θ = π/12,
(c) θ = π/6, and (d) θ = π/4 (dice case).

III. SUPERLATTICE

In this paper we investigate how fermions in α−T3 lat-
tices are affected by a one-dimensional periodic electro-
static potential. In casu, we investigate one-dimensional
potentials with a periodicity much larger than the in-
teratomic distance, i.e. L/a0 ≪ 1. We consider an in-
finite number of barriers periodically spaced with unit
cell length L = Ww + Wb, with Ww(Wb) the width of
well(barrier), as illustrated in Fig. 5. The general Hamil-
tonian taking into account the presence of symmetry-
breaking terms is now given by36,42,46

Ĥ = Ĥkin + V (x)Î +∆Ûi, (10)

with Ĥkin given by Eq. (1), V (x) = Vb the periodic po-

tential, and ∆Ûi represent the symmetry-breaking term
which can be translated into a mass term. Due to trans-
lation invariance in the y direction the wave-functions
have the form Ψj(x, y) = Ψj(x)e

ikyy with label j = w

FIG. 5: Schematic representation of the superlattice poten-
tial in x − y plane. Dark regions denote the barrier region
with height V (x) = Vb and the white region represents the
well with zero potential. The angles φw and φb in the inset,
respectively, denote the angles of the carriers in the wells and
barriers regions. The profiles of the 1D periodic potential is
given by the figure at the bottom.

or j = b used to denote the region of well(barrier), and
Ψj(x) is given by:

ψj(x) =
A√
2





αj cos θe
iφj

γj
βj sin θe

−iφj



 eikjx +

B√
2





−αj cos θe
−iφj

γj
−βj sin θeiφj



 e−ikjx. (11)

The angles φw = tan−1(ky/kw) and φb = tan−1(ky/kb)
are the angles associated with the direction of the mo-
mentum of the electron in the well and barrier regions,
respectively, as depicted in the inset of Fig. 5, and both
in addition to the terms αj , γj , and βj are obtained from
the eigenstates equation using the Hamiltonian Eq. (10).
Moreover, the constants A,B,C,D are determined by

requesting continuity of the wave-functions. Writing the
wave-functions given by Eq. (11) in the general form
Ψ(x) = (ψA(x), ψB(x), ψC(x)) and by integrating the

eigenvalue equation ĤΨ = EΨ over a small interval
x = [−ǫ, ǫ] and allowing the interval to approach zero,
we obtain the following matching conditions for the wave-
function on either side of the superlattice

ψB(−ǫ) = ψB(ǫ), (12a)

and

cos θψA(−ǫ) + sin θψC(−ǫ) = cos θψA(ǫ) + sin θψC(ǫ).
(12b)
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These matching conditions are different from those of
the two limiting cases in the α−T3 model, i.e. graphene-
like (α = 0) and dice lattice (α = π/4)13,46. Whereas
for graphene which has pseudospin-1/2 the matching
conditions simply require the continuity of each two-
component of the wave-function, however for the dice
lattice which has integer pseudospin, the matching con-
dition takes into account a sum of the first and last com-
ponent of the three-components of the wave-function, as
indicated in Eq. (12) by setting cos θ = sin θ = 1/

√
2.

Applying the matching conditions given by Eq. (12) into
Eq. (11) we obtain the transfer matrix for the α − T3
superlattice

T = Ωkw
(L)Ω−1

kw
(Wb)Ωkb

(Wb)Ω
−1
kb

(0), (13)

where

Ωkj
(x) =

(

γje
ikjx γje

−ikjx

λje
ikwx − λ∗je

−ikwx

)

, (14)

with

λj = cos2 θeiφj + sin2 θe−iφj . (15)

Inserting Eq. (14) into Eq. (13) we get:

T =
1

abaw

(

c+λ
†
b + c−λb γb(c+ − c−)

d+λ
†
b + d−λb γb(d+ − d−)

)

, (16)

where

aj = γj(λ
∗
j + λj), (17a)

c+ = eikbWbγw (γbb1 + λbb2) ,

c− = e−ikbWbγw (γbb1 − λ∗bb2) , (17b)

d+ = eikbWb (γbλwλ
∗
wb2 + γwλbb3) ,

d− = e−ikbWb (γbλwλ
∗
wb2 − γwλ

∗
bb3) (17c)

with b1 = λ∗we
ikwWw + λwe

−ikwWw , b2 = eikwWw −
e−ikwWw and b3 = λwe

ikwWw + λ∗we
−ikwWw .

According to Bloch’s theorem and requiring det[T ] = 1
the electronic dispersion at any incident angle is given
by 2 cos(KxL) = Tr(T ), where Kx = 2πn/L expresses

the periodicity of the superlattice structure. This results
into the following nonlinear equation for the dispersion
relation

cos(KxL) = cos(kbWb) cos(kwWw)

−GU sin(kbWb) sin(kwWw), (18)

where GU differs by the presence or absence of the
symmetry-breaking term. It is denoted by G0 for the
gapless case, G1, and G2 when Û1, and Û2 are taken into
account, respectively. As we will demonstrate further on,
since the dispersion relation given in Eq. (18) depends
on the symmetry between the atomic sites of the crystal
structure, the inclusion of small deviations between them
lead to large changes in the energy spectra and the band
gap.
The allowed states for the superlattice is obtained

when −1 ≤ cos(KxL) ≤ 1 in Eq. (18) which corresponds
to the energy spectra for this system in the ky plane.
In addition, we can derive the density of states (DOS)
represented by D(E) and given by

D(E) =
∑

n,ky

δ(E − En,ky
), (19)

and expressed in units ofD0 = L/~vF, which corresponds
to the amount of states per unit area and L is the period
of the superlattice.

IV. PRISTINE SYSTEM

To start, we consider the pristine system corresponding
to Ûi = 0 in Eq. (10). The solution of ĤΨj = EΨj in
this case leads to αj = γj = βj = 1 in the wave-functions
given by Eq. (11). Moreover, from the secular equation

det(Ĥ−E) = 0 we obtain, respectively, the wave-vectors
in the x−direction in the well and barrier regions

kw =

√

(

E

~vF

)2

− k2y , kb =

√

(

E − Vb
~vF

)2

− k2y, (20)

with ~vF = 3a0t/2.
From the transfer matrix in Eq. (16) we find the dis-

persion relation given by Eq. (18) with GU = G0 where

G0 =
1

kwkb

[

E(E − Vb)

~2v2F
+

(E2 + (E − Vb)
2)k2y(cos

2(2θ)− 1)

2E(E − Vb)
− k2y cos

2(2θ)

]

. (21)

An electrostatic superlattice is capable of multiplying
the number of Dirac points21. These are points in re-
ciprocal space where the valence and conduction bands

touch each other and around which the energy spectrum
is linear. Therefore, it is interesting to calculate how the
α− T3 lattice Dirac point is affected by the superlattice
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potential.
In order to determine the location of the Dirac points

for the symmetric case Wb = Ww = W we take Kx = 0,
and kb = kw in Eq. (18). Inserting this latter condition
into Eq. (20), we have E = Vb/2. Thus, Eq. (18) becomes

1 = cos2 (kbW ) + sin2 (kbW )
[

V 2
0 /4~

2v2F + 2k2y cos
2(2θ)− k2y

V 2
0 /4~

2v2F − k2y

]

. (22)

This equation has solutions when the term between
brackets is equal to 1, or sin2 (kbW ) = 1. The first possi-
bility is obtained for ky = 0 and corresponds to the main
Dirac point at ky = 0. The second possibility leads to
kbW = nπ with n being a positive integer. This last pos-
sibility determines the position of the extra Dirac points
in ky space from Eq. (20),

ky =

√

V 2
b

4~2v2F
−
(nπ

W

)2

. (23)

Note from Eq. (22) that for the symmetric case the
condition to determine the position of Dirac points is
regardless of the parameter θ. Note that when θ = 0,
Eq. (22) reduces to

1 = cos2 (kbW ) + sin2 (kbW )
[(

V 2
b /4~

2v2F + k2y
)

/
(

V 2
b /4~

2v2F − k2y
)]

, (24)

which is consistent with the equation that determines the
Dirac points for graphene21. As discussed above, there is
no real solution for Eq. (24) unless ky = 0 that represents
the usual Dirac point, or kbW = nπ18,21,22.

On the other hand, when we set θ = π/4, Eq. (22)
leads to

cos2 (kbW ) + sin2 (kbW ) = 1. (25)

Unlike the graphene-like case, Eq. (22) has many solu-
tions and the condition for allowed states in the disper-
sion relation of Eq. (18) is always satisfied for arbitrary
ky.
In Figs. 6(a-d) we show the electronic band structures

at KxL = 0 for some values of the parameter θ assuming
Ww = Wb = L/2 and Vb = 7EL, where EL = ~vF /L
and L/a0 = 1200. As discussed above, one Dirac point
appears at E = Vb/2 and kyL = 0 for 0 ≤ θ < π/4
as shown in Figs. 6(a-c), moreover the upper and lower
bands gradually becomes closer as the structure reaches
θ = π/4 (dice lattice), when the Dirac point disappears
and all states at E = 3.5EL are allowed regardless of the
values of kyL, as shown in Fig. 6(d).
The dependence on the parameter θ observed in the en-

ergy spectra can be better understood from the density of
states (DOS) shown in Fig. 7 for the same parameters as
in Fig. 6. For the dice case, depicted by the magenta dot-
ted curve, we notice the presence of a pronounced peak,

FIG. 6: Electronic band structures at KxL = 0 for (a) θ = 0
(graphene-like case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4
(dice case) with Vb = 7EL, Ww = Wb = L/2, where L/a0 =
1200, and EL = ~vF /L

FIG. 7: Density of states for θ = 0 (black solid curve), θ =
π/12 (blue dashed curve), θ = π/6 (red dash-dotted curve),
θ = π/4 (magenta dotted curve) for the same parameters as
in Fig. 6.

which agrees with Eq. (25) representing the manifesta-
tion of the flat band and, therefore, an enhancement of
the number of states.

In Fig. 8 the spectrum resulting from Eq. (18) using
Eq. (21) for equal barrier and well width is plotted tak-
ing L/a0 = 1200, and Vb = 21EL for θ = 0 and θ = π/4.
We observe for the honeycomb case, i.e. θ = 0, the ap-
pearance of extra Dirac points localized to the left and to
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FIG. 8: Valence and conduction bands of the spectrum of a
superlattice considering θ = 0 (graphene-like), and θ = π/4
(dice) with Vb = 21EL, Ww = Wb = L/2, where L/a0 = 1200,
and EL = ~vF /L.

FIG. 9: Electronic band structures for KxL = 0 with θ = 0
(black solid curve), θ = π/6 (red dashed curve), and θ = π/4
(blue dot-dashed curve) for KxL = 0 with Vb = 21EL, Ww =
Wb = L/2, where L/a0 = 1200, and EL = ~vF /L.

the right of the main one at the energy corresponding to
Vb = 10.5EL for KxL = 0. However, at this same point
for the dice case the Dirac points disappear giving rise
to a flat band, which can be observed clearer in Fig. 9
where we show the superlattice spectrum along kyL for
KxL = 0 for different values of θ. We notice that as θ
increases the spacing between the upper and lower bands
around the Dirac points decreases.
Moreover, the group velocity along the kyL direction

around the main and the extra Dirac points denoted in
Fig. 9 by the labels I and II is shown in Fig. 10. Notice
that the slope of the dispersion relation around these

points is strongly reduced as compared to the value vF
when no superlattice is imposed. This result is similar
to the collimation effect observed in graphene as new
extra Dirac points are to arise when the height of the
potential Vb increases as discussed in Ref. 21. But now,
the collimation effect results from changing the coupling
constant θ.

FIG. 10: Group velocity along ky direction around the main
Dirac point (I), and around the extra Dirac point (II) indi-
cated in Fig. 9.

V. INTRODUCTION OF GAPS IN THE

SUPERLATTICE ENERGY SPECTRUM

Using the transfer matrix formalism from Sec. III, we
analyze the appearance and morphing in α−T3 superlat-
tices when including deviations in the atomic equivalence
of the three sublattices and by adding the terms Û1 or
Û2.

A. Case Û = Û1

Assuming Û = Û1 in Eq. (10), we obtain the wave-
functions expressed in Eq. (11) in the well (j = w) and
barrier (j = b) with αw = βw =

√
E +∆, αb = βb =√

E − Vb +∆, γw =
√
E −∆ and γb =

√
E − Vb −∆.

The wave-vectors in x− direction in the well and bar-
rier regions are

kw =

√

E2 −∆2

~2v2F
− k2y, (26a)

kb =

√

(E − Vb)2 −∆2

~2v2F
− k2y. (26b)

From the transfer matrix method we get the dispersion
relation in Eq.(18) with GU = G1

G1 = −1

2

[

(

ηw1

ηb1
+
ηb1
ηw1

)

+ cos2(2θ)

(

k2y
k2b

ηb1
ηw1

+
k2y
k2w

ηw1

ηb1

)

− 2
k2y
kwkb

cos2(2θ)

]

, (27)



8

with ηw1
= kw~vF/(E−∆) and ηb1 = kb~vF/(E−Vb−∆).

In order to analyze the effects on the energy spectrum,
and investigate how the Dirac points are affected due to
the presence of this symmetry-breaking term, we con-
sider Wb =WW =W , and kwW = −kbW in Eq. (18) at
the energy E = Vb/2 where, for gap-less case, the Dirac
points are found. When we take into account these con-
siderations and we assume θ = 0, the dispersion relation
becomes

cos(KxL) = cos2(kbW ) + sin2(kbW )
[

(V 2
b /4 + ∆2)/~2v2F + k2y

(V 2
b /4−∆2)/~v2F − k2y

]

, (28)

which has no real solution regardless of the value of ky,
indicating the presence of a band gap in the energy spec-
trum. This result can be extended to other cases where
cos 2θ 6= 0 in Eq. (27).
Assuming the particular case θ = π/4 we get

cos(KxL) = cos2(kbW ) + sin2(kbW )
[

(V 2
b /4 + ∆2)/~2v2F − k2y

(

(V 2
b /4 + ∆2)/(V 2

b /4−∆2)
)

(V 2
b /4−∆2)/~2v2F − k2y

]

,

(29)

which has a real solution for two touching points ky =

±
√

V 2
b /4−∆2/~vF. Unlike the dice case in the absence

of a mass term discussed in Sec. III, the energy allowed
states in the presence of a symmetry-breaking term is no
longer independent of ky at E = Vb/2.

This becomes more clear when we calculate the elec-
tronic band structure for some particular values of the pa-
rameter θ, the effective mass term ∆ = 0.1Vb, Vb = 7EL,
and L/a0 = 1200. The results are depicted in Fig. 11,
where EL = ~vF /L. As discussed from Eq. (28) and
Eq. (29), we can observe the presence of a band gap in the
energy spectra at E = Vb/2, or, in terms of the unit EL,
E ≈ 3.5EL. Except for θ = π/4, where the band gap is

closed at the touching points ky = ±
√

V 2
b /4−∆2/~vF ,

but we observe the formation of another band gap at en-
ergy E ≈ 5EL. Moreover, the mini-bands present in the
energy spectra for intermediate values of θ are no longer
symmetric around the band gap, as shown in Figs. 11(b)-
(c). The band gap morphing and its dependence on θ
can be observed when we analyze the density of states
(DOS) of those systems shown in Fig. 12. The appear-
ance of asymmetric mini-bands, and the band gap shift-
ing observed in Fig. 11(d) becomes clearly apparent. In
addiction, unlike the graphene-like case, when we assume
θ 6= 0 a new allowed energy state arises which appears as
a new peak localized in the energy range 7EL to 8EL as
observed in Fig. 12 .
On the other hand, when we take a large value for the

mass term ∆ = 0.4Vb maintaining the other parameters
used in Fig. 11, beyond the increased gap, we found that
the mini-bands change drastically. When θ 6= 0, the en-
ergy spectra exhibit significant modifications in a large

FIG. 11: Electronic band structures at KxL = 0 for (a) θ = 0
(graphene-like case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4
(dice case) with Vb = 7EL, Ww = Wb = L/2, ∆ = 0.1Vb and

Û = Û1, where L/a0 = 1200, and EL = ~vF /L in all cases.

FIG. 12: Density of states for θ = 0 (black solid curve), θ =
π/12 (blue dashed curve), θ = π/6 (red dash-dotted curve),
θ = π/4 (magenta dotted curve) for the same parameters as
in Fig. 11.

range of energy, as shown in Figs. 13(b)-(d), where it
is possible to see the appearance of new mini-bands in-
side the band gap region, unlike the graphene-like case.
The appearance of new allowed states inside the region
where for the graphene-like case there is only a band gap,
is clearly seen from the density of states, as shown in
Fig. 14. In addition, the position of the touching points
given by ky = ±

√

V 2
b /4−∆2/~vF depends on the mass
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FIG. 13: Electronic band structures at KxL = 0 for (a) θ = 0
(graphene-like case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4
(dice case) with Vb = 7EL, Ww = Wb = L/2, ∆ = 0.4Vb for

Û = Û1, where L/a0 = 1200, and EL = ~vF /L in all cases.

term value, and these points are shifted, as shown in
Fig. 13(d). From Fig. 14 we observe that there is a

FIG. 14: Density of states for θ = 0 (black solid curve), θ =
π/12 (blue dashed curve), θ = π/6 (red dash-dotted curve),
θ = π/4 (magenta dotted curve) for the same parameters as
in Fig. 13.

prominent peak when the dice case is considered similar
to Fig. 12 but localized at different energy, which results
from the increase of the mass term ∆. Moreover, it is
evident that there are more allowed states in the energy
range 2EL to 5EL for θ 6= 0.
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FIG. 15: Valence and conduction bands of the spectrum of a
superlattice considering θ = 0 (graphene-like), and θ = π/4

(dice) with Vb = 21EL, Ww = Wb = L/2, Û = Û1, and
∆ = 0.4Vb. Where L/a0 = 1200, and EL = ~vF /L.

In Fig. 15 we show the dispersion relation obtained
from Eq. (21) and Eq. (27) assuming equal barrier and
well widths, L/a0 = 1200, Vb = 21EL, and ∆ = 0.4Vb for
θ = 0 and θ = π/4. Unlike the gap-less case, for θ = 0
the main Dirac point at kyL = 0 is no longer observed,
although the extra Dirac points on both sides remains.
Similarly, for the dice case, the upper and lower mini-
bands touch each other at two-points kyL 6= 0, similar as
in Fig. 11(d) and Fig. 13(d).

FIG. 16: Electronic band structures at KxL = 0 for θ = 0
(black solid curve), θ = π/6 (red dashed curve), and θ = π/4
(blue dot-dashed curve) with Vb = 21EL, Ww = Wb = L/2,
∆ = 0.4Vb where L/a0 = 1200, and EL = ~vF /L.

Moreover, when we assume the superlattice spectrum
along kyL direction for KxL = 0 in Fig. 15 we find
that the dispersion gradually changes around the point
kyL = 0, becoming flat for θ = π/4, as shown in Fig. 16.
In addition, around the touching points the slope of the
dispersion decreases as θ increases.
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B. Case Û = Û2

For the other symmetry-breaking term denoted by Û =
Û2 in Eq. (10), we have αw =

√

1 + 2∆/(E −∆), αb =
√

1 + 2∆/(E − Vb −∆), γw =
√

1 + ∆cos(2θ)/E, γb =
√

1 + ∆cos(2θ)/(E − Vb), βw =
√

1− 2∆/(E +∆), and

βb =
√

1− 2∆/(E − Vb +∆). Consequently, the wave-
functions kw and kb are given by

kw =

√

(E2 −∆2)E

(~2v2F)(E +∆cos 2θ)
− k2y, (30a)

kb =

√

((E − Vb)2 −∆2)(E − Vb)

(~2v2F)(E − Vb +∆cos 2θ)
− k2y. (30b)

For this case we have

G2 = −1

2

[(

ηw2

ηb2
+
ηb2
ηw2

)

+

(

k2yηb2
k2bηw2

((E − Vb) cos 2θ +∆)2

(E − Vb +∆cos 2θ)2
+
k2yηw2

k2wηb2

(E cos 2θ +∆)2

(E +∆cos 2θ)2

)

−

2k2y
kwkb

((E − Vb) cos 2θ +∆)(E cos 2θ +∆)

(E − Vb +∆cos 2θ)(E +∆cos 2θ)

]

, (31)

and

ηw2
=

kw
(E2 −∆2)(E +∆cos 2θ)

, (32a)

ηb2 =
kb

[(E − Vb)2 −∆2] [(E − Vb) + ∆cos 2θ]
. (32b)

From Eq. (10) assuming ∆ = 0.1Vb for Û = Û2, and the
same values of L and Vb as in Fig. 6, we get the energy
spectra shown in Fig. 17 for different values of θ. Similar
to the case Û = Û1 we observe the presence of a band gap
for all values of θ 6= π/4 around E = Vb/2, i.e E = 3.5EL,
and the mini-bands tend to reach each other around this
energy as θ increases until the band gap is completely
closed for the dice case, as shown in Fig. 17(d). Like the
gapless case, all energy states when θ = π/4 are allowed
regardless of the ky value, which results in a prominent
peak in the density of states depicted in Fig. 18. This
result can be expected when we assume the condition
Wb = Ww = W , E = Vb/2, and θ = π/4 in the disper-
sion relation for this case. Under these conditions, the
dispersion relation for the dice lattice reduces to the same
one for the gapless case represented in Eq. (25).
Moreover, comparing the band gap width observed in

Fig. 17 to the one in Fig. 11 the band gap is reduced and
shifted up, as observed in Fig. 18.
Similar to the previous gapped case, if we consider a

larger value of the mass term ∆ = 0.4Vb the band gap
is increased and other allowed states appear inside them
when intermediate values of θ are considered, as shown
in Fig. 19. However the allowed state for arbitrary values
of ky at E = Vb/2 for the dice lattice is preserved and a
peak in the density of states is observed for θ = π/4, as
shown in Fig. 20, since this condition is independent of

FIG. 17: Electronic band structures at KxL = 0 for (a) θ = 0
(graphene-like case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4
(dice case) with Vb = 7EL, Ww = Wb = L/2, ∆ = 0.1Vb when

Û = Û2, where L/a0 = 1200, and EL = ~vF /L in all cases.

the value of the effective mass. The spectrum obtained
from Eq. (18) and Eq. (31) considering equal barrier and
well widths, L/a0 = 1200, Vb = 21EL, and ∆ = 0.4Vb
for θ = 0 and θ = π/4 are shown in Fig. 21. Similar to
previous gapped case, for θ = 0 the upper and lower mini-
bands touch each other in two-points, and at kyL = 0
there is a gap. However, as discussed above, the energy
where the touching points are localized is no longer at
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FIG. 18: Density of states for θ = 0 (black solid curve), θ =
π/12 (blue dashed curve), θ = π/6 (red dash-dotted curve),
θ = π/4 (magenta dotted curve) for the same parameters as
in Fig. 17.

FIG. 19: Electronic band structures at KxL = 0 for (a) θ = 0
(graphene-like case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4
(dice lattice) with Vb = 7EL, Ww = Wb = L/2, ∆ = 0.4Vb

when Û = Û2, where L = 1200, and EL = ~vF /L in all cases.

E = Vb/2. On the other hand, for the dice lattice the
spectrum is completely flat at kyL = 0 and E = Vb/2,
similar to Fig. 8.

In Fig. 22 we show the superlattice spectrum consid-
ering KxL = 0 along kyL direction for some values of
θ. Notice that the energy where the touching points are
localized depends on θ. Moreover, like the gapless case,
as θ → π/4 the dispersion becomes flat and shifted to

FIG. 20: Density of states for θ = 0 (black solid curve), θ =
π/12 (blue dashed curve), θ = π/6 (red dash-dotted curve),
θ = π/4 (magenta dotted curve) for the same parameters as
in Fig. 19.
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FIG. 21: Valence and conduction bands of the spectrum of a
superlattice considering θ = 0 (graphene-like), and θ = π/4

(dice) with Vb = 21EL, Ww = Wb = L/2, Û = Û2, and
∆ = 0.4Vb. Where L/a0 = 1200, and EL = ~vF /L.

lower values of energy.

VI. CONCLUSIONS

We investigated the energy spectrum and the density
of states (DOS) of α − T3 lattices for different values of
interlattice hopping parameter θ = tan−1 α in the pres-
ence of a 1D superlattice. We consider both the case of
equivalence between the three sub-lattices, and how the
band gap is affected by small deviations of this equiv-
alence in the limit ∆ ≪ t by considering two cases of
symmetry-breaking terms denoted by Û1 and Û2.
For the pristine system, when no symmetry-breaking

term are present, we found the condition for the appear-
ance of Dirac points that depends on the cosine func-
tion of the parameter θ, indicating that the energy level
where they are located remains the same for all cases
when cos(2θ) 6= 1. When θ = π/4 all energies are al-
lowed for arbitrary ky. Moreover, the mini-bands for in-
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FIG. 22: Electronic band structures at KxL = 0 for θ = 0
(black solid curve), θ = π/6 (red dashed curve), and θ = π/4
(blue dot-dashed curve) with Vb = 21EL, Ww = Wb = L/2,
∆ = 0.4Vb where L/a0 = 1200, and EL = ~vF /L.

termediate values of θ tends to close around the energy
level where Dirac points are localized. In addition, when
we considered higher values of the potential, we observed
extra Dirac points localized on the right and on the left
of the main one positioned at ky = 0 for all values of
θ 6= π/4.

When we introduce symmetry-breaking terms into the
system, we observed the appearance of a band gap, whose
creation depends on the deviation on the equivalence be-
tween the three sub-lattices. When we considered the
case Û1 = diag(1,−1, 1), a band gap appears at energy
E = Vb/2. However for the dice case, around this energy,
there is no longer a band gap and the mini-bands touch
at two points. This result can be observed either in the
energy spectra and in their corresponding DOS.

In addition, the mini-bands for larger values of the
mass term was shifted up, which is a consequence of the
fact that the sites A and C remain equivalent, leading to
twofold degeneracy of the energy spectra, as in the case
when there is no periodic potential present. Moreover,
for larger values of the potential the main Dirac point
for all θ values is no longer present, only the extra ones
appear and are localized at the energy E = Vb/2.

When Û2 = diag(1, 0,−1), the dispersion relation, and
consequently, the energy spectrum is strongly altered.
For the dice case, we found that the condition for the
allowance of the energy states at E = Vb/2 is always
satisfied regardless of ky, similarly as in the gapless case.
However a band gap is still present but now localized
at another energy. In addition, we noticed that the band
gap is smaller than the one observed when Û1. Moreover,
for larger values of the effective mass new energy states
were observed inside the band gap as confirmed from the
density of states. In addition, for higher values of the

potential considering θ 6= π/4 only the extra Dirac points
are observed, like for the previous gapped case, but now
the energy value where they are localized depends on the
hopping parameter.
The theoretical formalism and results obtained in

this work are useful for a better understanding of the
band-gap behaviour of α− T3 lattices, and consequently
demonstrate that these materials are versatile for pur-
poses of band-gap engineering in 2D materials, since the
band-gap is tunable by changing the interlattice hopping
parameter and their symmetry.
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