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Peculiar half-metallic state in zigzag nanoribbons of MoS2: Spin filtering
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Layered structures of molybdenum disulfide (MoS2) belong to a new class of two-dimensional (2D)
semiconductor materials in which monolayers exhibit a direct band gap in their electronic spectrum. This
band gap has recently been shown to vanish due to the presence of metallic edge modes when MoS2 monolayers
are terminated by zigzag edges on both sides. Here, we demonstrate that a zigzag nanoribbon of MoS2, when
exposed to an external exchange field in combination with a transverse electric field, has the potential to exhibit
a peculiar half-metallic nature and thereby allows electrons of only one spin direction to move. The peculiarity
of such spin-selective conductors originates from a spin switch near the gap-closing region, so the allowed spin
orientation can be controlled by means of an external gate voltage. It is shown that the induced half-metallic
phase is resistant to random fluctuations of the exchange field as well as the presence of edge vacancies.
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I. INTRODUCTION

Since the synthesis of graphene [1,2], substantial efforts
have been made to integrate novel physical properties of
two-dimensional (2D) materials in order to pave the way for an
adaptable, ultrafast, low-power spintronics. While group-IV
allotropes, in particular those made out of carbon atoms,
are still the most widely studied structures to date, chemi-
cally stable monolayers of transition-metal dichalcogenides
(TMDCs) have received increasing attention recently. The
reason stems from their inherent direct band gap [3–5] and
large spin-orbit interaction [6], which render them potential
candidates for optospintronics and transistor applications.
By taking advantage of the optical band gap of monolayer
TMDCs, 2D nanoelectronic devices such as ultrasensitive
photodetectors [7] and field-effect transistors [8] have already
been realized experimentally for MoS2 monolayers.

The ability to achieve a high-mobility TMDC for use in 2D
transistors is of fundamental and technological importance.
The encapsulation of MoS2 by a strong dielectric material
has been shown to increase substantially its carrier mobil-
ity [9]. Furthermore, most features observed in MoS2-based
devices [8,10,11] are complementary to former transistors,
differentiating it from other TMDCs. The transmission of
charge carriers in MoS2 monolayers is performed via Mo
atoms, which are heavier than carbon atoms. The combination
of this property of Mo with the fact that MoS2 lacks inversion
symmetry results in a strong spin-orbit coupling of about
0.15 eV in the valence band [6,12]. As a consequence of the
coexistence of spin-orbit interaction and inversion symmetry
breaking, an interesting spin-valley coupling can be observed
in MoS2 monolayers, resulting in novel physics [13].

Edge-structure engineering of 2D crystalline materials is
often a key strategy to control their electronic and transport
properties. Likewise, the electrical properties of MoS2 are
strongly edge dependent, ranging from insulating to metallic
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for armchair- and zigzag-terminated edges, respectively [14].
The existence of metallic edge states in monolayers of
MoS2 has recently been confirmed experimentally [15], which
is consistent with earlier theoretical predictions [12,16,17].
Interestingly, the conductive edge modes of zigzag MoS2

nanoribbons (ZMDSNs) are shown to mimic the physics of
massless Dirac fermions near the gap-closing point [18,19].
It was predicted that a strongly gated ZMDSN is forced
topologically into a nontrivial superconducting regime [20].
In addition, it was predicted that a ZMDSN, as well as other
zigzag monolayers of TMDCs, can exhibit zero-energy modes
when in proximity to an s-wave superconductor and an in-
plane magnetic field [21], revealing their potential for hosting
Majorana bound states. Another notable feature of ZMDSNs,
which is addressed in this paper, is that they can act as a
spin-selective conductor. Consequently, the MoS2 nanoribbon
allows just electrons of one spin direction to propagate, while
for the remainder it behaves like an insulator. To this end, we
consider the influence of a transverse electric field together
with a nonlocal exchange field. In response to a transverse
electric field the behavior of ZMDSNs is twofold and can offer
either semiconducting or metallic properties. Nevertheless, the
edge states in either case possess a right-handed helicity, and
hence the spin of each particle is in the same direction as
its momentum. By adding an exchange field in combination
with a transverse electric field we show that ZMDSNs can be
converted to a peculiar half-metal system. The main property
of such half-metal systems is that the allowed spin orientation
can be controlled near the gap-closing region. It will also be
demonstrated that the induced half-metallicity is resistant to
small fluctuations of the exchange field or the existence of
edge vacancies.

This paper is organized as follows. In Sec. II, we present
our model, which is used to calculate the electronic structure
as well as the quantum transport properties. In Sec. III, we
focus on possible mechanisms that allow us to induce a perfect
spin gap in the band structure of ZMDSNs. Different physical
aspects of the present work are elaborated in this section. We
conclude with a summary in Sec. IV.
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II. THEORETICAL MODEL

A. Multiband tight-binding Hamiltonian

The electronic structure of a monolayer MoS2 in the entire
Brillouin zone can be described by a multiband tight-binding
formalism derived from first-principles calculations. The
most comprehensive model introduced heretofore accounts
for 11 bands, including d and p orbitals of Mo and S
atoms, respectively [22]. By performing an appropriate unitary
transformation based on parity considerations with respect
to the out-of-plane (z) axis [23,24], the contribution of p

orbitals of nonplanar S layers can be cast into symmetric and
antisymmetric combinations. This allows us to describe the
Hamiltonian in a reduced atomic orbital basis as (dz2 , dx2−y2 ,
dxy) for Mo and [ 1√

2
(pt

x + pb
x), 1√

2
(pt

y + pb
y), 1√

2
(pt

z − pb
z )]

for S atoms, where t and b refer to the top and bottom S
layers, respectively. Considering the effect of local spin-orbit
couplings, the Hamiltonian can be written in real space as [24]

H =
∑
i,μ

εM
i,μc

†
i,μci,μ + εS

i,μb
†
i,μbi,μ

+
∑

〈〈ij〉〉,μν

(
tMM
ij,μνc

†
i,μcj,ν + tSS

ij,μνb
†
i,μbj,ν

)

+
∑

〈ij〉,μν

tMS
ij,μνc

†
i,μbj,ν + H.c., (1)

where i,j and μ,ν run over the lattice sites and atomic orbital
bases, respectively, ci,μ (bi,ν) is the annihilation operator
for Mo (S), and, correspondingly, c

†
i,μ (b†i,ν) is the creation

operator. The hopping coefficients tMM
ij,μν , tMS

ij,μν , and tSS
ij,μν are

determined based on the hopping directions shown in Fig. 1(a),
as detailed in Table I. Meanwhile, in the presence of a uniform
exchange term h, the on-site Hamiltonians of Mo and S atoms
are given by

εM
i =

⎡
⎣�0 0 0

0 �2 −isλM

0 isλM �2

⎤
⎦ − hsI (2)

and

εS
i =

⎡
⎢⎣

�p+t⊥xx − 1
2 isλS 0

1
2 isλS �p+t⊥yy 0

0 0 �z−t⊥zz

⎤
⎥⎦ − hsI, (3)

respectively. In Eqs. (2) and (3), λM = 0.075 eV and
λS = 0.052 eV represent the strengths of spin-orbit inter-
actions for Mo and S [26], respectively, I is the identity
matrix, and s is the spin angular momentum along the z axis.
Furthermore, the vertical hopping between the top and bottom
sulfur sheets is denoted by t⊥vv (v = x,y,z). Other tight-binding
parameters such as �0 are given in Table II. Note that the
exchange field in 2D materials can be induced by proximity
to a ferromagnetic insulator substrate (for instance, see
Refs. [27–31] and references therein).

For the case of an endless ZMDSN, the periodicity of
the honeycomb structure is maintained along its extension
direction. Strictly speaking, such perfect systems can be
viewed as a linear chain of periodically repeated primitive
cells, each of which consists of a small armchair array of Mo-S

FIG. 1. (a) Schematic illustration of the structure of a ZMDSN as
the central channel of a spintronic nanodevice. ai and δi indicate the
direction of nearest hoppings between homogeneous (Mo-Mo or S-S)
and inhomogeneous (Mo-S) atoms, respectively. The channel region
consists of M unit cells extended along the longitudinal direction.
Each unit cell has N honeycomb lattice sites, which we here refer
to as an N -ZMDSN. (b) The band structure of a 48-ZMDSN. The
inset specifies the lowest-energy subbands in terms of different edge
and spin states. The mirror image of each subband with respect to the
vertical dashed line at kx = π/a is associated with a spin inversion.
Therefore, the edge states possess a right-handed helicity [25].

bonds [see the unit cell specified in Fig. 1(a)]. Therefore, the
crystal momentum associated with the longitudinal direction
x̂ is a good quantum number, i.e., [H , px] = 0, which allows
us to use Bloch’s theorem. Considering the interaction of
each primitive cell with the next or previous one, which we
denote here as Hl,l+1 and Hl,l−1 = H

†
l,l+1, respectively, the

kx-dependent Hamiltonian can be expressed as

H (kx) = Hl,l+1e
ikxa + Hl,l + H

†
l,l+1e

−ikxa, (4)

where Hl,l comprises only interior interactions of the lth unit
cell and a = 0.316 nm is the lattice constant.

B. Dissipationless quantum transport

For quantum transport simulations we focus only on a
nondissipative regime in which no inelastic scattering occurs
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TABLE I. Matrix elements of the hopping parameters between nearest Mo-Mo, Mo-S, and S-S atoms. All the matrices are obtained in the
spirit of the Slater-Koster tight-binding model [23,24]. Each element is then a linear function of hopping integrals and overlap parameters, e.g.,
[tMM

1 (Vddδ,Vddπ ,Vddσ )]11 = v1Vddδ + v2Vddπ + v3Vddσ , where the subscript in tMM
1 corresponds to the hopping direction a1 in Fig. 1(a) and v1,

v2, v3 are coefficients. These coefficients are separately specified for each element using the same notation. The hopping integrals (in eV) are
as follows [23]: Vpdπ = −1.241, Vpdσ = 3.689, Vddδ = 0.228, Vddπ = 0.252, Vddσ = −0.895, Vppπ = −0.467, and Vppσ = 1.225.

Elements

Hopping matrix (arguments) [...]11 [...]12 [...]13 [...]21 [...]22 [...]23 [...]31 [...]32 [...]33

tMM
1 (Vddδ,Vddπ ,Vddσ ) 3

4 ,0, 1
4 −

√
3

8 ,0,
√

3
8 − 3

8 ,0, 3
8 −

√
3

8 ,0,
√

3
8

1
16 , 3

4 , 3
16

√
3

16 ,−
√

3
4 , 3

√
3

16 − 3
8 ,0, 3

8

√
3

16 ,−
√

3
4 , 3

√
3

16
3

16 , 1
4 , 9

16

tMM
2 (Vddδ,Vddπ ,Vddσ ) 3

4 ,0, 1
4

√
3

4 ,0,−
√

3
4 0,0,0

√
3

4 ,0,−
√

3
4

1
4 ,0, 3

4 0,0,0 0,0,0 0,0,0 0,1,0

tMM
3 (Vddδ,Vddπ ,Vddσ ) 3
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4 −

√
3
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√

3
8

3
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√

3
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√
3

8
1
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16 −

√
3
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√

3
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√
3
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√
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7
6
√
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√

7
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√
6

7
√

7
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√
6

7
√

7
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√
2

7
√

7
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√
2
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√

7
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√
2

7
√

7
− 6

√
2

7
√
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√
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tSS
1 (Vppπ ,Vppσ ) 3

4 , 1
4

√
3

4 ,−
√

3
4 0,0

√
3

4 ,−
√

3
4

1
4 , 3

4 0,0 0,0 0,0 1,0

tSS
2 (Vppπ ,Vppσ ) 0,1 0,0 0,0 0,0 1,0 0,0 0,0 0,0 1,0

tSS
3 (Vppπ ,Vppσ ) 3

4 , 1
4 −

√
3

4 ,
√

3
4 0,0 −

√
3

4 ,
√

3
4

1
4 , 3

4 0,0 0,0 0,0 1,0

inside the transport channel shown in Fig. 1(a). A typical
mechanism that can largely push the system out of this
regime is phonon interactions, which are avoided here with
the assumption that temperature is very low. It is also worth
mentioning that the calculated mean free path for MoS2

monolayers is about 14–18 nm at room temperature [32,33].
Therefore, the length of the channel region will be much
smaller than the mean free path, provided that it consists
of only a few unit cells, which is the required condition for
ballistic transport. This allows us to use the Landauer formula
in order to evaluate the spin-resolved conductance, that is,

Gs(E) = e2

h
T s(E). (5)

Here, T s denotes the probability that an electron injected from
the left terminal will transmit with spin s to the right terminal.
The transmission function can then be calculated in terms of
the Green’s function of the transport channel

T s(E) = Tr
(
	s

LGs	s
RGs†), (6)

with Gs representing the retarded Green’s function for spin s

and

	s
L(R) = i

(

s

L(R) − 
s
L(R)

†)
, (7)

the broadening matrix due to strong couplings with the left-
(right-) handed terminal. To calculate the self-energy, the
Green’s function at lead-channel contact regions is required.
For the contact point at l = 0 we find


s
L = H

†
01Gs

00H01. (8)

TABLE II. On-site tight-binding parameters (in eV) [23].

�0 �2 �p �z t⊥
zz t⊥

vv (v = x,y)

−1.094 −1.512 −3.560 −6.886 1.225 −0.467

Assuming that the left lead is homogeneous, i.e., H00 =
H-1-1, . . . and H-10 = H-2-1, . . . , the Green’s function due to
an excitation at l = 0, Gs

00(E), can be obtained via a set of
coupled equations as detailed below:

(E + iη − H00)Gs
00 = I + H

†
-10Gs

-10,

(E + iη − H00)Gs
-10 = H

†
-10Gs

-20 + H-10Gs
00,· · · ,

(E + iη − H00)Gs
-n0 = H

†
-10Gs

-n-1,0 + H-10Gs
-n+1,0,

(9)

where η is an infinitesimal real constant. Owing to the
countless number of iterative cells in semi-infinite leads,
finding a solution to the set of equations (9) would be
very cumbersome without the implementation of a proper
algorithm [34–36]. To tackle this problem we employ an
elegant approach that was first introduced for the calculation of
the surface Green’s function in a crystal of stacked layers [34].
The fundamental hypothesis of this method is that the Green’s
function of each unit cell (layer) can be expressed in terms of
the preceding or next one, i.e., Gs

-10 = T̄ Gs
00, or, equivalently,

Gs
00 = T Gs

-10. Here, T and T̄ are transfer matrices that can be
computed from the coupling between two adjacent unit cells
Hl,l+1 via the following iterative scheme:

T = t0 + t0̃t1 + t0t1̃t2 + · · · + t0t1t2 · · · t̃n, (10)

T̄ = t̃0 + t̃0t1 + t̃0̃t1t2 + · · · + t̃0̃t1̃t2 · · · tn, (11)

where ti and t̃i are defined through the recursion equations

ti = (I − t̃i−1ti−1 − ti−1̃ti−1)−1t2
i−1, (12)

t̃i = (I − t̃i−1ti−1 − ti−1̃ti−1)−1̃t2
i−1, (13)

and

t0 = (E + iη − H00)−1H
†
-10, (14)
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t̃0 = (E + iη − H00)−1H-10. (15)

The infinite sum in Eqs. (10) and (11) can be truncated as soon
as the transmission functions are converged. On this basis, the
Green’s function at site l = 0 of the left lead takes the form

Gs
00(E) = [(E + iη)I − H00 − H

†
-10T̄ ]−1. (16)

Along the same lines as in Eqs. (8)–(16) one can calculate
the self-energy due to scatterings into the right lead. For any
arbitrary unit cell inside the transport channel, the Green’s
function can be computed by translating Gs

00(E) step by step
forward as follows:

Gs
l+1,0 = [(E + iη)I − Hl,l − H

†
l,l+1Gs

l,0Hl,l+1]−1. (17)

Note that this approach has been employed before in order to
investigate low-temperature transport in carbon nanotubes [35]
as well as in silicene nanoribbons [36].

III. RESULTS

Many electronic properties of 2D hexagonal crystals are
shown to depend on their edge structure. This dependency can
be more pronounced for MoS2 nanoribbons, especially if they
are terminated by zigzag edges, because the constituent atoms
of the opposite edges would not be chemically equivalent [see
Fig. 1(a)]. We further show that the imbalance of the opposite
edges is a key element for the determination of the electronic
properties of ZMDSNs.

The electronic structure of a 48-ZMDSN is depicted in
Fig. 1(b). The lowest-energy subbands indicate four metallic
states residing on the zigzag edges and hence are labeled by
both the edge and spin quantum numbers. For brevity, we
hereafter specify the two edges by their atom type as “X edge”,
where X = Mo or S. As seen from Fig. 1(b), depending on the
nature of edge atoms, the metallic modes exhibit electron- and
holelike band dispersions for the S edge and Mo edge, respec-
tively [21]. Similar to graphene-based zigzag nanoribbons, the
edges of ZMDSNs are indeed the only conductive channels
hosting the metallic states. However, contrary to the electronic
structure of zigzag graphene nanoribbons, we find that the band
dispersion of these states is no longer flat in ZMDSNs. Near the
crossing points seen in Fig. 1(b) the band dispersion resembles
very closely that of massless Dirac fermions. Neglecting
the duality of these crossings on both sides of kx = π/a, a
similar linear dispersion has previously been perceived for
topological modes of Hg(Cd)Te heterostructures [37] (these
materials provide a convenient platform for the observation
of the quantum spin Hall effect [38] and spin-polarized
quantum Hall liquids [39]). This similarity can be traced back
to the fact that either the effective Hamiltonian of MoS2

monolayers or that of Hg(Cd)Te quantum wells, which is
known as the Bernevig-Hughes-Zhang (BHZ) model [40],
includes k2- and k-dependent terms [18,19] and that the sizable
band gap of their bulk structure is due to a mass parameter.
Because Hg(Cd)Te heterostructures lack the valley degree of
freedom, time-reversal symmetry results in two degenerate
states (Kramers doublets) that are only tagged by their spin
orientation. Such spin-polarized metallic modes propagate in
opposite directions, giving rise to a quantum spin Hall effect.
Conversely, Fig. 1(b) shows that both opposite spins move

FIG. 2. (a) The energy band dispersion of a 48-ZMDSN for an
exchange interaction of strength h = 2.4λM . The thick (thin) colored
curves indicate two in-gap states localized on the Mo edge (S edge).
For clarity, the spin-up and spin-down states are shown in red and
blue, respectively. (b) Corresponding spin-polarized density of states.
The van Hove singularities are seen as sharp peaks coinciding with
the onset of energy subbands. The inset shows the spin-resolved
conductance as a function of the energy of the incoming electrons.

in the same direction near the crossings. As a result, the
separation of charge carriers in terms of the spin degree of
freedom with the help of the quantum Hall effect seems to be
not feasible.

One of the conventional techniques often used to unbalance
the reverse spins is to induce an exchange field that can
emerge due to the proximity effect by ferromagnetic insulators.
Consequently, the spin characteristics of the 2D system are
mostly determined by the majority spin near the Fermi energy
level. The band dispersion of a 48-ZMDSN for an exchange
field of h = 2.4λM [31] is shown in Fig. 2. Contrary to the
intrinsic spin-orbit coupling of MoS2 monolayers which splits
the band structure parallel to the kx direction [see Fig. 1(b)],
the nonparallel spins are now shifted inversely on the E axis.
Given the fact that the band structure repeats itself under
translations kx → kx + 2nπ/a (n = ±1, ± 2, . . . ), which is
further supported by the Bloch periodic boundary condition
in Eq. (4), one can easily prove that Es,kx

= E−s,−kx
− 2sh;

for more details we refer to Ref. [25]. This means that the
presence of an exchange field breaks spin inversion symmetry
with respect to the kx = 0 axis [according to the argument
made in Ref. [25], the equality Es,kx

= E−s,−kx
is tantamount

to the right-handed helicity as depicted in Fig. 1(b)]. The
direct consequence of this asymmetry for the density of
states, DOS(s,E) = − 1

π
Im Tr[Gs(E)], is the emergence of

spin-polarized van Hove peaks, which are clearly seen in
Fig. 2(b). Note that although the field h shifts nonparallel
spins in opposite directions, the Mo- and S-edge modes are still
equivalent in terms of the overall energy change. In spite of
the giant spin splitting induced by h, no energy gap is induced
between any two successive subbands with the same spin. As
a result, neither the spin-up contribution nor the spin-down
contribution vanishes in the conductance, as shown in the
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FIG. 3. The band structure of a 48-ZMDSN subject to a transverse
electric field. (a) and (b) show the energy dispersion of low-
energy subbands for two inverse fields, Ey = −0.75 V/w and Ey =
0.75 V/w, respectively, where w is the ribbon width. The electrical
function of the ZMDSN is strongly field dependent and can range
from (a) semiconducting to (b) metallic phase. The directions of
motion for spin-↑ and spin-↓ states on either Mo edge or S edge are
identical.

inset of Fig. 2(b), which prevents the realization of fully spin
polarized transport.

The idea to achieve a 2D half-metal crystal, which allows
for spin-selective transport, has been conceivable for zigzag
graphene nanoribbons subject to a transverse electric field [41].
Here, with applied transverse electric field E = (0,Ey,0), we
observe an anomalous duality in the behavior of ZMDSNs. To
be precise, depending on the sign of Ey , the band structure
of a ZMDSN can offer either semiconducting or metallic
properties. The results are shown in Fig. 3. This is indeed one
of the significant consequences arising from the dissimilarity
in the chemical natures of the opposite edges. Given the fact
that sulfur atoms are electronegative, the application of a
positive (negative) electrical gate on molybdenum atoms with
respect to sulfur atoms can facilitate (suppress) the electron
transferability between Mo-S bonds. Therefore, the electrical

FIG. 4. (a) The electronic structure of a 48-ZMDSN when both
transverse electric and exchange fields are applied simultaneously.
The strength of the fields is set to Ey = −0.75 V/w and h = 2.4λM .
The colored domains between E ≈ −0.52 and 0.2 eV show two
exceptional regions in which the band structure is fully polarized in
terms of the spin degree of freedom. At the gap-closing point the
dominant spin orientation changes at once (↑�↓). (b) The density of
energy states for different spin quantum numbers. The inset indicates
the spin polarization ps as a function of the energy of incoming
electrons. (c) The average DOS for opposite spins in different energy
ranges. The ZMDSN acts like an insulator between ≈ −0.52 and
−0.16 eV for spin up and between ≈ −0.16 and 0.2 eV for the
spin-down state.

function of ZMDSNs would be unexpectedly incompatible
for Ey and −Ey even though electrons are transmitted in
the x direction. Nevertheless, even with such contradictory
behaviors in response to a transverse electric field, the edge
modes are still degenerate in terms of the spin degree of
freedom. From the subbands illustrated in Fig. 3, one can infer
the same spin inversion as in Fig. 1(b), i.e., Es,kx

= E−s,−kx
,

irrespective of which side the orientation of Ey is. To better
appreciate this similarity, it might be enough to recall that
a transverse electric field keeps the periodicity of ZMDSNs
unchanged along the repetition direction of the unit cells.

Figure 4 displays the electronic structure of a 48-ZMDSN
when both the E and h fields are applied simultaneously. The
strength of the electric field is assumed to be Ey = 0.75 V/w
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TABLE III. Required transverse electric field for a given h field
in order to induce the same half-metallic state as in Fig. 4. The results
are given for a 48-ZMDSN with w = 6.385 nm. The size of the spin
gap �s is almost identical for both spins.

h/λM |E| (V/w) �s (meV)

0.1 0.4 ∼15
0.5 0.46 ∼75
1.0 0.54 ∼150
2.0 0.69 ∼300

(w is the ribbon width), so its tendency is towards the Mo
edge. As seen, the wide band gap between the conduction
and valence bulk states has been closed by two spin-polarized
metallic states, each of which belongs to a disparate edge. The
lower half of the band gap (the blue shaded region) is covered
by a |Mo-edge, spin-↓〉 state, but midway to the top both the
edge and spin directions are suddenly inverted. By evaluating
the spin-polarized conductance with the help of Eq. (5), the
spin polarization of a current flowing through the MoS2 chan-
nel can be calculated by ps(E) = (G↑ − G↓)/

∑
s=↑,↓ Gs . The

obtained ps , shown in the inset of Fig. 4(b), confirms that the
conductance between E ≈ −0.52 and 0.2 is completely spin
polarized. In comparison to a perfect metallic system which
allows electrons of all degrees of freedom to transmit, here the
ZMDSN blocks electrons of one spin direction. The direction
of the filtered spin critically depends on whether the energy of
transmitted electrons is below or above the gap-closing point
at E ≈ −0.16 eV. Therefore, the ZMDSN acts as a metal for
one spin direction but as an insulator for the opposite spin
direction, which can be tuned by an external gate voltage. This
can be interpreted as an indication of the fact that the ZMDSN
has become a tunable half-metal structure. To establish the
half-metallicity, we plot in Fig. 4(c) the average spin-polarized
DOS, i.e., DOSab = ∫ Eb

Ea
DOS(E) dE/(Eb − Ea), for a few

energy ranges corresponding to the band structure in Fig. 4(a).
There are two nonparallel spin gaps which emerge above and
below the gap-closing region. Such sizable spin gaps imply
that, by applying an appropriate gate voltage to the ZMDSN,
one can suppress the transmission of one spin direction in favor
of its opposite counterpart. Note that the half-metal state of
Fig. 4 can also be observed for lower h fields (for an example,
see Table III). According to Table III, one can infer that the size
of the induced spin gap is approximately proportional to the
strength of the exchange field, that is, �s ∝ h. Also, the data
presented in Table IV indicate that the required electric field
for inducing the same half-metallic state as in Fig. 4 decreases
for wider ZMDSNs, whereas the size of the created spin gap
remains unchanged.

TABLE IV. Required transverse electric field for inducing a half-
metallic state in an N -ZMDSN for h = 2.4λM . w is the corresponding
ribbon width. The size of the induced spin gap for all ribbons is
�s ∼ 360 meV.

N 16 24 32 48 80 96

|E| (V/w) 0.792 0.772 0.765 0.754 0.748 0.746

FIG. 5. The spin polarization ps as a function of the energy of
incoming electrons in the presence of an edge defect or random h-field
fluctuations.

The realization of an ideal uniform exchange field demands
a defectless ferromagnetic insulator beneath the ZMDSN.
In addition, the arrangement of all the Mo-S bonds has
to be completely perfect, without any ripple or distortion.
However, in practice, the fulfillment of both criteria seems to be
technically very complicated and unlikely. The absence of such
ideal conditions might disturb the strength of the exchange
field spatially. Here, we model the exchange-field disturbance
by random tiny fluctuations about its strength h. The maximum
deviation from the average exchange field will be then a small
fraction of it, i.e., δhmax/h � 1. The spin polarization of
the conductance spectrum ps in the presence of a randomly
disordered h field is shown in Fig. 5 by the red dotted line.
To ensure that the results are valid and generalizable to any
random sample of h, the shown ps has been averaged over
the results of an ensemble of 100 independent samples. The
average exchange field in all these samples is h = 2.4λM , and
the maximum deviation δhmax/h = 0.1. The ps variations of
a pure ZMDSN are also shown by the black solid line for
reference. Despite the appearance of a superficial oscillatory
structure, specifically near the steplike variations of ps , the
perfect spin polarization between ≈ −0.52 and 0.2 eV, namely,
the colored region in Fig. 4(a), is left unchanged. Therefore,
one can reasonably conclude that the induced half-metallicity
is robust against random deviations from the average exchange
field. A similar conclusion can be drawn for edge defects,
e.g., when a lattice site on the edge is vacant, which is one
of the prevalent defects that usually affect the edges of 2D
hexagonal structures. Physically, a vacancy can be modeled
within the tight-binding method by tending the corresponding
on-site energy to infinity. Comparing the ps curves of defected
and pure ZMDSNs reveals that the fully polarized regions
of the conductance spectrum cannot be influenced by an edge
vacancy. It is also interesting to note that the presence of lattice
vacancies in the ribbon’s bulk region has no consequence
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for the edge states, and hence, the induced half-metallicity
is naturally immune to this kind of defect.

IV. SUMMARY

We focused on the evolution of the edge states of ZMDSNs
in response to a transverse electric field and/or an external
exchange field. For a field-free ZMDSN it was shown that
the band structure consists of four metallic edge modes with
a right-handed helicity. Therefore, the spin of any particle
belonging to these states is in the same direction as its
momentum. The origin of this helicity is attributed to the
lattice periodicity and the fact that the spin-orbit coupling

Hamiltonian under a momentum reversal can be conserved
via a spin inversion. With the presence of only an exchange
or electric field, the electronic structure of the metallic edge
modes does not yield any spin gap. We have shown that
a ZMDSN in response to a transverse electric field can
offer either metallic or insulating properties, but the helicity
characteristics for either case remain unchanged. With the
simultaneous application of both fields, we predict that a
peculiar half-metallic state can be observed. The peculiarity
of such spin-selective states is due to the fact that the allowed
spin orientation can be easily controlled by an external gate
voltage. We also showed that the induced half-metal phase
is robust against the presence of edge vacancies or random
deviations of the exchange field from its mean value.
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