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Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain
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Using the tight-binding approach coupled with mean-field Hubbard model, we theoretically study the effect
of mechanical deformations on the magnetic properties of bilayer graphene (BLG) quantum dots (QDs). Results
are obtained for AA- and AB(Bernal)-stacked BLG QDs, considering different geometries (hexagonal, triangular
and square shapes) and edge types (armchair and zigzag edges). In the absence of strain, our results show that
(i) the magnetization is affected by taking different dot sizes only for hexagonal BLG QDs with zigzag edges,
exhibiting different critical Hubbard interactions, and (ii) the magnetization does not depend on the interlayer
hopping energies, except for the geometries with zigzag edges and AA stacking. In the presence of in-plane and
uniaxial strain, for all geometries we obtain two different magnetization regimes depending on the applied strain
amplitude. The appearance of such different regimes is due to the breaking of layer and sublattice symmetries in

BLG QDs.
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I. INTRODUCTION

A plethora of unique physical properties observed in
graphene-based materials has generated a great interest on
these materials, particularly owing to their potential for novel
technological applications [1,2]. Many of these studies have
been carried out to understand the electronic, magnetic, and
mechanical properties of graphene nanostructures, such as
nanoribbons, quantum dots (QDs) and quantum rings (QRs)
[3-9]. One of the motivations concerning the investigation of
these quantum confinement structures is related to the need of
producing graphene-based system with an energy gap, which
is generally absent in a pristine graphene sheet, and to the
expectation that finite-size effects may significantly modify the
graphene properties as result of the size quantization. The size,
shapes, and types of edges of these graphene nanostructures
have been found to strongly affect their intrinsic electronic
properties, allowing for instance to control their energy gap
[8-22].

Recently, it has been shown that graphene nanostructures
can exhibit magnetic ordering, besides presenting promising
features as long spin relaxation time and high electron mobility,
which are advantageous for spintronic applications and sensor
devices [7,8,21,23-26]. The nature of the magnetic ordering
in graphene nanostructures is mainly related to the imbalance
of sublattice atoms that might, e.g., give rise to a band of
degenerate states near the Fermi energy level. Furthermore,
it has been shown that the magnetic properties of graphene-
based nanostructures exhibit different features from ordinary
graphene due to the existence of edge states. These states
are localized at the zigzag edges, decay quickly in the bulk
and lead to a spin polarization of the ground state. Whereas
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bulk graphene is a diamagnetic semimetal, zigzag graphene
nanoflakes may have either ferromagnetic or antiferromagnetic
ordered ground states, while armchair graphene nanoflakes
are always nonmagnetic. It has been previously reported in
the literature that the number and properties of edge states are
sensitive to the geometry of the graphene QD and QR, such that
geometry and edge type play an import role in the diamagnetic
response of the graphene nanostructures [3,7-21,27-31].

Besides the application of external electric or magnetic
fields, or by the controlling of the size, shape, edge type and
number of layers [7,32-38], it has been also demonstrated
that geometrical deformations can be used to tune the elec-
tronic and magnetic properties of the graphene nanostructures
[39-46]. The main interest in its strain engineering is due
to graphene’s ability to withstand large mechanical stress,
sustaining elastic strains up to 25% [47]. It has been shown that
the effect of mechanical deformations on the graphene lattice
is to change the hopping energies of the carbon atoms and to
modify the band structure by shifting the Dirac cones with
respect to each other [43-45]. In addition, previous works
have investigated the effect of uniaxial strain on the optical
[41] and magnetic [39,40] properties of graphene QDs using
tight-binding and mean-field calculations, respectively. These
studies revealed that magnetism can be enhanced up to 100%
for strain values on the order of 20% for some dot geometries.
Another type of QD, similar to the ones made of monolayer
graphene, can be achieved by considering small flakes of
bilayer graphene (BLG). In such BLG QDs, it has been
recently shown that the edges and geometries play an important
role and modify strongly the energy spectrum [8,14-16,18,19],
similar to monolayer QDs. Despite the considerable number
of theoretical studies pertinent to the magnetic properties of
monolayer graphene QDs, similar studies in BLG have been
limited to triangular BLG flakes without taking in account
the effect of strain [48]. Therefore a naturally related question
arises, namely, how the magnetic properties of BLG QDs are
modified by external strain. Systematic studies of magnetism
in BLG flakes with different geometries and boundaries in the
presence of strain are, to our knowledge, absent.
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In this paper, by combining the tight-binding (TB) ap-
proximation and the electron-electron interactions treated
self-consistently at the level of the mean-field Hubbard model,
we numerically explore how the magnetic ordering in BLG
QDs with different geometries, stacking and edges, is affected
by uniaxial strain. The paper is organized as follows. In Sec. I,
we introduce the theoretical model used in our numerical
calculations. In Sec. III, we discuss the self-consistent mean-
field results obtained in the absence (Sec. III A) and in
the presence (Sec. IIIB) of an applied strain. Finally, we
summarize our results in Sec. IV.

II. THEORETICAL MODEL

In order to study the magnetic properties of BLG QDs, we
use the widely applied one-orbital mean-field Hubbard model
[7,8,21,22,25,27-40]. It consists in a m-orbital tight-binding
model (Hrp) for single particles combined with the Hub-
bard model () to describe the repulsive electron-electron
Coulomb interactions. The Hubbard-model Hamiltonian can
be written as

H=Hrp + Hy, (D

where Hrp is the noninteracting term represented by the
nearest-neighbor tight-binding Hamiltonian, given by

Hrp = Zeiocjgcia + Z (Tijachcja +Hc), (2
i,o0

i#j.0

where c,-a(cja) annihilates (creates) an electron in site { with
spin o and on-site energy €;,. The sum is taken only between
the nearest-neighbor sites i and j, with hopping energy 7;j,.
In AA-stacked BLG, the atoms in the upper and lower layers
are located directly on top of each other, whereas in an
AB-stacked BLG the atoms in the A (B) sublattice from
the bottom layer are coupled with B (A) atoms in the top
layer (i.e., the two monolayers are shifted with respect to each
other), as sketched in the insets of top and bottom panels of
Fig. 1 for AA-staked and AB-staked BLG QDs, respectively
[49]. The hopping energy between the atoms in the same
layer is 7;;o =t = —2.8 eV, while the hopping for neighbor
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atoms stacked right on top of each other in different layers is,
unless otherwise explicitly stated, 7;j, = 11 = —0.4 eV (for
AB-stacked BLG QDs) and 7;;, = th = —0.2 eV (for AA-
stacked BLG QDs) [14-19,48,49]. We assume that ¢;, = 0,
resulting in an electron-hole symmetry for the energy spectrum
obtained by the H7p matrix, which is thus symmetric with
respect to zero energy.

The Hubbard repulsion, treated in the mean-field approx-
imation, in order to include the effect of electron-electron
interaction, reads

Hy =U Z((nu)ﬂm + (nipdniy), 3)

where U (U > 0) is called as the Hubbard parameter and
denotes, in the short-range regime, the on-site Coulomb
repulsion energy for each pair of electrons with opposite spins
on the same site i. n;, = cja i 1s the number operator and
(n;is) is the average electron occupation number for spin-up
(o =1) and spin-down (o =) electrons.

In order to solve the problem for H, we perform self-
consistent calculations, starting from a randomly chosen
initial distribution of the average electron occupation number
(nis) and then, by diagonalizing the Hamiltonian (1), we
obtain the new eigenvalues and eigenvectors that are used to
compute the updated spin densities for the next iteration. This
procedure is repeated iteratively until the spin density as well as
the eigenvalues of H converge. To be more specific, the
criterion of convergence of the self-consistency is reached
when the maximum change of the spin density over the atomic
sites drops below 7, a convergence parameter chosen ranging
from n = 107° to 10~'5, depending on the analysed case.
Accordingly, with the self-consistent achieved spin densities,
one can compute the magnetic moment per atomic site

mi = ((niy) — (ni}))/2, “

the total spin § =), m;, the maximum of magnetization
Mmax, the charge distribution (n;4) + (n;), as well as the
energy spectrum E, ,. These magnetic properties will be
discussed in the next section for different parameters of BLG
QDs. It is important to emphasize that the BLG QDs studied
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FIG. 1. Variation in the magnetization as function of the Hubbard interaction U/t for different dot size N and for triangular [(a)—(d)],
square [(e) and (f)], and hexagonal [(g), (h), (i), and (j)] BLG QDs with armchair [(a), (b), (g), and (h)] and zigzag [(c), (d), (i), and (j)] edges.
The top (bottom) panels correspond to (AB-)AA-stacked BLG. The insets in (i) and (j) represent the critical Hubbard interaction as a function
of the dot size. The interlayer hopping energies are r;, = 0.2 and 0.4 eV for AA- and AB-stacked BLG QDs.
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here with hexagonal and triangular shapes are characterized
by the number of carbon hexagons (N) in each dot side and
we consider only symmetric dots. Thus all dot sides have
the same length and the number of carbon atoms at the top
and bottom layers are the same. The only exception is the
square dots, where the number of carbon rings along the
zigzag direction is different (greater) than the number along
the armchair direction, in order to preserve the length of the dot
sides to be approximately the same for all sides, since square
dots have two zigzag edges and two armchair edges. In this
case, we take N for the armchair direction.

An important point is the range of physical meaningful
magnitudes for U in Eq. (3). To our knowledge, there is
currently no consensus on the actual values of U for the case
of graphene [7]. This is due to current absence of standard and
direct experiments performed on magnetic graphene systems
which would allow to estimate U. In a recent study of
magnetism in disordered graphene and irradiated graphite
[50], was reported for the U parameter to lie in the range
U =~ 3.0-3.5 eV. In this study, the accepted interval obtained
from magnetic resonance measurements in transpolyacetylene
(a one-dimensional sp? carbon system that resembles a short-
width zigzag graphene nanoribbon) was considered [51,52].
As examples of the aforementioned absence of a general
consensus about the value of U, recent works in graphene
confinement structures consider U = 5.6 [28], 1.5 to 3.5 [30],
4.158 [35],2.0t0 3.5 [39], 2.8 to 8.4 [40], 5.6 to 11.2 eV [46]
for graphene QDs and U = 3.24 [31], 2.82 [32], 2.7 [33], and
2.75 eV [34] for graphene QRs.

A recent comparison between results for the magnetic
properties of graphene QDs [30] and ribbons [22,26] obtained
from the mean field Hubbard model and from first-principle
calculations found a good agreement if the Hubbard parameter
U is chosen appropriately. Moreover, the mean-field Hub-
bard model is found to capture the low-energy physics of
graphene nanoislands [30] and nanoribbons [22,26], showing
that next-to-nearest neighbor hoppings, long-range Coulomb
interactions, and correlations included in the first-principle
calculations have a minor effect on the physical properties
in the low-energy regime. However, it is important to mention
that the long-range Coulomb interactions and correlations have
a minor effect, since this system is charge neutral with a
homegeneous charge distribution. On the other hand, away
from local charge neutrality, as for instance in the presence
of bias potential in the layers, the long-range Coulomb
interactions and correlations may become significant. Thus,
this ensures the validity of Hubbard model to the present study
of magnetic properties in BLG QDs.

III. NUMERICAL RESULTS

A. In the absence of strain

First, let us investigate the magnetic ordering for unstrained
BLG QDs with different geometries and edge types. In
Fig. 1, we depict the dependence of the maximum value of
magnetization my,x as a function of the on-site Coulomb
Hubbard repulsion U/t for different numbers of carbon rings
N in each dot side. Top and bottom panels correspond to results
for AA- and AB-staked BLG QDs, respectively, considering

PHYSICAL REVIEW B 96, 115428 (2017)

armchair [(a), (b), (), and (h)] and zigzag [(c), (d), (i), and (j)]
edges. Notice that, in general, irrespective to the size of the
dot, the magnetic ordering for the triangular, Figs. 1(a)-1(d),
and square, Figs. 1(e) and 1(f), BLG QDs with zigzag or
armchair edges and with AA- or AB-stacking, as well as for
hexagonal BLG QDs with armchair edges with both stacking
types, Figs. 1(g) and 1(h), shows to be independent of N,
without any considerable variation with the size. However,
the same feature does not hold for hexagonal BLG QDs with
zigzag edges with both stackings [see Figs. 1(i) and 1(j)]. The
nature of the size-dependent magnetization for zigzag-edged
hexagonal BLG QDs, Figs. 1(i) and 1(j), is linked to its shape
and its zigzag edges. In hexagon, three edges contain sites
belonging only to the A sublattice (A type) and the other three
are B type, such that one has edge and sublattice balances
implying in a global balance. According to Ref. [30], there
is a competition, in the case of zigzag hexagons, between the
dispersion of the single-particle spectra and interactions, where
the dispersion occurs because of the hybridization of states that
otherwise would lie in a single sublattice close to the edge. As
a result, smaller nanostructures feature larger hybridization
and are less prone to develop magnetic order, explaining the
reason why U, for smaller QDs is higher than the larger ones,
as shown in the insets of Figs. 1(i) and 1(j). Moreover, as a
consequence of the compensated lattice, the spin density for
three edges point towards up direction, whereas the other three
edges points towards the opposite direction (the magnetization
spin density for hexagonal BLG QDs will be discussed in more
detail further on).

Previous works on monolayer graphene QDs have reported
a similar size-dependence of the QDs magnetization as
compared to the ones obtained here for BLG QDs. Fernidndez-
Rossier and Palacios [30] have found a robustness in the results
of magnetization with respect to the value of U for triangles
with N between 5 and 30, while Viana-Gomes et al. [39] have
shown that m,x as a function of U for square and hexagonal
armchair QDs do not display noticeable variation with the
size. Furthermore, the magnetization for triangular, Figs. 1(a)
and 1(b), and hexagonal, Figs. 1(g) and 1(h), BLG QDs
with armchair edges are equivalent to the graphene ordinary
system, exhibiting a second-order phase transition at critical
on-site Coulomb Hubbard interaction U, >~ 2.2t >~ 6.12 eV
[7,30,39]. The reasons why the second-order transition occurs
similarly to infinite graphene are due to the absence of zigzag
edges in these geometries and also because these QDs possess
sublattice symmetry with a balanced lattice such that the
number of atoms in the sublattice A and B in each layer
is the same. Above the critical on-site Coulomb repulsion
U., an antiferromagnetic ordering appears as a consequence
of the bipartite nature of the honeycomb lattice [28]. On
the other hand, the geometries with zigzag edges exhibit
a smaller value of U, [see Figs. 1(c), 1(e), 1(i), and 1(j)
for AA-stacked triangular, AA-stacked square and AA- and
AB-stacked hexagonal shapes, respectively], which is related
to the imbalanced structure with different number of atoms
belonging the sublattices A and B. One observes that the
slope of the magnetization curves for triangular zigzag-edged,
Figs. 1(c) and 1(d), and square, Figs. 1(e) and 1(f), BLG
QDs are approximately the same, which can be interpreted
as a boundary effect, determined by the zigzag terminations
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FIG. 2. The same as in Fig. 1, but now considering different interlayer hopping energies 7, . It was assumed N = 4 for all geometries. The
insets in (c), (e), and (i) represent the critical Hubbard interaction as a function of 7, .

in both geometries that play a predominant role in their
magnetizations. Besides, AB-stacked triangular zigzag-edged
and AB-stacked square BLG QDs present finite magnetization
for any finite U, being a consequence of the presence of
zigzag edges and the layer symmetry in these QDs. This point
will become more clear further through the discussion of the
density probability for these structures.

Taking different interlayer distances leads to different
interlayer hopping energies between the atoms belonging to
the different layers. Therefore an analysis of variation of the
interlayer hopping energy around the actual value ¢#; = 0.2
and 0.4 eV for AA- and AB-stacked bilayers, respectively,
allows us to check in which cases coupled layers would
show different results from the decoupled ones and to verify
the robustness of mpy.x Wwith respect to ¢, for different dot
shapes and U values. Thus Fig. 2 shows the magnetization
as a function of the Hubbard interaction U for different ¢,
hopping energies ranging from 7, = 0 to 0.6 eV, considering
triangular, Figs. 2(a)-2(d), square, Figs. 2(e) and 2(f), and
hexagonal, Figs. 2(g)-2(j), BLG QDs with AA (top panels)
and AB (bottom panels) stacking. In our calculations, we fixed
the interatomic distance between the atoms in the same layer
(t = —2.8 eV) and the system size (N = 4). Our theoretical
results show that the maximum value of magnetization does
not depend on the 7, hopping energies for all studied AB-
stacked BLG QDs with both zigzag and armchair edges
(bottom panels) and AA-stacked BLG QDs with only armchair
terminations, Figs. 2(a) and 2(g). Therefore the two decoupled
layers (for t; = 0) have the same magnetization as the coupled
ones for almost all geometries. Consequently, the presence of
any defect in a nanostructured BLG system whose only effect
is to reduce or to increase the coupling energies between
the two layer, will not significantly affect the mean-field
results. However, this is not the case for AA-stacked triangular
[Fig. 2(c)], square [Fig. 2(e)], and hexagonal [Fig. 2(i)] BLG
QDs with zigzag edges. The reason is related to the boundary
effect (zigzag edges) and because the magnetic moments of
the two layers in AA-stacked BLG QDs with zigzag edges are
coupled antiferromagnetically (for U > U¢) as ¢, increases.
In fact, the spin-resolved magnetic moment for the atoms
in the top layer points towards to opposite direction with
respect to the underneath atoms at the bottom layer and thus

the layers are strongly affected by the perpendicular hopping
energy changes (that becomes clearer later from the results
for the spin densities). The insets of Figs. 2(c), 2(e), and 2(i)
show the behavior of the critical on-site Coulomb Hubbard
parameter for increasing interlayer coupling ¢, . Notice that
imbalanced structures with different numbers of atoms per
sublattice, Fig. 2(c) triangular QD with zigzag edges and in
the Fig. 2(e) square QD, exhibit larger U, values, whereas
balanced structures, Fig. 2(i) hexagonal QD with zigzag edge,
i.e., No = Np, U, decreases as a function of 7, [asin Fig. 1(i)].
Therefore, for these QDs, as we will show later by analyzing
the spin densities, one can switch from an ordering when
both layers have the same spin orientations, behaving as
two isolated monolayer graphene QDs, to a coupling with
antiferromagnetic ordering, simply by changing the distance
between the layers.

It is worth mentioning that the amplitude of magnetization
Mmax Obtained here for all studied BLG QDs (Figs. 1 and 2)
were approximately the same values reported for monolayer
graphene QDs by taking fixed system parameters (N, f) and
Hubbard term (U) [28,39]. It is a consequence of the fact that
Mmax 18 computed by taking into account the magnetic moment
per atomic site, then for a fixed U, mp,y is a local property and
is independent of the number of atomic sites. Moreover, since
a BLG system obeys the layer symmetry, i.e., the number of
atoms in both layers is the same, one has double the number of
atoms as compared to the monolayer system. Due to this layer
symmetry and the doubled number of atoms in BLG, the total
spin S is doubled compared to monolayer QDs. This agrees
with Lieb’s theorem [53] that states that in the case of repulsive
electron-electron interactions (U > 0), a bipartite system has
the ground state characterized by the total spin [7]

_ INa = Nil

N )
2

&)

where N4(Np) is the number of atoms in the sublattice A(B).
According to Lieb’s theorem and Eq. (5), itis also clear that the
value of the total spin S depends on the geometry, the edge type
and the size of QD, since some geometries possess a balanced
(imbalanced) lattice with the same (different) number of atoms
in sublattices A and B, emerging in different values for S.
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FIG. 3. (a)-(g) Evolution of the spin-resolved energy levels near
the Fermi energy (set to zero) for a zigzag-edge triangular AB-stacked
BLG QD with N = 4 carbon hexagon in each side, by taking different
values of the Hubbard interaction U /¢. The interlayer hopping energy
is t;, = 0.4 eV. The blue down (red up) triangles correspond to the
spin-down (spin-up) energy levels. (h) Induced gap energy by the
Hubbard interaction.

Figure 3 shows the evolution of the energy spectra for spin-
up (red up triangles) and spin-down (blue down triangles)
states of a triangular BLG QD with zigzag edges and dot
size N = 4 by changing the Hubbard interaction range from
U/t = 0to 3.5. Note that without considering the effect of on-
site Coulomb repulsion (U/t = 0), the energy spectra exhibits
electron-hole symmetry due to the bipartite lattice implying
in a total spin equal to zero and there appears a degenerate
set of zero-energy states that corresponds to the degenerate
edge states at the Fermi energy (E = 0). The number of zero-
energy states is equal to 2(N — 1) = 6, which is twice the
value from monolayer graphene QD with triangular shape and
zigzag edges [30,35], being related to the layer symmetry of the
BLG system. This resultis in agreement with previous work by
Giliclii et al. [48] on the same geometry but with the triangles
from the bottom and top layers having different numbers of
atoms and thus, because the layer asymmetry, they obtained
a different number of zero-energy states corresponding to the
bottom and top layers. Note also that there is a large energy
gap between the zero-energy edge states and the first nonzero
state. Although not shown here, the latter are mostly spread
along the QD. Considering U/t # 0, we verify that an energy
gap opens around the 2(N — 1)-degenerate zero-energy states,
spiting them in two groups of (N — 1)-states for spin up and
spin down [see Fig. 3(b)]. Moreover, the presence of Hubbard
interaction term induces a nonzero total spin, S = 3. As U/t
increases [see Figs. 3(b)-3(g)], the energy gap between the two
groups of (N — 1)-states increases, as emphasized in Fig. 3(e),
while the total spin remains the same. Therefore the on-site
Coulomb repulsion allows to control the relative position of
the zero-energy states. In the next section, we will investigate
how the presence of an uniaxial strain affects the magnetic
properties of the BLG QDs.

B. In the presence of strain
In strained graphene, the interatomic distances change,
thus modifying the hopping energies. The in-plane hopping
parameter 7;; in a free-standing layer can be transformed in
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FIG. 4. Schematic representation of the effect of strain along x
direction (armchair) on the length of the nearest-neighbor carbon
atoms (a) by keeping the atomic positions in y direction unchanged,
and (b) by considering an elastic deformation in both directions. The
black solid (red open) symbols denote the carbon sites in the absence
(presence) of strain and §; (with/ = 1, 2, and 3) are the lattice vectors.

the following form [39,41,44]:
Tifi N Ii_,-e_3'37("3""/“°_1), (©6)

with an explicit lattice-distance dependence, where ag = 0.142
nm is the unstrained intercarbon distance and §;; is the distance
vector between the adjacent atoms i and j in the strained lattice
th)at is given, with respect to the undeformed lattice distances
8%, by

ij?
0

8ij =(1+€)'8,‘j~ (7)

€ is the strain tensor in the lattice coordinate systems, given by

cos?0 —vsin?0 (1 4+ v)cos@ sind
€=c¢ . . 5 20 ) (B
(I +v)cosfsinf  sin“H — vcos 60

where € is the tunable strain modulus, v is the Poisson ratio,
and 60 denotes the angle with respect to the zigzag direction (y
direction in Fig. 4) along the applied strain direction. Applied
tensions along the zigzag (y) and armchair (x) directions are
considered by taking & = 7 /2 and 0 in Eq. (8), respectively.
For these two particularly interesting cases, the uniaxial in-
plane strain can be incorporated via Eq. (7) using the following
deformed bond lengths:

1+ 3e — Lev)a for/ =1 and 2
181 = (1€ = gev) ©
(1 — €v)ag, forl =3
for zigzag case and
1+ 1e—3€v)a for/ =1 and 2
= {U e aero (10)
(14 v)agy forl =3

for armchair case. §;’s with! = 1, 2, and 3, are shown with blue
arrows in Fig. 4. In the elastic and linear deformation regime,
strain along the zigzag direction makes the deformed bond
lengths |6, | and |8, | extended and |83 | contracted, while for the
armchair case all three bonds become extended [39,41,44]. The
value of the Poisson’s ratio used for graphite and in some works
also for graphene is v = 0.165 [41,44], while recent works
in graphene QDs has considered v = 0.3 [39]. In order to
make a direct comparison with the strained results in graphene
QDs[39], we also assume v = 0.3.
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Such uniaxial and elastic strain is expected to be attainable
by using, e.g., flexible substrates [54], where the BLG QD
is deposited on the flexible substrate and then one stretches
the substrate by a mechanical device. It is important to point
out that the interlayer hopping 7, will remain constant, since
we are considering pure in-plane lattice deformation and also
because both coupled layers are subjected to the same strain
amplitude. This ensures that the hopping related to 7, will
always be perpendicular to the bilayer sheets [19].

A sketch of the lattice deformation along the armchair (x)
boundary is illustrated in Fig. 4 for a very large value of €, in
order to clearly show the lattice changes, where red open (black
solid) symbols represent the (un)deformed graphene lattice.
We will only show the results for the system under planar stress
with tension along the armchair directions and keeping the
atom positions in y direction unchanged [Fig. 4(a)]. We have
verified (although not shown here) that applied strain along
the zigzag direction leads to qualitatively similar features as
for the armchair case. We have also checked that elastic defor-
mations like the one in Fig. 4(b), in which both edges deform,
produce qualitatively and quantitatively similar results. This
agreement between these results is due to the fact that the range
for € used here does not change significantly the atom positions
in the y direction. As reported in Refs. [39], a similar physical
situation was also noted for monolayer graphene QDs, i.e.,
strained monolayer graphene QDs present qualitatively the
same magnetization by deforming it along either the zigzag
or armchair directions. That is also in agreement with recent
results obtained by L. Wang et al. [55] for the elastic behavior
of BLG, when deformed up to 20%. For illustration purposes,
all results in this section were obtained for N = 4, since
as shown in Fig. 1 the magnetization, in general, does not
dependent on the different dot sizes, exhibiting similar features
for all N and thus ensuring us that we should have negligible
finite-size effects.

Figure 5 presents the results for magnetization of BLG
QDs with different geometries, edges and stacking as a
function of the on-site Coulomb parameter U in the presence
of external in-plane deformation applied along the armchair
direction. Top (bottom) panels correspond to the results for
(AB-)AA-stacked BLG QDs for triangular [(a)-(d)], square
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[(e)-(f)], and hexagonal [(g)-(j)] shapes and with armchair
[(@), (b), (g), and (h)] and zigzag [(c), (d), (i), and (j)] edges.
By applying strain with modulus € ranging from 0 to 0.2,
we notice that the global effect of uniaxial deformation is
an enhancement of the magnitude of the magnetization 1 ,,x,
independent of the edge type and dot shape. However, a first-
order transition is seen with respect to the strain magnitude
[as shown in the insets of Figs. 5(a)-5(j) for magnetization
as a function of € for a fixed value of U/t], such that for
all studied cases my,x is kept unchanged for € < 0.7 x 1074,
whereas it is enhanced for € > 0.7 x 10~%, with the same
magnetization values. Viana-Gomes et al. [39] have reported
an increase in the maximum of the magnetization for square
and hexagonal monolayer graphene QDs as € increases. In case
of monolayer QDs, the enhancement is not as abrupt and the
modulus of strain € required for an pronounced enhancement is
approximately two orders of magnitude higher than for BLG.
The reason for the low range of € in strained BLG QDs is due to
the fact that BLG system is more complex than the monolayer
ones, regarding the fact that it admits more possibilities of
magnetic ordering due to the correlation effect between the
layers that are now coupled, being this way more sensitive to
any deformation. For very small strain amplitudes, that implies
that hopping energies should not be affected significantly
by the deformation of the lattice, explaining the unchanged
results fore < 0.7 x 10~ that remain as the unstrained one for
€ = 0 (black dashed lines). Experimentally, these small strain
values (¢ < 0.7 x 10~%) are difficult to be obtained, such that
any applied tensile strength that is experimental feasible will
result in a magnetization that matches on the top of the curve
for € = 0.2 (green triangle symbols), for example. Moreover,
strain brings up an explicit variation in the critical Hubbard
repulsion term U, for the BLG QD structures which have a
finite U,. For AA-stacked BLG QDs, top panels in Fig. 5 show
that the applied in-plane strain reduces the value of U,, not
in a gradual way, as reported in Ref. [39] for hexagonal and
square monolayer graphene QDs, but rather abruptly, such that
ystrained . gyunstrained for any strain amplitude higher than € >
0.7 x 107*. For instance, Us"ned /¢ a2 (0.33 < yrnstrained /p ~
0.65 for triangular and UST™@ned/; ~ (.62 < yunstained /¢ ~
1.72 for hexagonal BLG QDs with zigzag edges, as shown
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08 oeg=08x10" | "] e ek 0
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FIG. 5. The same as in Fig. 1, but now for different deformation amplitudes €, ranging from O to 0.2. It was assumed N = 4 for all

geometries. The hopping parameter ¢ on the x axis (U/t) is the original unstrained one || = 2.8 eV.

115428-6



MAGNETIC PROPERTIES OF BILAYER GRAPHENE ...

PHYSICAL REVIEW B 96, 115428 (2017)

Il T T T T T T -] 1 T 17\ T T T T T X C T T T T T T T T ¥ X]
1 (@) AA-stackingwﬁW? (C) AB- stackmg Mmk | (@) AA-stacking ﬁﬁﬁﬁ@ 10 AB-stackingW
O,Sj iy 7 0.57 m 0.55 Gty ] S+ B
0r- * or * or * *
0.5 0 1 05F R . o5 ° 1
L ’ :@W j i Pty , j
- '12{ R B \8:‘07 - -f( PR \52‘0* _1xm@@@ \ R ‘E:\O* . E‘:\f
N T T T ] X 1F b_ T kL I < 1F T T T ] T M,
[ IF ) AAstacking oywcERE Bt (d) AB-stackin Ve b (b) AA stacking ¥
0.5 VWV a7 0.5¢ on ] 0.51 VVVVXXW:XK B :
L W & i L v i L i i
of T 7 o . ] of )
-0.5r T AAA * -0.5r * -0.5r WAL
'IXMAAA | € i 0.014 -]ZQWX%AA‘AA\ ‘8 :\ 0.91* -IZX%XXK | ! °T 0.(\]1* 1208 0 01
50 55 60n 65 70 50 55 ﬁO 65 70 25 30 n 35 40 20 25 30 n35 40 45
d d
K) ggottom layer| Z) cgwt;ottom layer|
A 'V top layer A 'V top layer
(9)
=
N
AB
e=0
7—;7‘7:
AB
e=0.01

FIG. 6. (a)—(d) Spin-resolved energy levels near the Fermi energy
(set to zero) and (e)—(h) spin density for armchair-edged triangular
BLG QDs with strain amplitudes € = 0 [(a), (¢), (¢), and (g)] and 0.01
[(b), (d), (f), and (h)] and AA [(a), (b), (e), and ()] and AB [(c), (d),
(g), and (h)] stackings. We assume Coulomb repulsion U/t = 2.5.
Blue up (red down) triangles correspond to the spin-up (spin-down)
electrons in (a) to (d). Full (empty) symbols indicate top (bottom)
layer in (e) to (h), and the size of the symbol is proportional to the
spin polarization.

in Figs. 5(c) and 5(i), respectively. This way, the value of U,
can be used to characterize the two different regimes of 71«
for BLG QDs in the presence of strain.

Let us consider the decreasing of U, for strained AA-
stacked BLG QD structures. Although U is a local (on-site)
property, we observe that U, depends on the external stress.
Keeping in mind that the hopping energies are strongly affected
by changes in the interatomic distances, and that the results
for bulk systems and armchair-edged QDs for U, are related to
the uniform hopping parameter ¢ by U, =~ 2.2¢, as previously
discussed, we have that a change in ¢ produces a change in
the absolute value of U,., which can be summarized in an
explicit dependence of U, on the strain, U.(¢) >~ «ot(€), where
o should be around the bulk value of 2.2. A similar discussion
was presented in Ref. [39] for monolayer graphene QDs.

On the other hand, the effect of uniaxial strain in AB-
stacked BLG QDs leads to finite magnetization for any
finite U. Thus for U < Umstined  these QDs switch from
a nonmagnetic to a magnetically ordered state simply by
applying strain. The pairs of Figs. 5(a)-5(g) and 5(b)-5(h)
show very similar behavior for the maximum of magnetization
for AA- and AB-stacked BLG QDs with armchair edges

FIG. 7. The same as in Fig. 6, but now for triangular BLG QDs
with zigzag edges and Coulomb repulsion U/t = 2.0.

and triangular and hexagonal shapes (U, f_"ai"ed /t = 0.25 for
both armchair-edged triangular and hexagonal BLG QDs), as
expected, since triangular and hexagonal dots with armchair
edges exhibit similar magnetization independent of the dot
size N and interlayer hopping energy ¢, , as seen in Figs. 1(a),
1(b), 1(g), 1(h) and 2(a), 2(b), 2(g), 2(h) for the unstrained
BLG QDs. This is a consequence of the balance of these
structures, having the same number of atoms belonging to
different sublattices, and also due to the armchair boundaries.
Also, that the maximum of magnetization for square BLG QDs
with both AA and AB stacking exhibits a crossing between the
strained and unstrained cases around U/t & 1.42. This can be
interpreted as due to an effect of the interplay between the
boundary effect and tensile strength, bringing up a competition
between the zigzag edge states and the bulk states. This will
be verified below by plotting the density functions of square
BLG QDs with and without strain.

In order to understand the two different regimes found in
the maximum of magnetization for strained and unstrained
systems in Fig. 5, in Figs. 6 to 10, we show the spin-resolved
energy levels [four top panels, (a) to (d)] and the spin density
[four bottom panels, (e) to (h)] for triangular (Figs. 6 and 7),
hexagonal (Figs. 8 and 9), and square (Fig. 10) BLG QDs
with strain amplitudes € = 0 [(a), (c), (e), and (g)] and 0.01
[(b), (d), (f), and (h)], and stacking AA (left panels [(a), (b),
(e), and (f)]) and AB (right panels [(c), (d), (g), and (h)).
From Figs. 6 to 10, one can clearly see that applied uniaxial
strain dramatically modifies the spin-resolved energy levels
and the spin densities for all studied BLG QDs. For instance,
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FIG. 8. The same as in Fig. 6, but now for hexagonal BLG QDs
with armchair edges and Coulomb repulsion U/t = 2.0.

note that in general, the effect of strain on the energy levels
is either to lift the degeneracies, as observed for triangular
(Figs. 6 and 7) and hexagonal (Figs. 8 and 9) BLG QDs, or
to group the energy levels and thus increase the degeneracy,
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FIG. 9. The same as in Fig. 6, but now for hexagonal BLG QDs
with zigzag edges and Coulomb repulsion U/t = 2.5.
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FIG. 10. The same as in Fig. 6, but now for square BLG QDs and
Coulomb repulsion U/t = 2.0.

as observed for square BLG QDs (Fig. 10), but preserving
the electron-hole symmetry between spin-up and spin-down
electrons. Moreover, for triangular BLG QDs with armchair
edges (Fig. 6), one observes that in the absence of strain, for
both stacking types, these QDs do not present spin polarization,
i.e., they form a nonmagnetic phase related to the absence of
zigzag edge states, whereas in the presence of strain, the energy
spectrum shows an emergence of magnetism and the energy
levels spread around E = 0.

By analyzing the spin density for all geometries (four
bottom panels in Figs. 6 to 10) in the absence [(e) and (g)]
and in the presence [(f) and (h)] of strain, it is evident that the
main effect of strain on spin density is to break the layer and
sublattice symmetries of those BLG QDs. This explains why
the maximum of magnetization exhibits two different regimes
in Fig. 5. The spin density for the strained BLG QDs above the
saturation value € > 0.7 x 10 results in an enhancement of
Mmax, s a consequence of its complex ordering that has a mix
of ferromagnetic and antiferromagnetic couplings between the
two layers. It is important to mention (although not shown
here) that the spin densities for the strained BLG QDs below
the saturation value (i.e., € < 0.7 x 10™*) exhibit the same
arrangement as the unstrained BLG QDs, explaining why their
Mmax curve matches the result for € = 0 in Fig. 5.

Furthermore, as seen in the Figs. 6-10, the magnetic
moments of the two layers are coupled antiferromagnetically
for zigzag-edged and square unstrained BLG QDs, panels
(e) and (g) in Figs. 7, 9, and 10, and ferromagnetically for
armchair-edged unstrained BLG QDs, panels (e) and (g) in

115428-8



MAGNETIC PROPERTIES OF BILAYER GRAPHENE ...

Figs. 6 and 8. This means that the local magnetic moments for
unstrained BLG QDs exhibit the symmetry m%%™ = m' P, for
AA-stacked BLG QDs with armchair edges and AB-stacked
BLG QDs with zigzag edges, and mg‘fté"m = —mESPB for AB-
stacked BLG QDs with armchair edges and AA-stacked BLG
QDs with zigzag edges. This is a consequence of the type of
edge termination and the fact that the former (latter) BLG QDs
possess an imbalanced (balanced) lattice such that the number
of atoms in the sublattice A and B in each layer is different
(the same). These magnetic orderings of the spin densities are
independent of stacking. As shown by the plots of the spin
density, one verifies that zigzag-terminated BLG QDs [see
Figs. 7(e), 7(g), 9(e), 9(g), 10(e), and 10(g)] display local mag-
netic moments localized mostly on the zigzag edges, which
decrease sharply towards the center of the QD, such that the
local spin densities at the bulk sites are in general at least one to
two orders of magnitude smaller in comparison to the surface
state sites. Also concerning the edge states, it is seen that the
local magnetic moments of the zigzag edges are higher close
to the middle of the edges and decrease toward the corners, and
that for zigzag-edged hexagonal and square BLG QDs we find
that the local spins along different edges in each layer point
towards opposite directions, since those structures are formed
by adjacent edges with atoms belonging to different sublattices
and thus these adjacent edges couple antiferromagnetically
in the same layer. For instance, for zigzag-edged hexagonal
BLG QDs, the spin density for three edges aligns along the
up direction, whereas the other three edges point towards
the opposite direction, as a consequence of the compensated
lattice, while for square BLG QDs, the two zigzag edges are
composed by different sublattice types, such that the local
spin on these edges point towards opposite directions. For
zigzag-edged triangular BLG QDs, where the zigzag edges
are formed by atoms that belong to the same sublattice, the
surface states are found to couple ferromagnetically in a same
layer: it is very clear in Fig. 7(e) that the bottom (top) layer
forms a spin-up (spin-down) ferromagnetic phase.

IV. CONCLUSIONS

In summary, we have investigated the magnetic properties
of finite-size BLG QDs with different geometrical shapes:

PHYSICAL REVIEW B 96, 115428 (2017)

hexagon, triangle, and square, by considering two different
types of edges and stacking, namely, zigzag and armchair,
and AA- and AB-stacking layers, respectively, both with and
without lattice deformation. We have employed the tight-
binding approach coupled with electronic interaction term, that
is described by the mean-field approximation of the one-orbital
Hubbard model, in order to investigate how the magnetic
properties, such as magnetization and the spin energy states,
are affected by the presence of uniaxial strain. Our results show
that the magnetic properties in general depend on the geometry
and not only on the existence of zigzag edges, as also observed
for monolayer graphene QDs [27,39]. In the absence of strain,
(i) the magnetization as a function of the Hubbard term is not
influenced by the dot size for all the considered geometries,
except for hexagonal BLG QDs with zigzag edges; and (ii)
the magnetization does not depend on the hopping energies
t; for all geometries, except for BLG QDs with zigzag edges
and AA-stacking. This indicates that two decoupled layers in
BLG QDs have the same magnetization as the coupled ones.
When strain is applied, the nearest-neighbor hopping integrals
are naturally modified, which leads to a modification of the
local magnetic moments and, consequently, on their magnetic
properties. We found that the magnetization is enhanced under
uniaxial strain and exhibits two different regimes with respect
to the deformation amplitude. We observed, by calculating
the local spin density, that this is a consequence of the
breaking of the layer and sublattice symmetries in BLG QDs.
Furthermore, all discussed results for the strained structures
were obtained inside of the linear deformation regime (<
20%) determined by the parameter €, that corresponds to the
amplitude of strain, and that obeys the lattice deformation
described by Eqgs. (7)-(10). The ability to control the magnetic
properties by applying strain in BLG QDs makes these
systems promising for applications in nanoscale devices and in
spintronics.
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