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Transmission in graphene–topological insulator heterostructures
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We investigate scattering of the topological surface state of a three-dimensional time-reversal invariant
topological insulator when graphene is deposited on the topological-insulator surface. Specifically, we consider the
(111) surface of a Bi2Se3-like topological insulator. We present a low-energy model for the graphene–topological
insulator heterostructure and we calculate the transmission probability at zigzag and armchair edges of the
deposited graphene, and the conductance through graphene nanoribbon barriers, and show that its features can
be understood from antiresonances in the transmission probability.
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I. INTRODUCTION

Topological insulators [1–7] (TIs) are materials with
metallic surface states that are topologically protected by
time-reversal symmetry and the insulating bulk. In the simplest
case, the topological surface state is given by a single Dirac
cone that is characterized by spin-momentum locking [8,9].
The topological surface states have potential applications in
spintronics and quantum computation, and it is therefore
desirable to tune their properties to suit specific needs.
Tailoring the surface states can also lead to new physics. For
example, by modifying their dispersion, the kinetic energy
can be suppressed [10,11] and they become more susceptible
towards interactions which could lead to novel strongly
correlated phases.

One possibility consists of depositing a thin layer of
a nontopological metal on the topological-insulator surface
(TIS), effectively changing the boundary conditions at the
surface [12–14]. The topological surface state migrates to the
new surface obtaining different properties depending on the
type of deposited thin film. In particular, graphene is a very
interesting candidate, for a number of reasons. Graphene has
been studied extensively in the past decade and its properties
are well known: it hosts four Dirac cones whose Dirac structure
act on the sublattice pseudospin of the honeycomb lattice [15].
The interplay between the Dirac cones of graphene and the
topological Dirac cone can drastically change the properties
of the resulting topological surface state [16]. Moreover, the
lattice mismatch between graphene and the natural surface of
several TIs is very small, from a few percent to near perfect
matching.

In this work, we investigate transmission in heterostructures
made from depositing graphene on top of the (111) surface
of a Bi2Se3-like TI. This setup was recently experimentally
realized [17]. The archetypal strong topological insulator,
Bi2Se3, has a layered crystal structure where each layer has
trigonal symmetry and the layers are generally only weakly
coupled by van der Waals–like bonding. The (111) surface
is parallel to these layers and hosts a single Dirac cone at
the center of the surface Brillouin zone (BZ). If graphene is
placed on top of this surface in the commensurate

√
3×√

3 R30
stacking configuration, the graphene Dirac cones are folded

*christophe.debeule@uantwerpen.be

onto the topological Dirac cone so that even weak coupling can
strongly affect the low-energy physics if the chemical potential
is tuned accordingly [16]. In this configuration, the trigonal
lattice of graphene and the TIS are rotated by 30◦ with respect
to each other and the surface unit cell contains six carbon atoms
from graphene and one atom from the TIS. The most promising
currently known TIs for realizing such a heterostructure
are Sb2Te3, which has recently been fabricated [13], and
TlBiSe2 [18–20]. The corresponding lattice mismatch is of
the order of only 0.1% for both materials [20,21]. Moreover,
while the interlayer coupling of Sb2Te3 is van der Waals–like,
that of TlBiSe2 is more covalent [18], allowing for stronger
coupling between graphene and the TIS in the latter case. In
Table I, we show a list of potential TIs for the heterostructure
together with the lattice mismatch, the band gap, and the Fermi
velocity of the topological Dirac cone.

The paper is further organized as follows. In Sec. II, we
introduce the model for the graphene–topological insulator
heterostructure. We consider different stacking configurations,
elucidate the physics by block diagonalizing the Hamiltonian,
and derive a low-energy model. In Sec. III, we solve the
two-dimensional scattering problem for different geometries.
In particular, we consider the interface between the bare TIS
and the heterostructure for both zigzag and armchair graphene
edges. We also consider barriers consisting of graphene
nanoribbons deposited on top of the TIS where the bare TIS
acts as leads. We discuss our results for the transmission
probability, the bound states, and the conductance through
the different barriers in Sec. IV and present the summary and
conclusions of the paper in Sec. V.

II. MODEL

We consider the surface of a Bi2Se3-like time-reversal
invariant strong topological insulator on which a monolayer of
graphene is deposited. The Hamiltonian reads

H = HG + HTIS + V, (1)

where HG and HTIS are, respectively, the Hamiltonians of
graphene and the topological-insulator surface and V repre-
sents the coupling between them.

For commensurate
√

3×√
3 R30 stacking, illustrated in

Fig. 1(a), the Dirac cones at the K and K ′ point of graphene
are folded onto the zone center �̄ of the TIS BZ which
harbors the topological Dirac cone. Hence the low-energy
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TABLE I. Lattice mismatch of the graphene–TI heterostructure,
band gap, and Fermi velocity vt for some TIs with a simple Dirac
cone. We have taken a = 2.46 Å and vg = 106 m/s for the lattice
constant and Fermi velocity of graphene, respectively [15].

Mismatch (%) Gap (eV) vt/vg

Bi2Se3 2.7 [22] 0.3 [24] 0.5 [24], 0.3 [20]

Sb2Te3 0.1 [23] 0.3 [23] 0.4 [23]

Bi2Te2Se 0.9 [22] 0.3 [25] 0.5 [25]

TlBiSe2 0.2 [21] 0.35 [18], 0.3 [19],
0.2 [20]

0.3 [18], 0.4 [19],
0.7 [20]

Bloch Hamiltonian becomes

h(k) =
⎛
⎝hK 0 V†

0 hK ′ V†

V V hTIS

⎞
⎠, (2)

where V are the coupling matrix elements of V between the pz

orbitals of graphene and the TIS. More details and a derivation
of Eq. (2) are given in Appendix A. In the coordinate system

FIG. 1. (a) Top view of the most symmetric commensurate√
3×√

3 R30 stackings of the graphene (small red dots) and TIS
(large gray dots) heterostructure. The structures differ by the position
of the TIS atom in the unit cell: (H) the center of a graphene hexagon,
(T) one sublattice on top, and (B) bond on top. (b),(c) Energy spectrum
of the (b) H and (c) T structure with μ = 0 and vt = vg/2. In both
cases, the dashed curve is the original topological Dirac cone of
the TIS. For (b), the spectrum is shown for t ′′ = 0.6 eV, while
for (c) t = tA = 0.3 eV, tB = 0, and the index n = 1, . . . ,5 labels
the scattering channel. The spectrum for B stacking is also given
by (c) with t ′ = t/

√
2. (d) Momentum space of the commensurate√

3×√
3 R30 stacking configurations shown in (a) in the extended

zone scheme. The small gray hexagons correspond to the TIS, where
the dots are reciprocal lattice points, and the large red hexagon is the
first BZ of graphene; the K and K ′ point of graphene are folded to
the �̄ point of the surface BZ of the TI.

shown in Fig. 1(a), we have

hK (k) = h̄vg[s0 ⊗ (σ · k)], (3)

hK ′(k) = h̄vg[s0 ⊗ (−σ ∗ · k)], (4)

hTIS(k) = h̄vt ( ẑ × s) · k − μs0, (5)

where vg and vt are respectively the Fermi velocity of graphene
and the bare TIS, μ is the chemical potential difference
between graphene and the TIS, and σ and s are the Pauli
matrices corresponding to pseudospin and spin, respectively.
In the remainder of this article, we put h̄ = 1 unless otherwise
stated.

In our basis, the time-reversal operator becomes

� = (τx ⊗ isy ⊗ σ0) ⊕ isyK, (6)

where K denotes complex conjugation and τx is the Pauli
matrix in valley space. Time-reversal symmetry dictates
�h(−k)�−1 = h(k) and constrains the coupling V:

V(k) =
(

tA(k) tB(k) λA(k) λB(k)
−λA(−k)∗ −λB(−k)∗ tA(−k)∗ tB(−k)∗

)
,

(7)

where tA and tB correspond to coupling between the same
spins, and λA and λB to coupling between different spins. It is
to be expected that the former is stronger than the latter, which
is due to spin-orbit effects, and hence we put λA = λB = 0. The
form of tA and tB depends on the specific stacking: in Fig. 1(a),
we show the three most symmetric stacking configurations. Ab
initio studies on graphene deposited on thin films of Sb2Te3

show that the binding energy of these structures only differ by
a few meV with H the most stable configuration [26].

For the T and B structure shown in Fig. 1(a), the coupling
is given, in lowest order, by

V =
(

tA tB 0 0
0 0 tA tB

)
, (8)

where tA (tB) is the coupling matrix element between the TIS
and the A (B) sublattice. Specifically, in lowest order, we have
tB = 0 for T stacking and tA = tB for B stacking. However,
for the H structure, also shown in Fig. 1(a), the lowest-order
coupling vanishes at k = 0 and the high-energy graphene band
at the origin cannot be neglected (see Appendix A). In this case,
Eq. (2) does not describe the low-energy physics.

The energy spectrum of the T structure is shown in Fig. 1(c)
for μ = 0. A similar energy spectrum is obtained for the B
structure. For the H structure, shown in Fig. 1(b), the coupling
is weaker: the topological Dirac cone is only shifted in energy
and the Fermi velocity is modified (see Appendix A). The
spectrum shown in Fig. 1(c) is thus generic for any

√
3×√

3
R30 stacking configuration at low energies with the exception
of H stacking for which the lowest-order coupling to the TIS
vanishes due to C3 symmetry. Since we are interested in strong
coupling between the Dirac cones, we restrict ourselves to the
T structure with μ = 0. Thus we put t ≡ tA and tB = 0 in the
remainder of the article.
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FIG. 2. Representation of the block diagonalization of h(k) into
subspaces that are even (+, dashed blue cone) and odd (−, red cone)
under valley exchange. The spectra are shown for t = 0 and 2vt = vg .
Only the even subspace couples to the topological-insulator surface
(green cone).

Valley exchange

From the energy spectrum for the T structure, shown in
Fig. 1(c), we observe that two of the four Dirac cones of
graphene do not couple at all with the TIS. This suggests that
the graphene Dirac cones partly decouple. The symmetry that
enables this block diagonalization is valley exchange: K ↔
K ′. States that are even under valley exchange couple to the
TIS, while states that are odd under valley exchange do not.
Formally, we can write

UhU † = h+ ⊕ h−, (9)

where the unitary transformation U = Uk is explicitly given
in Appendix B for T stacking. This is illustrated in Fig. 2. For
T stacking, the two blocks h+ and h− can be written as

h+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −vgk−
−vgk+ 0

√
2t√

2t 0 vt ik−
−vt ik+ 0

√
2t√

2t 0 vgk−
vgk+ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10)

h− = vg(σ · k ⊕ −σ ∗ · k), (11)

with k± = kx ± iky . We find that h+ is equivalent to the
low-energy Hamiltonian of spinless ABC-stacked trilayer
graphene for which the middle layer is triaxially strained,
while h− resembles the low-energy Hamiltonian of spinless
graphene [27]. We can understand the decoupling as follows:
the matrix elements between the odd subspace and the
topological surface state pick up a minus sign under time
reversal, so that they have to be zero because the coupling
is time-reversal invariant.

In analogy with ABC trilayer graphene, the energy disper-
sion is cubic at low energies (vk/t 
 1) [27]. Moreover, we
find that the topological surface state migrates to the graphene.
For our choice of unitary transformation, the effective low-
energy Hamiltonian close to the �̄ point becomes

v2
gvt

2t2

(
0 k3

−
k3
+ 0

)
⊕ h−, (12)

FIG. 3. Low-energy spectrum for T (or B) stacking where the
corresponding spin expectation values are shown as arrows. All bands
except the two valley-odd Dirac cones that are decoupled in the bulk
heterostructure are shown. The explicit expressions of the spectrum
are given in Appendix C.

with corresponding dispersion relations ±v2
gvt/(2t2)k3 and

±vgk, respectively, where the latter is spin degenerate. The
basis of the first 2 × 2 block of the effective Hamiltonian
in Eq. (12) is {i|ψ+

B ↑〉,|ψ+
B ↓〉}. The + indicates that these

states are symmetriclike superposition of K and K ′ which
are given in Appendix B. Note that these states correspond
to the sublattice that does not couple directly to the TIS in
lowest order of vk/t . Accordingly, the low-energy physics
is understood in terms of an intermediate virtual process: in
lowest order, the spin states of the B+ sublattice couple to
each other via the A+ sublattice and the original topological
surface state, leading to the cubic dispersion. Apart from
the cubic dispersion, two valley-odd cones from graphene
remain uncoupled. The presence of boundaries, however, can
induce coupling to these cones and they are not robust against
time-reversal invariant perturbations in general. Similarly, an
AB-stacked graphene bilayer that is suitably deposited on the
TIS leads to a quintic dispersion at low energies, now localized
on a single sublattice of the top layer of the bilayer, together
with two quadratic cones corresponding to the odd subspace
of the bilayer [16].

In Fig. 3, we show the two-dimensional bands obtained
from h+ together with the corresponding spin expectation
value. While the decoupled Dirac cones from h− remain sz

eigenstates, the other bands inherit their spin structure from
the original topological surface state. Besides the cubic Dirac
bands, there are two bands originating from the valley-even
states that have a Rashba-like dispersion with opposite spin-
momentum locking. These states arise from proximity-induced
Rashba coupling as reflection symmetry about the graphene
plane is broken when deposited on the TIS. By expanding the
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FIG. 4. Basic edge geometries of graphene (red, small dots) on
top of a TIS (gray, large dots) for the T stacking configuration.
The Roman numerals indicate different scattering regions. (a) Zigzag
edges: two types depending on whether the edge is terminated by the
A (ZZ1) or B (ZZ2) sublattice. (b) One of the three physically distinct
armchair edges which the continuum model cannot distinguish.

dispersion relation to second order in k, we find that the Rashba
momentum and energy splitting are approximately given by
(2

√
2tvt )/(4v2

g + v2
t ) and (tv2

t )/[
√

2(4v2
g + v2

t )].

III. TRANSMISSION

In this section, we consider elastic scattering of the
topological surface state at a graphene–topological insulator
heterostructure for T stacking. First, we consider scattering at a
graphene step terminated by zigzag or armchair edges, where
an incident wave on the bare TIS coming in from the left
(x < 0) is transmitted to the right (x > 0) into a semi-infinite
region of the heterostructure. Next, we consider transmission
through a graphene nanoribbon barrier of finite width.

We work in the original basis in which the Hamiltonian
takes the form given in Eq. (2). In the basis where the
Hamiltonian is block diagonal, the boundary conditions at
a graphene edge can couple the two blocks and we prefer to
work in the original basis where the boundary conditions are
straightforward.

If we take the coordinate system shown in Fig. 4, the
scattering state for the bare TIS is given by an incident and
reflected wave

�I (x) = φie
ikxx + rφre

−ikxx, (13)

where r is the reflection coefficient and

φi =
(

E/vt

ky − ikx

)
, φr =

(
E/vt

ky + ikx

)
, (14)

are the corresponding spinors with E the Fermi energy mea-
sured relative to the Dirac point. We have left out normalization
constants since they are irrelevant for our calculation. The
longitudinal and transverse momentum are given by kx and
ky , respectively. The latter is conserved because of translation
symmetry in the y direction. The longitudinal momentum is
given by

kx = sgn(E)
√

(E/vt )2 − k2
y, (15)

where E = vtk for the Dirac cone of the TIS. The sign of kx

makes sure that the incident wave propagates to the right and
the reflected wave propagates to the left.

A. Graphene step

1. Scattering states

In the semi-infinite T region, the wave function can be
written as

�II (x) =
5∑

n=1

tnψne
iqnxx, (16)

where tn, ψn, and qn = qnx x̂ + ky ŷ are, respectively, the
transmission coefficient, the spinor, and the momentum of
the nth scattering channel of the heterostructure. The sign of
qnx is chosen such that for scattering modes the group velocity
is positive and the wave propagates to the right, while for
evanescent modes it is chosen such that the imaginary part
is positive since otherwise the solution from Eq. (16) would
blow up for x → ∞. The bands corresponding to the different
transmission channels are shown in Fig. 1(c): ψ1 corresponds
to the cubic dispersion, ψ2 and ψ3 to the Rashba-like bands,
while ψ4 and ψ5 correspond to the two decoupled Dirac
cones. Scattering to a particular channel only takes place if
qx is real, since otherwise the corresponding wave function
is evanescent and does not contribute to transmission. We
also expect there is no transmission to the channels ψ4 and
ψ5 because they are decoupled from the TIS in the bulk
heterostructure. The presence of certain boundaries, however,
allows for transmission to ψ4 and ψ5, as we show below.

The spinors ψ4 and ψ5 can be explicitly written as

ψ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E/vg

q4x + iky

0

0

−E/vg

q4x − iky

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ψ5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

E/vg

q5x + iky

0

0

−E/vg

q5x − iky

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

with

q4x = q5x = sgn(E)
√

(E/vg)2 − k2
y. (18)

It is clear that the spinors ψ4 and ψ5 are sz eigenstates and have
odd-valley parity since they are antisymmetric superpositions
of states at K and K ′. The remaining spinors ψ1, ψ2, and
ψ3 and the corresponding wave vectors are found numerically
with the secular equation |h+(qx,ky) − E| = 0 which yields
two cubic equations:

2t2E + (
E2 − v2

gq
2
)
(±vtq − E) = 0, (19)
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where qx = (±)
√

q2 − k2
y with solutions

qm = ± E

3vt

(
1 + Cm + 
0

Cm

)
, (20)

for m = 1,2,3 and where


0 = 1 + 3 (vt/vg)2, (21)


1 = 1 + 9 (vt/vg)2[3(t/E)2 − 1], (22)

Cm = e
2miπ

3
3

√

1 +

√

2

1 − 
3
0. (23)

For the graphene step, the sign (±) of qmx is chosen such that
scattering modes propagate towards positive x and evanescent
modes decay inside the T region.

2. Boundary conditions

The boundary conditions at x = 0 are given by the
continuity of the TIS spinor components together with the
appropriate open boundary conditions for the graphene com-
ponents depending on the type of edge [28,29]. We consider
three different edge geometries, shown in Fig. 4. For the T
structure there are two distinct types of zigzag edges: one
terminated by sublattice A (ZZ1) and one terminated by
sublattice B (ZZ2). For the armchair edge (AC) there are three
different edge configurations, but the continuum model cannot
distinguish any of them because the armchair edge contains
both sublattices. In the case of B stacking, shown in Fig. 1(a),
there is also no distinction between the ZZ1 and ZZ2 edges
within the continuum model.

The continuity of the TIS spinor components gives

�I (0) = �II (0)|TIS. (24)

Next, we consider the boundary conditions for the graphene
components. For the zigzag edge, shown in Fig. 4(a), the
boundary condition is satisfied by putting the spinor com-
ponent of the relevant sublattice equal to zero at the edge for
the two valleys separately [30]. For a zigzag edge at x = 0,
this gives

�II (0)|α↑(↓) = �II (0)|α′↑(↓) = 0, (25)

where α = A,B for the ZZ2 and ZZ1 boundary conditions,
respectively. For the armchair edge, shown in Fig. 4(b), the
boundary condition only yields a nontrivial solution if the K

and K ′ valleys of graphene are coupled by the edge because
an armchair edge contains both sublattices [30]. The boundary
condition for the armchair edge is thus given by

Kei K ·r + K ′ei K ′ ·r |edge = 0, (26)

where K and K ′ are the graphene spinors. For the coordinate
system shown in Fig. 4(b), and K ′ = −K = 4π/(3a)x̂ where
a is the graphene lattice constant, the spinors are given by

K =
(

ψA

ψB

)
, K ′ =

(
ψA′

ψB ′

)
, (27)

for both spin components. Note that we have chosen the
Hamiltonian, given in Eq. (2), in such a way that no phase
factors arise in the components. In the zigzag case, this is of

no concern, since relative phase factors between valleys drop
out of the boundary condition. Hence it does not matter that
we used rotated coordinates for the zigzag case, as shown in
Fig. 4(a). Thus we find that the armchair boundary condition
at x = 0 is given by

�II (0)|α↑(↓) + �II (0)|α′↑(↓) = 0, α = A,B. (28)

In general, the combined boundary conditions from Eq. (24)
and Eqs. (25) or (28) result in six equations that are solved
numerically and yield the reflection coefficient r and the five
transmission coefficients tn.

3. Transmission channels

There are five scattering channels in the heterostructure
region for the graphene step, while there is only one reflection
channel for the bare topological-insulator surface. In order to
obtain the transmission probability of the different scattering
channels, we consider the probability current in the x direction.
The probability-current operator in the x direction is given by

j = (vgs0 ⊗ σx) ⊕ (−vgs0 ⊗ σx) ⊕ (−vt sy). (29)

By definition, the transmission probability of the nth scattering
channel is given by

Tn = ψ
†
njψn

φ
†
i jφi

|tn|2 = ψ
†
njψn

2Ekx

|tn|2, (30)

and the total transmission probability T = ∑5
n=1 Tn. For

scattering modes of the valley-odd graphene Dirac cones
(E2 > v2

gk
2
y) Eq. (17) gives

T4 = 2q4x

kx

|t4|2, T5 = 2q5x

kx

|t5|2, (31)

while the transmission vanishes for evanescent modes (E2 <

v2
gk

2
y). The reflection probability R is given by

R = −φ
†
r jφr

φ
†
i jφi

|r|2 = |r|2, (32)

where conservation of the probability current requires that R +
T = 1. Before we discuss our results for the step geometry, we
consider the boundary conditions for the nanoribbon barrier.

B. Graphene nanoribbon barrier

Here, we consider a barrier composed of a graphene
nanoribbon deposited on the TIS in the T stacking configu-
ration. The ribbon is infinite along the y direction and finite in
the x direction with width W . This is illustrated for the zigzag
barrier in Fig. 4(a).

1. Scattering states

The scattering state of the TIS for x < 0 is again given by
Eq. (13). In the barrier region (0 < x < W ), the wave function
can be written as

�II (x) =
5∑

n=1

anψn+eiqnxx + bnψn−e−iqnxx, (33)
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where the wave vectors qnx are found from Eqs. (18) and (19)
and the spinor ψn± corresponds to ±qnx . Note that we do
not need to worry about the correct sign of the wave vector
because both are admissible in the finite barrier. Behind the
barrier (x > W ), the solution becomes

�III (x) = tφte
ikxx, (34)

where t is the reflection coefficient, the spinor φt = φi is given
in Eq. (14), and kx is given in Eq. (15).

2. Boundary conditions

The boundary conditions of the barrier consist of the
continuity of the TIS spinor components and the appropriate
open boundary conditions for the graphene spinor components
at x = 0 and x = W . The former become

�I (0) = �II (0)|TIS, (35)

�III (W ) = �II (W )|TIS. (36)

Next, we discuss the open boundary conditions for the
graphene components. For the zigzag ribbon, we take the ZZ1
edge at x = 0 so that the edge at x = W is automatically ZZ2.
Then the boundary conditions for the zigzag ribbon become

�II (0)|B↑(↓) = �II (0)|B ′↑(↓) = 0, (37)

�II (W )|A↑(↓) = �II (W )|A′↑(↓) = 0. (38)

Analogous to the discussion on the armchair edge above, we
find that the boundary conditions for the armchair ribbon are
given by

�II (0)|α↑(↓) + �II (0)|α′↑(↓) = 0, (39)

�II (W )|α↑(↓) + ei
K W�II (W )|α′↑(↓) = 0, (40)

for α = A,B, where 
K = 8π/(3a).
The boundary conditions for the barrier give twelve

equations that are solved numerically and yield the reflection
coefficient r , the ten barrier coefficients an and bn, and the
transmission coefficient t .

3. Bound states

States of the TIS for which E2 < v2
t k

2
y are evanescent and

as such there possibly exist bound states, localized in the
graphene nanoribbon. In this case, the wave functions outside
the ribbon become

�I (x) = c

(
E/vt

ky − κ

)
eκx, �III (x) = d

(
E/vt

ky + κ

)
e−κx,

(41)

where κ =
√

k2
y − (E/vt )2 and the wave function inside the

ribbon is given by Eq. (33). The boundary conditions and
the normalization give twelve independent equations for the
coefficients an, bn, c, and d.

IV. RESULTS

In this section, we discuss our numerical results for
transmission through a graphene step and a nanoribbon barrier

deposited on the TIS in the T stacking configuration. We
always put vt = vg/2, which is representative for the TIs listed
in Table I and present our results for t = 0.3 eV as a qualitative
example of the same order as the interlayer coupling in bilayer
graphene [27], unless stated explicitly.

A. Graphene step

Out of the three edges we have considered for the graphene
step, only one of the zigzag edges, ZZ1, shows interesting
features in the transmission probability T (E,ky). Interestingly,
the result for the ZZ2 and AC edges is exactly the same and
shows near perfect transmission, even at oblique angles. As
seen in Fig. 4, the terminated graphene edge only couples
directly to the TIS lattice for the ZZ1 boundary. Furthermore,
we find that only the ZZ1 edge induces coupling to the valley-
odd cones that are decoupled in the bulk heterostructure. The
transmission probability of the different scattering channels
at the ZZ1 edge is shown in Fig. 5, together with the total
transmission probability. For E �

√
2t , the main transmission

channel is T1, and the ZZ1 edge allows for some transmission
to channels 4 and 5, corresponding to the valley-odd cones.
At higher energies, the Rashba channels T2 and T3 become
available and the transmission via T1 reduces inside the region
E2 < v2

gk
2
y defined by the graphene Dirac cone. Interestingly,

the channels T4 and T5, which are sz eigenstates and completely
localized in the graphene for the bulk heterostructure, are
mirrored with respect to each other about ky = 0. Moreover,
they show a preference for either left or right moving states
for both electrons and holes, creating a bulk spin-momentum
locked state localized on the deposited graphene. Note that
only T1, and therefore also the total transmission probability,
is not symmetric with respect to zero energy. This asymmetry
originates from the fact that a step graphene–TIS system has
only one interface which breaks the symmetry of the lattice
structure, resulting in an asymmetric transmission for electrons
and holes, in contrast to the graphene–TIS barrier structure
discussed below.

B. Graphene nanoribbon barrier

Here, we discuss our results for the transmission across the
graphene nanoribbon deposited on the TIS in the T stacking
configuration. The results for the barrier are symmetric with
respect to zero energy and therefore we only show results for
positive energy. The width of the graphene ribbons, including
dangling bonds, is given by

WZZ = a

2
√

3
(3N + 2), (42)

WAC = a

2
(N + 1), (43)

where a is the graphene lattice constant and N is the number
of two-atom unit cells along the finite x direction.

In Figs. 6 and 7, we show the transmission probability for
the zigzag and armchair barrier, respectively. The transmission
probability is always equal to unity at normal incidence for
both zigzag and armchair ribbons, which is what we expect
for a nonmagnetic scatterer on the TIS. Moreover, we observe
two resonances at low energies for the zigzag ribbon and

115424-6



TRANSMISSION IN GRAPHENE–TOPOLOGICAL . . . PHYSICAL REVIEW B 95, 115424 (2017)

FIG. 5. (a)–(e) Transmission probabilities Tn for scattering at the ZZ1 step with t = 0.3 eV for the scattering channels n = 1, . . . ,5,
respectively, and (f) the total transmission probability T = ∑5

n=1 Tn.

antiresonances for both zigzag and armchair ribbons. The
low-energy resonances for the zigzag ribbons, shown in Fig. 6,
are caused by edge states, that are absent for an armchair
ribbon. To understand the nature of these edge states and the
antiresonances, we consider the evolution of the transmission
probability as a function of the coupling t between graphene
and the TIS. In Fig. 8, we plot the transmission probability
for (a),(b) zigzag and (c),(d) armchair ribbons with t =
0.1 eV and t = 0.2 eV. We see that the two positive-energy
edge states for the zigzag ribbon split with increasing t . The
upper branch is localized on the ZZ1 edge which couples
directly to the TIS, while the lower branch is localized on the
ZZ2 edge which has no direct coupling to the TIS. In Fig. 9, we

FIG. 6. Transmission probability T (E,ky) for a zigzag ribbon
with t = 0.3 eV, and (a) N = 10 and (b) N = 20. The red lines
outside the cone are bound states and the density corresponding to
the states marked with an asterisk is shown in Fig. 9.

show the electron density for a fixed value of ky for both edge
states corresponding to Fig. 6(b). Note that the upper branch is
actually a hybridized state of graphene and the TIS, localized
near the ZZ1 edge. The sharp cusp in the projected density of
the TIS is due to the fact that the boundary conditions only
require the spinor itself to be continuous.

The energy splitting of the edge states is shown in Fig. 10
as a function of t for N = 10 and N = 20. For N = 10,
there is a confinement effect near t = 0 which is absent for
N = 20. However, the confinement splitting is lifted when t

increases because the energy difference of states localized at
different edges increases, and the lower branch returns to zero
energy. The energy of the upper branch grows linearly with t ,
as the coupling with the TIS splits the two edge states, that are

FIG. 7. Transmission probability T (E,ky) for an armchair ribbon
with t = 0.3 eV, and (a) N = 30 (insulating) and (b) N = 41
(metallic). The red lines outside the cone are bound states.
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FIG. 8. Transmission probability T (E,ky) for the nanoribbon
barrier. (a),(b) Zigzag ribbon with N = 30 for (a) t = 0.1 eV and
(b) t = 0.2 eV. (c),(d) Armchair ribbon with N = 30 for (c) t = 0.1
eV and (d) t = 0.2 eV. The red lines are bound states, localized in
the barrier, while the orange dashed lines in (a) and (c) are the bound
states of a bare graphene nanoribbon.

originally sz eigenstates, localized on the ZZ1 edge. Moreover,
if the barrier is wide enough or the coupling strong enough,
there are bound states, delocalized over the ribbon, both in the
zigzag and armchair case, as is shown in Figs. 6, 7, and 8.

Furthermore, in Figs. 8(a) and 8(c), we have superimposed
the bound states of a bare graphene ribbon on the transmission
probability for t = 0.1 eV for both an armchair and zigzag
barrier. In this case, the antiresonances are very sharp and
coincide almost perfectly with the bound states of the bare
ribbon. These antiresonances are quasibound states originating
from both valley-even and valley-odd states. With increasing
t , the quasibound states split into two classes: those that
broaden and move in energy with increasing t correspond to
the Rashba-split bands, while those that remain very sharp and
almost at the same energy correspond to the valley-odd cones.

FIG. 9. Projected electron density of the (a) lower and (b) upper
branch of edge states for the zigzag ribbon with N = 20 and t = 0.3
for ky = 0.7 nm−1. These states are marked in Fig. 6 with an asterisk.

FIG. 10. Energy of the zigzag edge states at ky = 2 nm−1 as a
function of t for N = 10 and N = 20. We only show one state for
N = 20, since the other state remains at zero energy for all t .

Indeed, the latter are missing for the armchair barrier because
the AC edge does not induce coupling to these states. Note that,
due to the ZZ1 edge, some spin splitting is induced into the
quasibound states originating from the valley-odd states. At
these energies, the wave function is either strongly hybridized
for the Rashba-like states, or completely localized in the
graphene for the valley-odd states. In the latter case, which only
occurs for zigzag ribbons, tunneling is impossible since the
ribbon contains at least one edge that does not allow tunneling
to these states. On the other hand, the Rashba-like bound states
of the graphene ribbon, induced by the ribbon confinement,
can only lead to more possibilities for backscattering, and thus
antiresonances. As a last remark, we see that the antiresonances
in Figs. 6 and 7 are broadened compared to Fig. 8 because the
coupling to the TIS is stronger in this case.

Conductance

The zero-temperature conductance through a barrier of
width W and length L is given by

G(E) = G0
L

2π

∫ |E|
h̄vt

− |E|
h̄vt

dky T (E,ky), (44)

where G0 = 2e2/h is the conductance quantum and where
we have used dimensionful units. This is a weighted sum
over the available incident transverse modes L|E|/(πh̄vt ). The
conductance for zigzag and armchair graphene nanoribbons
deposited on the TIS in the T stacking configuration are
shown in Fig. 11 for several values of the width W and the
coupling t .

The plateaus in the conductance are caused by the an-
tiresonances in the transmission probability discussed above.
They are more pronounced for the zigzag barrier than the
armchair barrier. With increasing N , the number of plateaus
increase and they move towards zero energy because of the
reduced confinement. On the other hand, if we increase t , more
plateaus appear and the conductance is suppressed overall due
to increased backscattering at oblique angles.

V. SUMMARY AND CONCLUSIONS

In summary, we have considered the electronic transmis-
sion, using a continuum model, of the topological surface
state of a three dimensional time-reversal invariant topological
insulator through heterostructures made by depositing a
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FIG. 11. (a),(b) Conductance for the (a) zigzag and (b) armchair
barrier for several widths with t = 0.3 eV as a function of the Fermi
energy E. The widths of the armchair ribbon are chosen so that it is
insulating and matches the corresponding widths in the zigzag case.
(c),(d) Conductance for the (c) zigzag barrier with N = 20 and (d)
armchair barrier with N = 34 for several t , whose values are shown
in eV.

monolayer of graphene on the topological-insulator surface.
We obtained the transmission of the topological surface
state through a semi-infinite graphene step and a graphene
nanoribbon barrier for both zigzag and armchair boundaries.
We found that the transmission depends strongly on the
type of edge: in the case of a graphene step, we found
that the transmission exhibits electron-hole asymmetry for
the ZZ1 edge configuration while the transmission is perfect
at all energies for armchair and ZZ2 junctions. Moreover,
our results show that the conductance through a graphene
nanoribbon contains plateaus as a function of the Fermi energy
caused by antiresonances in the transmission probability at
energies corresponding to quasibound states of the deposited
nanoribbon for both zigzag and armchair edges.

The heterostructures we considered are commensurate by
less than one percent with at least two well-known topological
insulators, Sb2Te3 and TlBiSe2. Hybrid graphene–TI devices
could be fabricated using a mechanical transfer method where
the chemical potential difference and electron density can
be tuned by gate voltages. Further studies are required to
address the effect of a difference in the chemical potential
between graphene and the TIS, an external magnetic field,
and the number of deposited graphene layers on the transport
properties.
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APPENDIX A: LOW-ENERGY HAMILTONIAN

Here, we derive the low-energy Bloch Hamiltonian of
the graphene–topological insulator heterostructure shown in

Fig. 1. The Hamiltonian is given by

H = HG + HTIS + V, (A1)

where HG and HTIS are, respectively, the Hamiltonians of
graphene and the topological-insulator surface (TIS) and V

represents the coupling between them. Now consider the basis
of Bloch states

∣∣α,s
k+G

〉 = 1√
N1

∑
r1

ei(k+G)·r1 |r1; α,s〉, (A2)

∣∣�s
k

〉 = 1√
N2

∑
r2

eik·r2 |r2; s〉, (A3)

for graphene and the TIS, respectively, where α = A,B,
s = ↑,↓, and r1 (r2) runs over the graphene (TIS) unit cells.
The wave vector k lies inside the folded Brillouin zone
shown in Fig. 1(d) and G are the reciprocal vectors of the
heterostructure contained in the Brillouin zone of graphene.
In this case, this is the origin and the two inequivalent Dirac
points of graphene K ′ = −K = 4π/(3a)x̂. In this basis, the
Hamiltonian becomes

Hk =

⎛
⎜⎜⎜⎜⎝

h
(g)
k 0 0 Vk

0 h
(g)
k+K 0 Vk+K

0 0 h
(g)
k+K ′ Vk+K ′

V
†
k V

†
k+K V

†
k+K ′ h

(tis)
k

⎞
⎟⎟⎟⎟⎠, (A4)

where, in the nearest-neighbor approximation, we have

h
(g)
k = γ

(
0 f (k)

f ∗(k) 0

)
(A5)

and

h
(tis)
k = h̄vt ( ẑ × s) · k. (A6)

Here, γ ≈ 3.12 eV is the nearest-neighbor hopping param-
eter of graphene and f (k) = 1 + eik·a1 + eik·a2 with a1,2 =
a
2 (±1,

√
3) the graphene lattice vectors, shown in Fig. 1(a). In

lowest order of |k|, we have

f (k + K ) �
√

3 a

2
(kx − iky), (A7)

f (k + K ′) � −
√

3 a

2
(kx + iky), (A8)

f (k) � 3. (A9)

The coupling matrix elements become

[Vk+G]α,ss ′ = 〈


α,s
k+G|V |�s ′

k

〉
(A10)

= 1√
3

∑
r1

e−i(k+G)·r1Vα,ss ′ (r1), (A11)

with

Vα,ss ′ (r1) = 〈r1; α,s|V |0; s ′〉, (A12)

where we assumed that the matrix elements only depend on
the separation length r1 = |r1|.

Now we calculate the coupling matrix elements in lowest
order for the three stacking configurations shown in Fig. 1.
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Moreover, we ignore couplings between different spins and
drop the spin indices. For the T and B structure, we
find [

V
(T )
k+G

]
α

= δαAt,
[
V

(B)
k+G

]
α

= t ′, (A13)

where t = V
(T )
A (0)/

√
3 and t ′ = V (B)

α (0)/
√

3. In addition to
the graphene Dirac cones, the graphene bands originally at the
origin of the unfolded BZ also couple to the topological Dirac
cone. However, because these bands have energy ±3γ at the
BZ origin, they can be neglected for T and B stacking as long
as the coupling to the TIS is much smaller than γ .

On the other hand, for the H structure, we obtain[
V

(H )
k+G

]
α

= t ′′[δαAe−iq·a1f (q) + δαBeiq·a2f ∗(q)]|q=k+G,

(A14)

where t ′′ = V (H )
α (0)/

√
3. We see that the coupling to the high-

energy graphene band in the origin dominates for H stacking.
In lowest order of |k| and t ′′/γ , we find that the spectrum for the
H structure is given by the graphene Dirac cones superimposed
on

εH (k) = −6t ′′2

γ
± h̄vt

(
1 − 2t ′′2

γ 2

)
k, (A15)

where γ = 2h̄vg/(
√

3a). Hence, for H stacking, the coupling
to the high-energy bands cannot be neglected, because the
lowest-order coupling between the TIS and the graphene Dirac
cones vanishes due to C3 symmetry. This results in much
weaker coupling than for T and B stacking: the topological
Dirac cone is only shifted in energy and the Fermi velocity is
slightly modified.

APPENDIX B: UNITARY TRANSFORMATION

Here, we give an explicit expression for a unitary trans-
formation Uk that block diagonalizes the Hamiltonian from
Eq. (2) for the case tB = 0 (T structure), into the form shown
in Eqs. (9), (10), and (11). We find

Uk =

⎛
⎜⎝

Ak Bk 0

Ak −Bk 0

0 0 1

⎞
⎟⎠, (B1)

with

Ak = 1√
2

diag(1,−e−2iθk ,1,1), (B2)

Bk = 1√
2

diag(1,1,1,−e2iθk ), (B3)

where θk = arctan(ky/kx).

After performing this unitary transformation, the new basis
states are

|ψA±↑(↓)〉 = 1√
2

(|ψA↑(↓)〉 ± |ψA′↑(↓))〉, (B4)

|ψB±↑〉 = 1√
2

(∓e−2iθk |ψB↑〉 + |ψB ′↑〉), (B5)

|ψB±↓〉 = 1√
2

(|ψB↓〉 ∓ e2iθk |ψB ′↓〉), (B6)

where ± corresponds to the even- or the odd-valley subspace.
Under time reversal, the new basis transforms as

�|ψA±↑(↓)〉 = ∓(±)|ψA±↓(↑)〉, (B7)

�|ψB±↑(↓)〉 = −(+)|ψB∓↓(↑)〉. (B8)

Moreover, if |φ↑(↓)〉 is a spin-up(down) state localized on the
TIS, we find

〈ψA−↑(↓)|V |φ↑(↓)〉 = 〈ψA−↑(↓)|�−1V �|φ↑(↓)〉 (B9)

= −〈ψA−↓(↑)|V |φ↓(↑)〉 (B10)

= −〈ψA−↑(↓)|V |φ↑(↓)〉, (B11)

and the matrix elements between the odd subspace and the
topological surface state vanish.

APPENDIX C: LOW-ENERGY SPECTRUM
FOR T STACKING

The low-energy spectrum of the T-stacked heterostructure at
μ = 0 is obtained from the secular equation |h+(k) − E| = 0,
where h+(k) is given in Eq. (10). Similar to Eq. (19), this
yields two cubic equations,

2t2E + (
E2 − v2

gk
2
)
(±vtk − E) = 0, (C1)

where k = |k|. Note that, at t = 0, we obtain the low-energy
spectrum of graphene superimposed on the cone of the
topological surface state. At finite t , the spectrum is explicitly
given by

Em(k) = ±vtk

3

∣∣∣∣1 + Cm(k) + 
0(k)

Cm(k)

∣∣∣∣, (C2)

for m = 1,2,3, which matches the notation of Fig. 1(c), and
where


0(k) = 1 + 6[t/(vtk)]2 + 3(vg/vt )
2, (C3)


1(k) = 1 + 9[t/(vtk)]2 − 9(vg/vt )
2, (C4)

Cm(k) = e− 2miπ
3

3

√

1 +

√

2

1 − 
3
0. (C5)

Note that the low-energy spectrum for B stacking is obtained

by substituting t →
√

t2
A + t2

B .
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