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Using the continuum model, we investigate the electronic properties of two types of bilayer
graphene (BLG) quantum ring (QR) geometries: (i) an isolated BLG QR and (ii) a monolayer
graphene (MLG) with a QR put on top of an infinite graphene sheet (hybrid BLG QR). Solving the
Dirac-Weyl equation in the presence of a perpendicular magnetic field and applying the infinite-mass
boundary condition at the ring boundaries, we obtain analytical results for the energy levels and cor-
responding wave spinors for both structures. In the case of isolated BLG QR, we observe a sizeable
and magnetically tunable band gap which agrees with the tight-binding transport simulations. Our

analytical results also show the intervalley symmetry EK

e (m) = −EK
′

h (m) between the electron (e)
and hole (h) states (m being the angular momentum quantum number) for the energy spectrum of
the isolated BLG QR. The presence of interface boundary in a hybrid BLG QR modifies drastically
the energy levels as compared to that of an isolated BLG QR. Its energy levels are tunable from
MLG dot, to isolated BLG QR, and to MLG Landau energy levels as magnetic field is varied. Our
predictions can be verified experimentally using different techniques such as by magnetotransport
measurements.

PACS numbers: 81.05.ue, 73.22.Pr, 73.20.-r, 68.65.-k

I. INTRODUCTION

Over the past years, a family of two-dimensional (2D)
graphene nanostructures, including graphene nanorib-
bons [1–6], quantum rings (QRs) [7–12], quantum dots
(QDs) [13–27], and antidots [28–32] with different type of
geometries, edge types, and stackings of graphene layers
have received increasing interest. These studies showed
that the electronic and optical properties of graphene
QDs can be modified by size, shape, edge type, and elec-
trostatic gating; see, e.g., also Refs. [13, 16, 17, 20, 26].
The effect of twisting on the electronic and transport
properties of bilayer graphene (BLG) nanostructures has
also been recently addressed in Refs. [33–39]. Within to-
day’s technology, such as nanolithography, it is possible
to realize such 2D nanostructures on a scale of a few tens
[40, 41] or even only a few [42, 43] nanometers as well as,
in different types of graphene layer stackings [44, 45].
Furthermore, bandstructure engineering can be per-

formed by creating periodic arrays of holes in both MLG
[29, 30, 32, 40] and BLG [46] sheets, known as graphene
antidot lattices. Depending on the size and the period of
the holes, such graphene nanostructures render graphene
semiconducting with a sizeable band gap which displays
a wide range of electronic and optical properties [46–48].
Very recently, a related system has been investigated
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where a MLG sheet consists of highly regular triangu-
larly arranged holes [32]. The results showed that the
structure displays both insulating behaviour and ballistic
transport in excellent agreement with analytical calcula-
tions which describes the structure as a quantum sys-
tem consisting of connected “Dirac rings” [32, 49]. In
this model, Dirac fermions are strongly confined in a
MLG QR geometry using an infinite-mass (IM) potential.
While in the case of MLG such holes can act as scattering
centers, several experimental works [50, 51] demonstrated
that in the case of BLG, the adjacent layers can connect
with each other thus resulting in the formation of pe-
riodic arrays of connected edgeless Dirac rings in BLG
structure.

Here, we aim to investigate the electronic properties
of such rings in BLG as an individual QR defined by
an IM potential (isolated ring) as shown in Fig. 1(a).
Of course in graphene nanostructures, the type of edge
plays an important role and their effects are well known,
in particular the existence of a zero-mode state at zigzag
edges [13, 52, 53]. Using the IM boundary condition re-
moves the edge effects and has the advantage that ana-
lytical results can be obtained while still representing a
real system [27]. Theoretically, the IM boundary condi-
tion for confining neutrinos in a hard-wall billiard was de-
rived by Berry and Modragon [54]. This boundary condi-
tion was previously employed to investigate the electronic
properties of MLG nanostructures (dot, antidot, ring)
[27, 31, 49, 55], BLG QDs [61], and trilayer graphene QDs
[25]. Previous studies of BLG QRs based on Dirac equa-
tion includes electrostatically defined BLG QRs [62, 63]
which was solved numerically in Ref. [62] and was mod-



2

eled as zero-width-ring geometry in Ref. [63]. However,
at present there is, to our knowledge, no theoretical study
on the energy spectrum of BLG QRs with IM boundary
condition that models a realistic ring.

In the present work, we solve the Dirac-Weyl equa-
tion in the presence of a perpendicular magnetic field
and apply IM boundary condition at the ring boundaries
to obtain analytical results for the energy levels and cor-
responding wave functions. In the case of isolated BLG
QR, we find an excellent agreement between the analyti-
cal predictions for the size of the band gap as a function
of the magnetic field with that found in the conductance
for two-terminal QR device simulated using the KWANT
package [64] based on Landauer-Büttiker formalism and
the tight-binding model (TBM). This is in contrast with
previous study of zero-width BLG QR [63], showing a
fixed energy band gap as a function of magnetic field.
Our analytical results also show that the energy spec-
trum of the isolated ring exhibits intervalley symmetry
EK

e (m) = −EK′

h (m) for the electron (e) and hole (h)
states where m is the angular momentum quantum num-
ber.

The agreement between the obtained analytical results
and TB simulations prompted us to consider also a hy-

brid BLG QR where a MLG ring is put on top of an
infinite MLG sheet [Fig. 1(b)]. Experimental realization
of such 2D heterostructures can be challenging but is
doable within today’s technology. Defining the ring layer
by a staggered site-dependent IM potential (e.g., using
an anti-ring shaped hexagonal boron nitride as a sub-
strate) is a way which can be used to realize the hybrid
BLG QR. The hybrid structure can also be realized by
(accidental) nanostructuring one of the graphene layers
in BLG. For instance, topographic images have revealed
that multilayer samples exfoliated from graphite often
contain atomic steps and islands of one or few layers
of graphene [65–69]. They have been previously investi-
gated both theoretically and experimentally, in different
configurations such as single MLG-BLG junction [70–76],
double MLG-BLG junctions (MLG-BLG-MLG) [77, 78],
and hybrid QD structures [79]. In all these studies, the
interface between MLG and BLG regions was considered
as zigzag or armchair junctions which modifies consider-
ably the electronic properties of such structures.

A striking feature of the hybrid BLG QR is that the en-
ergy levels of the ring seem to interplay between the MLG
dot, isolated BLG QR, and MLG Landau energy levels as
magnetic field increases. In addition, as a function of the
magnetic field, the energy spectrum of both structures
exhibits Aharonov-Bohm (AB) oscillations. We also in-
vestigate the dependence of the energy spectrum on the
ring width for both structures.

Finally, we analyze the valley- and layer-resolved local
density of states (LDOS) for both proposed structures
and our findings show that, at a given magnetic field,
the contributions of the valleys as well as that of the
layers in the LDOS can be different. This feature can be
used in valleytronics applications of such graphene-based

(a) Isolated BLG  QR (b) Hybrid BLG QR
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FIG. 1. Schematic pictures of the proposed circular BLG
QRs with inner and outer radii of R1 and R2, respectively.
(a) Isolated BLG QR and (b) hybrid BLG QR sandwiched
between MLG QD and MLG sheet.

nanostructures if valley mixing is precluded.

II. THEORY AND MODEL

We consider two different BLG nanostructures in the
presence of a perpendicular magnetic field: (i) isolated
BLG QR defined by a site-dependent staggered media
[Fig. 1(a)] and (ii) hybrid BLG QR sandwiched between
a MLG QD and an infinite MLG region, as shown in Fig.
1(b). The latter one can also be regarded as an infinite
MLG sheet on which a second MLG ring is sitting on top
of the first, thus realizing a BLG QR in the AB-stacking
(Bernal) configuration. Dirac equation is solved for both
MLG and BLG regions, with appropriate boundary con-
ditions. By employing the IM boundary condition, we
obtain analytical results for the energy levels and corre-
sponding wave functions in each structure.
Experimentally, such a mass potential can be induced

by sandwiching the BLG sheet between substrates such
that the A and B sublattices in each graphene sheet
feel different potentials [80, 81]. Equivalently, graphene
nanostructures that are etched out of graphene sheets
exhibit a strong confinement that can be modelled with
IM-boundary condition.
In the presence of a perpendicular magnetic field B =

Bêz, the dynamics of carriers in the honeycomb lattice of
carbon atoms of MLG can be described by the following
Hamiltonian [7],

H = vFΠ · σ +∆(r)σz, (1)

where vF ≈ 106 m/s is the Fermi velocity, Π =
p + eA is the 2D kinetic momentum operator with
p = −i~ (∂x, ∂y), −e being the electron charge, and
A = (B/2)(−yêx + xêy) is the vector potential taken in
the symmetric gauge. σ = (σx, σy, σz) denotes the Pauli
matrices and ∆(r) is a position-dependent mass term. In
polar coordinates (r, ϕ), the Hamiltonian (1) reduces to
the form

H = E0

(

δ Π−
Π+ −δ

)

, (2)
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where E0 =
√
2~ vF /lB is the cyclotron energy with

lB =
√

~/eB the magnetic length, δ = ∆(ρ)/E0, and
the momentum operator

Π± = Πx ± iΠy = −ie±iτϕ 1

2

[

∂

∂ρ
± iτ

ρ

∂

∂ϕ
∓ τρ

]

. (3)

Here, ρ = r/
√
2 lB is a dimensionless radial coordinate

and τ = ±1 distinguish the K and K ′ valleys. Because of
circular symmetry, the two-component spinor wave func-
tion becomes Ψτ (ρ, ϕ) = eimϕ[φτA(ρ), iφ

τ
B(ρ)e

iτϕ]T , where
the radial dependence of the spinor components is de-
scribed by

1

2

[ ∂

∂ρ
+

(τm+ 1)

ρ
+ τρ

]

φτB(ρ) = (ǫ− δ)φτA(ρ), (4a)

1

2

[ ∂

∂ρ
− τm

ρ
− τρ

]

φτA(ρ) = −(ǫ+ δ)φτB(ρ), (4b)

where m = 0,±1,±2, . . . denotes the angular momen-
tum label and ǫ = E/E0 being the dimensionless carrier
energy. Decoupling the above equations and using the

ansatz for φτA(ρ) = ρ−me−ρ2/2f(ρ2), one arrives at the
associated Laguerre differential equation (ρ̃ = ρ2)

ρ̃f ′′(ρ̃) + (−m+ 1− ρ̃)f ′(ρ̃) + λf(ρ̃) = 0, (5)

where

λ =
1

2
[−(τ + 1) + 2(ǫ2 − δ2)]. (6)

The general solution to the associated Eq. (5) is

f(ρ2) = C1L
−m
λ (ρ2) + C2U(−λ, 1−m, ρ2), (7)

where the constants C1 and C2 are determined by the
boundary conditions. U(a, b, x) is the confluent hypergeo-
metric function of the second kind and Lb

a(x) is the gener-
alized Laguerre polynomial which can be defined in terms
of the confluent hypergeometric function of the first kind
M(a, b, x) [an alternatinig notation is 1F1(a, b, x)] as

Lb
a(x) =

(

a+ b
a

)

M(−a, b+ 1, x), (8)

where

(

a+ b
a

)

is the generalized binomial coefficient.

Notice that ρ−me−ρ2/2L−m
λ (ρ) and ρ−me−ρ2/2U(−λ, 1−

m, ρ) converge to finite values in the limits ρ → 0 and
ρ → ∞, respectively. So, depending on the geometry of
the graphene nanostructures (dot or antidot), one can
choose the appropriate wave functions to satisfy the cor-
responding boundary conditions.
The other spinor component of the wave function,

φτB(ρ), can be obtained using Eq. (4b) and by employing
the properties of U(a, b, x) and Lb

a(x). Thus the spinor
components become

φτA(ρ) = ρ−me−ρ2/2 ×
[

C1L
−m
λ (ρ2) + C2U(−λ, 1−m, ρ2)

]

, (9a)

and

φτB(ρ) =
−τ
ǫ+ δ

ρ−m−τe−ρ2/2
[

C1(λ+ τ+)
τ+L−m−τ

λ+τ (ρ2)

− C2(λ+ τ+)
τ−U(−λ− τ,−m+ 1− τ, ρ2)

]

, (9b)

where we have defined τ± = (1± τ)/2.
The BLG region can be described in terms of four sub-

lattices, labeled A1, B1, for the lower layer and A2, B2,
for the upper layer. We only include the coupling be-
tween two atoms stacked on top of each other, e.g., B1
and A2, and ignore the small contributions of the other
interlayer couplings. Additional terms only cause small
effects such as trigonal wrapping and electron-hole asym-
metry on the energy levels [82]. The effective Hamilto-
nian is [82, 83]

HB = E0







δ Π− 0 0
Π+ −δ γ̃1 0
0 γ̃1 δ Π−
0 0 Π+ −δ






, (10)

where γ̃1 = γ1/E0, with γ1 ≈ 0.4 eV being the nearest-
neighbor interlayer coupling term. Solving the Dirac
equation HBΦ = EΦ for the four-component wave func-
tion

Φτ (r, ϕ) = eimϕ×
[e−iτϕφA1(ρ), iφB1(ρ), iφA2(ρ), e

iτϕφB2(ρ)]
T , (11)

the radial dependence of the spinor components in BLG
are described by

1

2

[ d

dρ
+
τm

ρ
+ τρ

]

φτB1(ρ) = (ǫ− δ)φτA1(ρ), (12a)

1

2

[ d

dρ
− τm− 1

ρ
− τρ

]

φτA1(ρ)− γ̃1φ
τ
A2(ρ)

= −(ǫ+ δ)φτB1(ρ), (12b)

1

2

[ d

dρ
+
τm+ 1

ρ
+ τρ

]

φτB2(ρ)− γ̃1φ
τ
B1(ρ)

= −(ǫ− δ)φτA2(ρ), (12c)

1

2

[ d

dρ
− τm

ρ
− τρ

]

φτA2(ρ) = (ǫ+ δ)φτB2(ρ). (12d)

Decoupling the system of equations (12) and using

φτA2(ρ) = ρ−me−ρ2/2g(ρ2), we arrive at the following as-
sociated Laguerre differential equation (ρ̃ = ρ2)

ρ̃g′′(ρ̃) + (−m+ 1− ρ̃)g′(ρ̃) + α±(ǫ)g(ρ̃) = 0, (13)

where α±(ǫ) is given by

α±(ǫ) =
1

2

[

2(ǫ2 − δ2)− 1±
√

1 + 4γ̃2(ǫ2 − δ2)
]

. (14)

Accordingly, similar to the MLG region, φτA2(ρ) can be
expressed in terms of Lb

a(x) and U(a, b, x) as follows:

φτA2(ρ) = ρ−me−ρ2/2 ×
∑

µ=±

[

Cµ
1 L

−m
αµ

(ρ2) + Cµ
2 U(−αµ, 1−m, ρ2)

]

, (15)
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where the constants Cµ
1 and Cµ

2 are determined by the
boundary conditions. The other spinor components of
the wave function can be obtained using Eqs. (12) by in-

serting φτA2(ρ) and employing the properties of U(a, b, x)
and Lb

a(x) functions. It is possible to express the other
components in a compact form as follow:

φτA1(ρ) =
−τ ρ−m+τe−ρ2/2

γ̃1(ǫ2 − δ2)

∑

µ=±
ηµ

[

Cµ
1 (αµ + τ−)

τ−L−m+τ
αµ−τ (ρ2)− Cµ

2 (αµ + τ−)
τ+U(−αµ + τ,−m+ 1 + τ, ρ2)

]

, (16a)

φτB1(ρ) =
ρ−me−ρ2/2

γ̃1(ǫ+ δ)

∑

µ=±
ηµ

[

Cµ
1 L

−m
αµ

(ρ2) + Cµ
2 U(−αµ,−m+ 1, ρ2)

]

, (16b)

φτB2(ρ) =
τ ρ−m−τe−ρ2/2

ǫ+ δ

∑

µ=±

[

Cµ
1 (αµ + τ+)

τ+L−m−τ
αµ+τ (ρ2)− Cµ

2 (αµ + τ+)
τ−U(−αµ − τ,−m+ 1− τ, ρ2)

]

, (16c)

where ηµ =
[

ǫ2 − δ2 − (αµ + τ+)
]

.

Berry and Modragon derived the IM boundary con-
dition for the confinement of neutrinos in a hard-wall
billiard described by the Dirac-Weyl equation [54]. Lets
consider a particle restricted in the plane r = (x, y) sub-
jected to a mass term potential ∆(r), which is vanishing
inside a certain domain and equal to ∆ → ∞ outside it.
Solving the Dirac equation, Eq. (1), for a two-component
spinor [ψ1(r), ψ2(r)]

T leads to the following relation at
the domain edge [54, 55]

ψ2(r)/ψ1(r) = ieiτθ, (17)

where θ is the polar angle of the normal vector pointing
outward from the domain boundary. Within the next sec-
tion, we will calculate the energy spectrum of both ring
structures using the above-mentioned boundary condi-
tion.

It is worth mentioning that the IM boundary condi-
tion [Eq. (17)] does not necessarily imply that the to-
tal wave function, as well as the wave function com-
ponents, go to zero at the boundaries of the quan-
tum confined system. The use of similar Berry and
Mondragon-like boundary condition to explain experi-
mental measurements in graphene-based quantum con-
finement nanostructures has been reported in the lit-
erature [7, 32, 42, 55], showing a good agreement be-
tween the predicted theoretical results and the electronic
properties measured experimentally. Furthermore, BLG
based quantum systems with reconstructed edges present
different types of edge, in addition to the conventional
armchair and zigzag terminations, leading to different
boundary conditions different from that assumed here
[56–60].

III. NUMERICAL RESULTS

A. Analytical calculations

In the case of isolated BLG QR, applying the IM
boundary condition (17) for each layer, the spinor com-
ponents at the radial distances R1 (θ = π + ϕ) and R2

(θ = ϕ) satisfy the conditions

φτB1(ρ1) + φτA1(ρ1) = 0 , (18a)

φτB2(ρ1)− φτA2(ρ1) = 0, (18b)

and

φτB1(ρ2)− φτA1(ρ2) = 0 , (19a)

φτB2(ρ2) + φτA2(ρ2) = 0 , (19b)

respectively, with ρi = Ri/
√
2 lB (i = 1, 2). The eigen-

value condition is determined by inserting the obtained
spinors for BLG, Eqs. (15) and (16), with δ = 0 into the
above four equations. Note that the effect of IM poten-
tial ∆ → ∞ is now expressed by the boundary conditions
(18) and (19).
For the hybrid BLG QR, the spinors corresponding

to the sublattices in the lower layer are continuous at
the ring boundaries, while the spinor components of the
upper (ring) layer, φτA2(ρ) and φτB2(ρ), satisfy the IM
boundary condition expressed by Eqs. (18) and (19).
Thus, in this case, the boundary conditions at R1(2) read

φτA(ρ1(2))− φτA1(ρ1(2)) = 0 , (20a)

φτB(ρ1(2))− φτB1(ρ1(2)) = 0 , (20b)

φτB2(ρ1(2))∓ φτA2(ρ1(2)) = 0, (20c)

where −(+) is used at R1(2) boundary.
Here, we have to stress that, using the above boundary

conditions when implementing them numerically gives
two sets of energy levels. A set of levels corresponds to
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FIG. 2. (a,b) Energy levels of an isolated BLG QR with inner and outer radii R1 = 30 nm and R2 = 40 nm, respectively, as a
function of the angular momentum m for the K (solid blue circles) and K′ (open red circles) valleys at the two different magnetic

fields (a) B = 5 T and (b) B = 10 T. The symmetry EK

e (m) = −EK
′

h (m) is clearly visible. (c) K-valley energy spectrum for the
same ring as a function of the magnetic field B. The results are plotted for several angular momenta m = −13,±10,±2,±1, 0.
Background colored plot shows a 2D conductance of the same ring as functions of B and energy E using KWANT package
within the Landauer-Büttiker formalism using the TBM.

the pristine BLG Landau levels (LLs), which mathemat-
ically originates from the proportionality of Lb

a(x) and
U(a, b, x) functions when a (≡ α±(ǫ)) becomes an inte-

ger number n. In this case, Lb
n(x) =

(−1)n

n! U(−n, b+1, x)
and the wave spinors become finite in both limits r → 0
and ∞ as for bulk BLG LLs [72].

In Figs. 2(a) and 2(b), we plot the energy spectrum of
both valleys as a function of the angular momentum m.
The results are presented for two different magnetic fields
(a) B = 5 T and (b) B = 10 T with solid blue (open red)
circles for the K (K ′) valley. The inner and outer ring
radii, respectively, are R1 = 30 nm and R2 = 40 nm. Ir-
respective of the magnetic-field strength, the energy spec-
tra exhibit intervalley symmetry EK

e (m) = −EK′

h (m) be-
tween the electron and hole states, indicating that valley
degeneracy is lifted. Lifting the valley degeneracy, due to
the presence of the magnetic field, has also been noticed
before in other graphene nanostructures [7, 25, 61], and
is of great interest because it could make them promis-
ing candidates for valleytronics applications. One can
see that decreasing the field B, suppresses the above-
mentioned intervalley symmetry and the valley degener-
acy is restored at B = 0 [cf. Figs. 2(a) and 2(b)]. In the
case of zero-width BLG QR [63], the energy spectrum
shows only two energy levels for each m, and the spec-
trum versus m is very similar to the band structure of
a biased BLG sheet (see Fig. 10 in Ref. [63]). However,
here, we find several energy levels as a function of m and
the number depends on the width of the ring.

The energy spectrum of an isolated BLG QR, as a
function of magnetic field, is shown in Fig. 2(c) for sev-
eral values of the angular momenta, m = −13, m = ±10,
m = ±2, m = ±1, and m = 0 at the K valley for the
same ring parameters as in Figs. 2(a) and 2(b). For a sin-
gle valley, as seen in panel 2(a), two broken symmetries
are clearly visible in the presence of the magnetic field:

(i) For a specific angular momentum m, the electron-hole
(e-h) symmetry is broken, i.e., Ee(m) 6= −Eh(m) and (ii)
Ei(m) 6= Ei(−m) (i = e, h), since time-reversal symme-
try (TRS) is broken by the magnetic field [7]. Both sym-
metries are restored at B = 0 as expected. For large field
strength, the magnetic-field dependence of the spectrum
becomes approximately linear which was also observed
for the MLG ring and antidot spectra [49]. Note that,
as function of the magnetic field, the lowest electron and
hole energy levels show a “Mexican-hat” shape similar
as the Mexican-hat-shaped low-energy dispersion for a
biased AB-stacked BLG [84], which is due to the fourth-
order character of the dispersion relation [Eq. (14)]. In-
cluding the energy levels of both valleys [see Fig. 6(b)]
we can see that the confinement-induced band gap closes
with increasing magnetic field. This is in contrast with
the previous study of the zero-width BLG QR [63], which
shows a constant energy band gap as a function of the
magnetic field. A similar result for the strong dependence
of the energy gap on the magnetic field in the finite-width
MLG QR as well as a comparative study with the ideal
zero-width one was also discussed in Ref. [11].

To see the connection between the obtained analytical
energy levels and observable physical quantity like con-
ductance, we show in Fig. 2(c), a 2D color plot of two-
terminal conductance G of the same ring as functions
of B field and energy using the KWANT package [64]
within the Landauer-Büttiker formalism using the TBM
(for details of the the TB simulation see Sec. III B). We
find excellent agreement between the analytical results
and the tight-binding transport simulations. Specifically,
the closing of the band gap as a function of B field in
both calculations is seen to agree remarkably well. In
addition, one can see high conductance values for large
energies (|E| & 0.2 eV) indicating the presence of a large
number of conducting channels at these energies. This is
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m = ±1, 0. The dashed black curves show the Landau levels (n = 0, 1, . . . 4) of pristine MLG sheet. The inset in panel (b)
shows an enlarged view of the spectrum, showing the anticrossings for angular momentum m = 1 and the K′ valley. (c) Energy
levels as a function of the angular momentum m for the same hybrid ring at B = 10 T for the two valleys K (solid blue circles)
and K′ (open red circles). The dashed green lines pertain to the bulk MLG LLs at B = 10 T for n = 0, 1, . . . 6.

consistent with the analytical results where we find a high
concentration of energy states at high energies. Notice
that, in Fig. 2(c), we plotted only the energy levels for
a few values of m and only for one K valley [a complete
spectrum is shown in Fig. 6(b)].

Results for the energy spectrum of a hybrid BLG QR,
of radius R1 = 30 nm and R2 = 40 nm, as a function of
magnetic field B at both valleys K and K ′ are shown in
Figs. 3(a) and 3(b), respectively. The angular momenta
are m = −1 (blue), m = 0 (green), and m = 1 (red). The
B-field dependence of the hybrid BLG QR energy spec-
trum is strikingly different from that of the isolated BLG
QR. Here, for B = 0, the spectrum is continuous because
of the presence of the infinite MLG, and with increasing
magnetic field the degeneracy of the states is lifted. The
discrete levels (reflecting the confined states) depend on
the angular momentum and the B-field strength. The
spectra for both valleys show anticrossings, which are
due to the influence of the MLG dot and BLG QR in-
terface [see the inset of Fig. 3(b)]. As a result of this

interface, the symmetry condition EK
e (m) = −EK′

h (m)
(which holds for an isolated ring) is no longer preserved
here, as shown explicitly in Fig. 3(c). At high magnetic
fields, i.e., lB < R1, the energy levels merge into the LLs
of pristine MLG [En = ±

√
2n ~vF /lB with n = 0, 1, . . .,

shown by dashed black curves in Figs. 3(a) and 3(b)] indi-
cating that magnetic confinement dominates and the car-
riers become localized at the center of the dot region (see
Fig. 4 and the corresponding discussion). It is also worth
noting that, here, the states with m < 0 contributes to
the zero LL (n = 0) only in one valley (K). This is in
contrast with the other graphene nanostructures such as
MLG [27] and BLG QDs [61] with IM boundary condi-
tion in which the states from both valleys form the zero
LL. Notice that, unlike to the isolated BLG QR, it is not

straightforward to calculate the conductance of the hy-
brid QR in the TBM, since its bottom layer consists of an
infinite graphene layer sheet. However, in Sec. III B, we
will compare explicitly the analytical energy levels with
those obtained within the TBM for both ring structures.

Figure 3(c) shows the energy spectrum as a function
of the angular momentum at a specific magnetic field
(B = 10 T) for both valleys K (solid blue circles) and
K ′ (open red circles). As seen, there is no symmetry
between the e-h energies as well as between the valleys.
For a given magnetic field, the energy levels at both val-
leys are affected by the ring interface for a particular
range of m and converge to the MLG LLs for larger m’s
(green lines), indicating carrier localization inside the
dot region. Note that at the K (K ′) valley, the maxi-
mum value of the angular momentum mmax that is con-
verged to the nth electron LL of MLG is mmax = n − 1
(mmax = n, n 6= 0). Further, in both valleys, the electron
states show a smooth oscillatory behavior as function of
magnetic field and strong anticrossings are visible also
for hole states. Similar behavior was also noted for the
double MLG-BLG junctions studied in Ref. [78] when the
spectra are plotted as a function of the center coordinate
of the cyclotron orbit.

To better understand the behavior of the energy levels
in the spectrum of the hybrid ring, we plot in Fig. 4 the
energy levels of both types of rings and MLG dot for
a specific angular momentum, m = −1 [panel 4(a)], as
well as the corresponding spinor components [φν(ρ), ν =
A,B, . . .] and probability densities [φ2A(ρ) + φ2B(ρ), . . .]
for the representative energy states marked by (b), (c),
and (d) in Fig. 4(a), [panels (b)-(d)]. As seen, the energy
levels of the hybrid ring seem to be tunable from the MLG
dot, to isolated BLG QR, and to MLG Landau energy
levels as B increases. At the representative state (b), the
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LLs at B = 20 T.

energy level (blue circles) resembles that of the MLG dot
(dashed green curves), the corresponding quantum state
is mostly confined inside the dot region with a substantial
probability density in the ring region, see 4(b) panels.
When the energy level approaches the one of the isolated
ring (red curves), e.g., point (c), the carrier is mostly
confined inside the ring region [Fig. 4(c)]. For strong
magnetic field, e.g., point (d), the energy level converges
to the MLG LL (magenta curve), the state is completely
confined inside the dot region, as seen in Fig. 4(d).
It is also interesting to investigate the effect of ring

width on the energy spectrum of both structures. For
this purpose, we plot in Fig. 5, the lowest energy levels
as a function of the width of the ring W (= R2 − R1)
for (a) isolated and (b) hybrid BLG QRs. In both cases,
for the sake of clarity, the results are presented only for
particular angular momentum m = −20 at B = 20 T.
In the case of an isolated ring, the energy levels are sep-
arated by a gap, depending on the angular momentum
and ring width, which closes when W increases and the
energy levels for both valleys approach the LLs of bulk
BLG as depicted by the horizontal gray lines. In the
hybrid ring, Fig. 5(b), at small ring widths, the energy
levels correspond to the LLs of MLG. WhenW increases,
the electron (hole) energy levels, due to the influence of
MLG-BLG interface, exhibit a flat plateau (strong anti-
crossing) features for certain ranges ofW , and eventually
merge into the LLs of bulk BLG. The plateau-like and
oscillatory features appearing in the energy spectrum can
be understood as hybridization of the energy levels of the
terminated systems, MLG QD and BLG antidot. Simi-
lar behavior was found for previous studies of MLG-BLG
junctions [24, 72, 78, 79].

B. Comparison with tight-binding model

In order to check the validity of the continuum approx-
imation, we compare explicitly our analytical results with
the energy levels calculated within a nearest-neighbor TB
approach. We include only the nearest-neighbor hopping
parameters γ0 = −2.7 eV and γ1 = 0.4 eV as intralayer

and interlayer couplings, respectively. The effect of an
external magnetic field can be introduced into the calcu-
lations via the Peierls substitution tij → tije

i2πΦij , where

Φij = (1/Φ0)
∫

Rj

Ri
A(r) · dr is the Peierls phase [85] with

Φ0 = h/e ≈ 4.14 × 10−15 Wb the magnetic flux quan-
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IM boundary used in TBM calculation. We define the honeycomb lattice of BLG with the lattice vectors a1 = a0(

√
3/2, 1/2)

and a2 = a0(
√
3/2,−1/2), where a0 = 0.246 nm is the lattice constant. The coordinates x and y are defined along the armchair

and zigzag directions, respectively (Fig. 1). The upper (lower) panel depicts the isolated (hybrid) BLG QR geometry. The
atoms of the two layers are represented by blue (layer 1) and red (layer 2) circles. The ring regions are surrounded by a
site-dependent staggered potential (yellow areas), where the atoms belonging to the sublattices A1 (A2) and B1 (B2) have
mass-term potentials of +M0 (+M0) and −M0 (−M0), respectively. In the case of hybrid ring, to simulate the lower layer as
an infinite graphene sheet, we consider it as a large circular flake (layer 1) on which a second MLG ring (layer 2) is sitting on
top of it. Further, to eliminate the specific edge effects of layer 1, here also, we apply the staggered potential on the atoms
located within the ribbon width of ∆r = 2a0 at the edge of the flake (yellow region). (b,c) Energy levels of (b) an isolated BLG
QR and (c) a hybrid BLG QR as a function of the magnetic field B, calculated within the Dirac (red circles) and the TB (solid
blue curves) models. For both cases, the results are presented for rings with inner and outer radii of R1 = 8 a0 = 1.97 nm and
R2 = 18a0 = 4.43 nm. The mass potential is M0 = 2 eV. In the hybrid ring, we use a circular flake of radius R0 = 38a0 = 9.35
nm for the lower layer.

tum. The vector potential corresponding to the exter-
nal magnetic field B = Bẑ perpendicular to the BLG
flakes is chosen in the Landau gauge A(r) = (0, Bx, 0)
for which one finds that Φij is only nonzero in the y

direction and is given by Φij = sign(yj − yi)
xj+xi

2
√
3a0

Φ
Φ0

,

where Φ = B(
√
3a20/2) is the magnetic flux threading

one carbon hexagon (a0 is the graphene lattice constant).
Here, the QRs are defined by a staggered site-dependent
potential such that the atoms belonging to the sublat-
tices A1 (A2) and B1 (B2) have a mass-term potential
of +M0 (+M0) and −M0 (−M0), respectively, as shown
in Fig. 6(a). This simulates the substrate effect and can
be regarded as the IM boundary condition in the TBM.
More details of the geometries are provided in the cap-
tion of Fig. 6. Furthermore, our calculations show that
in the Dirac model, adopting the same radius used to
define the atomic geometries in TBM, results in the en-
ergy levels which are slightly larger (i.e., shifted up) than
those obtained by TBM. Two possible explanations for
this discrepancy can be considered. First, in the TBM
to simulate the IM boundary, we have used a narrow
ribbon of ∆r containing atoms with different finite on-
site potentials in addition to the ring radii as shown in
Fig. 6(a). The second which has also been proposed in

Ref. [86], can be attributed to the π electrons that in
the TBM extend over the whole geometry. Accordingly,
to compensate for this difference, we use a larger width
for the rings in the Dirac model. Also note that, due to
the computational limitation of the TBM, we have con-
sidered the small sizes of the rings and the applied mag-
netic field in our calculations is too large to be achievable
in experiments. However, for the study of the electronic
properties of graphene nanostructures in the presence of
a perpendicular magnetic field, one can define a scaling
factor and thus extend the results to lower magnetic field
and larger sample sizes, e.g., see Refs. [12, 49, 87].

In Figs. 6(b) and 6(c), we compare the results obtained
within the TB and Dirac approaches for the lowest-
energy levels of both rings as a function of magnetic field
B, see the figure caption for details. Notice that the Dirac
results agree with the TB ones, especially for the lower-
energy states. In the case of an isolated ring, there are
some discrepancies between the two models for the hole
energy levels. This is due to the fact that in the TBM,
applying IM boundary at the edge boundary which is
now not a perfect circle, breaks the e-h symmetry. This
symmetry, however, is preserved in the Dirac model as a
result of its perfect circular geometry. Moreover, in the
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FIG. 7. Valley- and layer-resolved local density of states
[LDOS (arbitrary units)] of (a) an isolated BLG QR and (b) a
hybrid BLG QR with the inner and outer radii of R1 = 30 nm
and R2 = 40 nm, respectively. The magnetic field is B = 10
T. Layer 1 (2) is represented by the blue (red) curves. The
solid (dashed) curves correspond to the K (K′) valley. For
the isolated BLG QR, the LDOS is computed in the energy
range of [0, 0.2] eV, while for the hybrid one, the states in the
energy window of [0, 0.11] eV [states between the lowest MLG
LLs, n = 0 and n = 1 in Fig. 3(c)] are sampled.

TBM results of the hybrid ring [solid blue curves in Fig.
6(c)], we see a bunch of energy levels decreasing in en-
ergy and approaching the zero energy. They are known
as the quantum Hall edge states [88] and are confined at
the edges of the graphene flakes and are a result of the
finite size of the flake. These Hall edge states are absent
in the Dirac model for which the first layer is consid-
ered as an infinite graphene sheet. In general, we expect
good agreement between the Dirac and TB models for
the low-energy states. For the higher energy levels and
high magnetic field, discrepancy between the Dirac and
TB results becomes more significant. The reason is that
the linear spectrum invoked in the Dirac equation is no
longer valid.

We also notice that the energy spectra in both cases,
exhibit periodic oscillations as the magnetic flux varies.
This is a direct consequence of the AB effect [89] which is
well known and has been investigated for QRs (metallic,
semiconductor as well as graphene) [8, 90–93]. Similar to
the AB effect in semiconductor QRs, the energy oscilla-
tions manifest itself in AB oscillations in the persistent
current j(Φ) = − ∂

∂ΦE.

Finally, we consider the valley- and layer-resolved
LDOS for the studied structures which can be probed
by quantum capacitance measurements and by scanning
tunneling microscopy. We consider the LDOS in the en-
ergy window of Ω ≡ [E1, E2] which can be obtained using

ρτℓ (r) =
∑

Ei∈Ω

δ(E − Ei)|ψEi

ℓ (r)|2, (21)

where ψEi

ℓ (r) = [φEi

Aℓ(r), φ
Ei

Bℓ(r)]
T denotes the quantum

state of the two layers (ℓ = 1, 2) with energy Ei. The
components φAℓ(r) and φBℓ(r) correspond, respectively,
to the different sublattices Aℓ and Bℓ in each layer at the
given valley (τ = K,K ′).
In Fig. 7, we show the valley- and layer-resolved LDOS

of the lowest-electron-energy states for both ring struc-
tures at B = 10 T. In the case of isolated BLG QR [Fig.
7(a)], for which the LDOS is computed in the energy
range of [0, 0.2] eV, one can see that the LDOS of layer 1
(blue curves) is mostly centered inside the ring whereas
in layer 2 the LDOS has its maximum value at the inner
side of the ring. This behavior happens for both valleys,
K and K ′ (solid and dashed curves, respectively). Be-
sides, in each layer, the maximum contribution in the
LDOS belongs to the K ′ valley. The lower panel of Fig.
7(a) shows the LDOS for each valley separately. We see
that the LDOS contribution of the K ′ valley at the inner
boundary of the ring is dominant which decreases with
radial distance and at the outer side of the ring, contri-
butions of both valleys in the LDOS are almost equal.
Shown in panel (b) of Fig. 7 is the LDOS of the hybrid
BLG QR. In this case, we compute the LDOS over the
electron-energy states located between the lowest MLG
LLs, n = 0 and n = 1. Here too, the contribution of the
K ′ valley in the LDOS is dominant in both layers. While
the LDOS of the lower layer (blue curves) is centered in
the middle of the ring, in the upper layer (red curves) the
LDOS form rings with maximums at the inner and outer
boundaries of the ring. Thus the difference between the
valley contributions as well as from the different layers
in the LDOS at a given magnetic field can open up novel
ways for applications of such graphene-based nanostruc-
tures in valleytronics.

IV. SUMMARY AND CONCLUDING

REMARKS

In summary, based on continuum (Dirac-Weyl equa-
tion) and tight-binding models, we studied the electronic
properties of BLG QR, defined by IM potential, in two
different configurations: an isolated BLG QR and a hy-
brid one where a MLG ring is put on top of an infinite
MLG sheet. By using the Dirac approximation and ap-
plying the IM boundary condition, we first obtained an-
alytical results for the energy levels and corresponding
wave spinors for both structures as function of a perpen-
dicular magnetic field.
In contrast to the previously investigated zero-width

BLG QR, here, the isolated BLG QR features a sizeable
and magnetically tunable band gap that decreases as the
magnetic field strength is increased. Our analytical find-
ings are in excellent agreement with the tight-binding
transport simulations. Further, the theoretical results
show the intervalley symmetry EK

e (m) = −EK′

h (m) be-
tween the electron and hole states for the energy levels
of the isolated BLG QR, where m is the angular momen-
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tum quantum number and K,K ′ refer to the two Dirac
valleys.

The results for hybrid BLG QRs showed that the pres-
ence of an interface boundary in a hybrid BLG QR mod-
ifies drastically the energy levels as compared to that of
an isolated BLG QR and its energy levels interplay be-
tween the MLG dot, isolated BLG QR, and MLG Landau
energy levels as magnetic field varies. No symmetry be-
tween the energy levels is found in this case.

Further, the energy spectrum of both structures ex-
hibits Aharonov-Bohm oscillations as the magnetic field
varies. We also explicitly confirmed the validity of
our results by simulating the QRs by a staggered site-
dependent potential in the TBM. We found good agree-
ment between our analytical results obtained in the con-
tinuum approximation and those calculated within the
TBM. Finally, we analyzed the spatial dependence of the
valley- and layer-resolved LDOS for the proposed BLG
QRs. Our findings are relevant for valleytronics applica-
tions. Our results can be realized experimentally using
different techniques such as magnetotransport measure-
ments similar to those reported in Refs. [12, 32] for a
MLG ring or using scanning probe techniques such as
Scanning Tunneling Spectroscopy and Scanning Gate Mi-

croscopy [12] to probe the LDOS.
Although many-body effects, such as those coming

from electron-electron and electron-phonon interactions,
may appear in some experiments under certain regimes
and initial conditions, thus affecting the confinement
properties in BLG-based nanostructures [18, 94, 95], the
analytical solution proposed here allows us to have phys-
ical insights into the basic mechanisms behind the re-
sults, which is of fundamental importance for a theoret-
ical understanding of some electronic properties in BLG
nanostructures. Moreover, recent experimental measure-
ments of quantum confined states in BLG QDs by us-
ing scanning tunneling microscope [96–101] have been
confirmed by single-particle tight-binding model, even in
the presence of charge defects, impurities, dopants and
adatoms, in a supporting hexagonal boron nitride flake
[98, 100, 101], showing the validity of such single-particle
approach results in the face of experimental observations.
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