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Electric-field-induced emergent electrical connectivity in graphene oxide
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Understanding the appearance of local electrical connectivity in liquid filled layered graphene oxide subjected
to an external electric field is important to design electrically controlled smart permeable devices and also to gain
insight into the physics behind electrical effects on confined water permeation. Motivated by recent experiments
[K. G. Zhou et al. Nature (London) 559, 236 (2018)], we introduce a new model with random percolating paths
for electrical connectivity in micron thick water filled layered graphene oxide, which mimics parallel resistors
connected across the top and bottom electrodes. We find that a strong nonuniform radial electric field of the order
∼10–50 mV/nm can be induced between layers depending on the current flow through the formed conducting
paths. The maxima of the induced fields are not necessarily close to the electrodes and may be localized in the
middle region of the layered material. The emergence of electrical connectivity and the associated electrical
effects have a strong influence on the surrounding fluid in terms of ionization and wetting which subsequently
determines the permeation properties.
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I. INTRODUCTION

Layered dielectrics such as graphene oxide (GO) and other
dielectrics are widely used as substrates and gate dielectrics
to build different two-dimensional nanoscale devices, e.g.,
graphene-based vertical heterostructures [1], waveguide
connectors [2], and thin film transistors [3]. Specifically,
GO, a hydrophilic atomic sheet of graphite with oxygen
functionalities, is a graphene-based dielectric which forms
a layered assembly with an adjustable interlayer spacing at
different humidity [4–6] due to absorbing water. Membrane
structures made of GO show an exceptional water permeation
and molecular sieving properties [5–7]. Recently, it was found
that when a DC bias voltage is applied across the moistened
layered porous GO, both molecular permeation and electrical
conductivity of the material are affected [8]. Notably, the elec-
tric field breakdown (EBD) strength of dry GO and typical dry
layered dielectrics was found to be comparable to that of SiO2

which is typically EBD = 0.1-0.3 mV/nm [9]. Surprisingly,
electric fields of about 10 mV/nm are able to cause electrical
breakdown and subsequently allowed for a precise control
of water permeation: from ultrafast permeation to complete
blocking. In fact, water fills up the voids of porous layered
GO and significantly influences the dielectric properties of the
system. In a different experiment it was shown that depending
on the low-voltage sign, ion diffusion rates can be reversibly
modulated and is anomalously enhanced by a factor of 4–7
within a voltage range of 0.5 V [11].

In this paper, we introduce a model to investigate the
electrical connectivity in moistened GO films. In particular,
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we focus on the induced electric field around the generated
conducting routes.

II. MODEL

When an external voltage is applied, it was experimentally
found that several conducting paths are formed between suc-
cessive layers of the GO membrane [8,10] that link the top and
the bottom electrodes, see Fig. 1. Our model is constructed as
a combination of series and parallel arrangements of resistors.
These can be either metallic nanowires such as (n,0) zig-zag
nanotubes, polycyclic aromatic hydrocarbons, or amorphous
carbon paths in GO, which are connected to each other and
subsequently connect the top and bottom electrodes obeying
Ohm’s law. Our example here is the insulating-to-conducting
transition in GO laminates upon the application of an external
electric field.

Recently, we measured the electrical conductivity of GO
membranes subjected to external bias voltage that induces an
electric field perpendicular to the layers [8]. The estimated
current through each individual filament, for electrically con-
ductive GO layers, was found to be about 1 nA for a 1 V
applied potential [8].

To gain insight into the unexplored phenomenon of the
emergence of global connectivity perpendicular to the basal
planes of layered GO, it is fruitful to overlook details and
to ask for the simplest model which reproduces the essential
physical features.

Therefore, we will neglect the microscopic details of
the membrane and conducting filaments. The observed self-
healing phenomenon in Ref. [8] indicates clearly that the
breakdown mechanism of moistened layered GO is controlled
by the carbon chains in the system. The carbon chains may
be more important in determining the breakdown strength
than the layered GO (and water) itself [12]. For instance, a
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FIG. 1. A schematic of the emergence of global electrical con-
nectivity in a porous layered GO device with thickness L and “n”
layers. The middle red wire with radius “a” is the simplest represen-
tation of a conducting route. The bottom figure represents the formed
conducting filaments between the layers. The parallel resistors model
causes the resistivity to be nonuniform across the membrane.

sample exposed to zero humidity did not show any evidence
of formation of electrically conducting filaments even up to
50 V [8]. Moreover, the electric breakdown strength (EBD) of
water is around 30 mV/nm [13] and that of the dry layered
dielectric is larger than 100 mV/nm, while the measured
EBD in recent experiment was found to be about ∼2 mV/nm
[8]. These findings lead us to conclude that the presence of
interconnects (carbon chains or other contaminants within the
layered dielectrics [14]) facilitates electrical conductivity. The
interconnect carbon chains might be polarized and experience
a force in a nonuniform field between the layers. The force
moves the interconnected particles toward the maximum field
region within each layer and align them with the field. Even-
tually they will link the successive layers (such that far from
the cathode the number of aligned particles is larger), yielding
an electrical current that passes across the membranes. Notice
that the in-plane IV characterization in the experiment of
Ref. [8] results in highly resistive GO confirming that the
conducting filaments are oriented to the out-of-plane direction
parallel to the applied external field.

Reality may be more complex because of the complex
nature of the microscopic structure of common layered di-
electrics such as GO, the unusual porosity, and the effects of
metal–liquid interfaces. Nevertheless, we assume that simi-
larly to electrical treeing phenomenon (in the light of random
branching), several parallel resistors may be formed between
successive layers close to one of the electrodes, and a few
formed close to the other electrode (see bottom panel of
Fig. 1). This last assumption gives a higher probability of
finding a global connectivity. Because of the porosity in the

TABLE I. The number we used for the parameters of the model
which correspond to the experimental data of Ref. [8].

Parameter Experiment [8] Present work

Thickness (μm) 1.0, 5.0 1.0, 5.0
Voltage (V) 0.0–4.0 0.0–4.0
Resistance (�) 100–200 100–200
Electric field (mV/nm) 1–10.0 1.0–50.0
Conducting route size (nm) 5–100.0 5–100.0

system, finding a straight bridge between the bottom and top
electrode is less plausible.

For the setup shown in Fig. 1, the number of parallel
resistors increases nonlinearly with increasing z and they are
taken for simplicity to be in a cylindrical region of radius
a and length L, i.e., a conductive wire (see red column in
Fig. 1). This simplifies our model. There are a few global
bridges (red wire) distributed over the surface of the metallic
electrodes [8]. In other words, L is the thickness of the layered
GO and a ∼ 5–10 nm is the size of the portion within which
the connectivity occurs (typically a/L ∼ 0.001–0.01 [15]).
We assume L = n0 × d where “d” is the interlayer distance
between “n0” number of layers. The wire carries a constant
stationary current I , see Fig. 1. Two infinite parallel metallic
electrodes are connected by the conducting wire. In Table I
we list the model parameters we used that correspond to the
experimental data of Ref. [8].

For simplicity, we assume that the wire is an Ohmic resistor
with a nonuniform electrical resistivity varying exponentially
along its axis z, i.e., � = �0e−αz/L. This assumption expresses
the fact that by increasing the number of conducting filaments
close to one electrode, the resistivity should exponentially
decay (increase) for α > 0 (α < 0). Then the resistance of the
wire as a function of z is given by,

R(z) � L�0

παa2
(1 − e−αz/L ). (1)

Here α is the key parameter in our model and controls
the degree of multiplication (treeing). Thus α determines the
branching pattern of conducting filaments and controls the
distribution of conducting filaments. If we reverse the pattern
shown in bottom panel in Fig. 1 and fix the z-direction as it is
for the current representation in Fig. 1, α should be negative.
The simple case α ∼= 0 gives a constant resistivity �0 and the
familiar resistance R(z) = �0z

πa2 . The larger α, the larger the
number of parallel resistors close to one of the electrodes
and consequently the larger is the degree of branching mul-
tiplication. Thus exponential resistivity provides an accurate
description of the main features of the branching pattern of
the conducting filaments.

Using Eq. (1), we can estimate the total resistance for
a given α as RT = R(L, α) = L�0

παa2 (1 − e−α ). Thus, to find
a reasonable range for the α parameter relevant to the ex-
perimental data, first we note that the maximum electric
current and voltage in the experiment are 20 mA and 4 V
[8], respectively, resulting in R(L, α) � 200�. Using the re-
lation for R(L, α) we obtained, a typical resistivity in the
experimental sample with L = 1μm and a = 10 nm is given
by �0 � 2π × 10−8�.m. Second, to estimate α, we solve the
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TABLE II. Some possible values for the parameters α as ob-
tained by solving Eq. (2) for various parameters in the model.

R(�) L(μm) �0(10−9�.m) a(nm) α

100 1 1 5 0.50
100 1 2 5 2.28
100 1 2 6 1.27
100 1 2 7 0.54

200 5 1 5 3.02
200 5 1 6 1.87
200 5 1 7 1.06
200 5 1 8 0.45
200 5 2 5 3.12
200 5 2 6 4.36
200 5 2 7 3.10
200 5 2 8 2.21
200 5 2 9 1.54
200 5 2 10 1.01

following equation:

RT πa2

L
= 1 − e−α

α
. (2)

Solving Eq. (2) for α by using typical values for the resistivity,
e.g., �0 = [1 − 6] × 10−9�.m and for a = [5 − 10] nm, we
are able to determine α. Some of the resulting values for α

for the various parameters of the model are listed in Table II.
We conclude that α values smaller than 5.0 are relevant to
the experimental data. The number of filaments n0 inside
a conducting route with radius a can be estimated as n0 =
�R(z=L)
�R(z=0)

∼= eα . For α = 5 and a = 5 nm this yields an area

density of conducting filaments of 2.0 nm−2.
Furthermore, atomic force microscope (AFM) images con-

firm the filament formation in conducting GO membranes. A
typical Peak Force Tunneling AFM current image of a GO
membrane after filament formation exfoliated on a gold-thin-
film-coated silicon substrate is shown in Fig. 1(e) of Ref. [8].
In our model, the high resistance of small pieces (close to
the cathode electrode) is due to the lower number of parallel
filaments (as compared to the other electrode). This is an
essential feature of our proposed electrical treeing model. The
electric current was reported to be about 1 mA for a thickness
L = 1 μm [8].

III. RESULTS

A. Electric field

In Fig. 2(a) we depict the variation of the resistivity � by
the solid line on a semi-log scale. Keeping the bottom and
top electrodes at potential 0 and V0, respectively (which is
taken large enough to generate a global electrical connec-
tivity), the potential on the surface of the resistor and the
stationary electric current flowing through the resistor be-
come V0( e−αz/L−1

e−α−1 ) and παa2V0
L�0(1−e−α ) , respectively. Straightforward

calculations using cylindrical coordinates with incorporating
proper boundary conditions (see the Appendix) of the Laplace

FIG. 2. (a) The variation of �/�0 with z. The solid line refers to
no sinusoidal variation while the two dashed curves are the relative
resistivity when a sinusoidal oscillation is added. (b) The variation
of electric potential around the conducting cylinder at four different
radial distances, i.e., r = a, 2a, 4a, 30a for α = 3.0, a = 10 nm, and
L = 1000 nm.

equation yield the electric potential outside the wire as

�(r, z) = V0

L
z +

∞∑
n=0

Bn sin(nπz/L)κ (r, n), (3)

where κ (r, n) = K0(nπr/L)
K0(nπa/L) and Bn = 2α2((−1)n−eα )V0

nπ (1−eα )(n2π2+α2 ) . Here K0

denotes the modified Bessel function of the second kind. From
Eq. (3) one might deduce that the net electric field is equal to
V0/L independent of α and that the contribution of the second
term is negligible. However, we will show that, depending on
the value of α, a, and the distance r, the electric field resulting
from the second term can be in fact much larger than V0/L.

In Fig. 2(b) we depict the variation of �(r, z) versus z for
four different radial distances, where we took α = 3. It is seen
that far from the cylinder (r = 30a) we obtain the expected
linear behavior of �(r, z) ∝ z, i.e., the electric potential drops
linearly between two parallel plates. In other words the second
term in Eq. (3) is negligible. However, on the surface of
the cylinder (where r = a), the electric potential shows a
parabolic behavior, leading to an unexpected variation of the
radial electric field around the column (see below).

Surprisingly, the total electric field along the wire has
a local maximum when |α| > 0. The maximum occurs at
about Zmax ≈ L/2 for α ∼ |1| and is larger (smaller) for larger
(smaller) |α| (see Fig. 3). Notice that near the wire, r ∼ 2a, the
ratio Er/Ez is about 10, implying that the major contribution
is due to the radial component. For larger α, a stronger electric
field is induced around the wire, e.g., for α = 5 the total
electric field is found to be about 50 mV/nm where V0 = 4 V.
In Fig. 3(a), we give a two-dimensional (2D) contour plots of
the variation of Et versus α and z and in Fig. 3(b), we show
the variation of Et with a and z. For smaller a we obtain larger
fields. This is due to charge accumulation on the surface of the
cylindrical wire. For larger |α| (∼5), the maximum is closer
to one of the electrodes (depending on the polarity of the
applied voltage), but not on the electrodes, and consequently
the charge is accumulated close to one of the electrodes.

Figure 4(a) shows the variation of the position of the total
electric field along the wire Zmax with α for V0 = 1 V and
a = 10 nm.

The appearance of peaks around the middle of the column
and the key role of parameter α, which determines the per-
colating path, indicates that the mechanism behind electrical
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FIG. 3. (a) Contour plot of total electric field on the surface of a conducting wire (r = a = 10 nm) along the wire as function of α for
V0 = 4 V. (b) 2D-plot of total electric field along wire as function of radius of wire a for α = 1 and V0 = 4 V.

conductivity, of, for example, GO membranes, is different
from that of other dielectrics such as the mechanism of lattice
distortion by defects in SiO2 and those models in which
the anode electrode plays an important role in the electric
breakdown [16,17]. It is interesting to note that, in addition
to the radial symmetry, for a given r we have Et (z, α) =
Et (L − z,−α). This is a consequence of the asymmetry in
polarity of the external voltage. A similar symmetry exists in
the 2D plots shown in Fig. 3.

B. Electric charge

The surface charge density can be found using σx =
(4π )−1Ex(r, z), where on the resistor Ex = Er=a and on the
bottom and top plates Ex = Ez=0 and Ez=L, respectively. A
positive α induces positive charges on the surface of the
cylinder. This is due to the nonconstant resistivity of the wire.
Notice that a volume charge density is also induced inside the
wire which originates from a variation of the resistance inside
the wire. The volume charge density can be calculated using
ρ = −∇2�(r,z)

4π
. However, we found that the total charge inside

the wire (Qv = πa2
∫ z

0 ρdz) is negligible as compared to the
surface charge (Qv � 0.05Qs). For this reason, we show in

FIG. 4. The variation of (a) Zmax and (b) Qs with α for different
wire radius.

Fig. 4(b) only the induced surface charge

Qs = −8εaV α2

π2 tanh(α/2)

∞∑
n=0

κ1(a, 2n + 1)

(2n + 1)
(

α2

π2 + (2n + 1)2
) , (4)

for four different a values, with κ1(r, n) = K1(nπr/L)
K0(nπa/L) . For a

wire with effective radius of about 10 nm, the total charge
on the surface for α ∼ 3 is found to be about 20 e.

Finally, to include in a simple way, the intrinsic ran-
dom nature of the emergence of electrical connectivity in
our model, we added a sine function to the resistivity, i.e.,
�/�0 = A sin(πz/kL) + e−αz/L. In Fig. 2(a) we depict three
resistivities in semi-log scale with respect to z with A = 0,
0.032, 0.04 and k = 0, 100, 50, which are represented by a
solid line and two dashed lines, respectively. We see that the
effects of adding these sinusoidal functions are small. Hence,
the main message and the quantitative results are general.

IV. DISCUSSION

We presented a theory for the electrical connectivity
through GO which models the experimentally observed con-
ducting filaments formed between successive layers of GO
membranes. Since the electric breakdown strength of water is
equal or larger than 10 mV/nm [8,13], the resulting strong
radial electric field around the conducting filaments (up to
50 mV/nm), will influence the surrounding water in terms of
ionizing the water, and subsequently it will change its perme-
ability. By increasing the electric field, the concentration of
H3O+ and OH− ions increases. The larger V0 and α, the larger
the electric field. This is consistent with recent experiments
[8]: a strong electric field can dissociate water in the interlayer
channels of the porous membranes into OH− and H3O+ ions
according to the hydration effect

(μ + ν + 2)H2O � OH− · ν(H2O) + H3O+ · μ(H2O), (5)

where μ and ν determine the degree of hydration. In fact,
the dissociated water molecules (yielding the localization of
H3O+ and OH− ions inside the channels) quickly disperse
within the layers and react with GO. Also the formation of
large hydrated clusters due to strong interactions between
H3O+ and OH− ions and surrounding water molecules, cause
local blockage. This will happen for many channels, in partic-
ular at the entrance of the channels.
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It is also important to note that in GO, a strong electric field
can change the local arrangement of the functional groups
attached on the surface of GO. The electrical breakdown of
GO membranes fully recovers its insulating properties once
the current through the conducing channel has been externally
interrupted (self-healing effect) [8]. This also causes an es-
sential difference between the electric breakdown of layered
materials and those found in usual dielectric materials which
are characterized by an irreversible response to an external
electric field.

V. SUMMARY

In summary, we have shown that a strong radial electric
field is induced around the electrical conductor between the
layers that influences the intercalated liquid in the layers.
The strength of the field depends on many parameters includ-
ing the applied voltage, branching pattern of the emerging
conducting filaments, and the distance between the layers.
The induced charges and corresponding strong radial electric
fields are found to be about 10–100e and 10–50 mV/nm,
respectively, and depend significantly on the percolating path
parameter (i.e., the α). Depending on the applied external
voltage and the created branching pattern in the distribution
of conducting filaments, the induced electric field around the
conducting wire can reach as high as 50 mV/nm. This field is
localized around the wire and can alter the surrounding liquid.

Our study opens a new avenue to investigate connectivity
of wet-layered dielectric materials that have planar control-
lable resistivity. It is of importance to predict, control, and
minimize the occurrence of electric breakdown in a wide
variety of porous layered dielectrics. In particular, since GO
membranes with a narrow channel-size distribution are useful
materials for ionic and molecular sieving, it is important
to understand the effects of local induced electric fields on
the liquid between the layers. Our study sheds new light on
electrical connectivity of layered dielectrics, showing that it
can be linked to percolating properties and the microscopic
details of conducting filaments that interconnect the layers.
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APPENDIX

Consider two infinite parallel metallic electrodes con-
nected by a cylindrical current-carrying resistor of radius a
(Fig. 1). The appropriate azimuthally symmetric Dirichlet-
Green function that solve Laplace equation in the space
outside the resistor and between the two plates is [18,19]

GD(r, z; r′, z′) = 4

L

∞∑
n=1

sin(nπz/L) sin(nπz′/L)K0(nπr>/L)

×
{

I0(nπr</L)− I0(nπa/L)K0(nπr</L)

K0(nπa/L)

}
,

(A1)

where L is the distance between the two plates and I0 and K0

denote the modified Bessel function of the first and second
kind, respectively, where r> = max(r, r′) and r< = min(r, r′).
In the absence of any electric charge, the potential for r > a
and 0 < z < L is given by

�(r, z) = − 1

4π

∮
�(r′, z′)

∂GD

∂n′ dS′, (A2)

where the integration is taken over the boundary surfaces and
∂

∂n′ represents the normal derivative at the boundary surfaces.
Taking the Wronskian of I0 and K0 into account, the radial
derivative of GD at r = a can be expressed as(

∂GD

∂n′

)
r′=a

= −
(

∂GD

∂r′

)
r′=a

= − 4

aL

∞∑
n=1

sin(nπz/L) sin(nπz′/L)κ (r, a).

(A3)

Suppose that the cylindrical resistor is an Ohmic resistor
with a nonuniform electrical resistivity varying exponentially
along the z axis, namely � = �0e−αz/L, then the resistance of
the resistor as a function of z is given by

R(z) =
∫ z

0

�(z′)dz′

πa2
= L�0

παa2
(1 − eαz/L ), (A4)

where α is a dimensionless constant. Keeping the bottom and
top electrodes at potential 0 and V0, respectively, the potential
on the surface of the resistor and the electric current flow-
ing through the resistor in the stationary state, respectively,
become

�(r = a, z) = V0

(
1 − e−αz/L

1 − e−α

)
, (A5)

and

I = V0

R(z = L)
= παa2V0

L�0(1 − e−α )
. (A6)

A straightforward calculation using Eqs. (A2), and (A3) and
the boundary condition (A5) yields the solution

�(r, z) = V0

L
z +

∞∑
n=0

Bn
K0(nπr/L)

K0(nπa/L)
sin(nπz/L), (A7)

where

Bn = 2V0

L

∫ L

0
sin(nπz′/L)

(
1 − e−αz′/L

1 − e−α
− z′

L

)
dz′

= 2α2((−1)n − eα )V0

nπ (1 − eα )(n2π2 + α2)
. (A8)

To avoid the necessity of integration over the plates, we add
and subtract from the potential the linear term V0z

L , which
satisfies the Laplace equation and the boundary condition at
z = 0 and z = L. Then the components of the electric field
can be determined as

Er = −∂�

∂r
=

∞∑
n=0

nπBn

L

K1(nπr/L)

K0(nπa/L)
sin(nπz/L), (A9)
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and

Ez = −∂�

∂z
= −V0

L
−

∞∑
n=0

nπBn

L

K0(nπr/L)

K0(nπa/L)
cos(nπz/L).

(A10)
The surface charge densities on the resistor and on the bottom
and top plates, respectively, are

σr = Er (r = a, z)

4π

=
∞∑

n=0

nBn

4L

K1(nπa/L)

K0(nπa/L)
sin(nπz/L), (A11)

σb = Ez(r > a, z = 0)

4π

= − V0

4πL
−

∞∑
n=0

nBn

4L

K0(nπr/L)

K0(nπa/L)
, (A12)

and

σt = −Ez(r > a, z = L)

4π

= V0

4πL
+

∞∑
n=0

(−1n)nBn

4L

K0(nπr/L)

K0(nπa/L)
. (A13)

The total induced charge is given by

Q = πa
∫ z

0
σrdz + πa2

∫ z

0
ρdz, (A14)

where the first term gives the surface charge and the second
term gives the volume charge. After performing the integrals
we find

Qs = 2πa
∫ z

0
σrdz

= −8εaV α2

π2 tanh(α/2)

∞∑
n=1(odd)

κ1(a, n)

n
(

α2

π2 + n2
) . (A15)
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