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Electronic and transport properties of n-type monolayer black phosphorus at low temperatures
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We present a detailed theoretical study of the electronic and transport properties of monolayer black
phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer
BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are
calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and
zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical
Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated
where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two
electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic
and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic
systems as advanced electronic devices.
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I. INTRODUCTION

Since the discovery of graphene, the investigation of
atomically thin electronic materials has quickly become an
important field of research in condensed matter physics
and nanoelectronics. These newly developed two-dimensional
(2D) materials are often of unique and important electric,
optical, mechanical, and thermal properties and have been
proposed as advanced materials for a new generation of related
devices [1,2]. In particular, black phosphorus (BP) is a recent
emerging 2D layered material bonded by the van der Waals
force. It is found that BP is one of the thermodynamically
more stable phases of phosphorus at ambient temperature
and pressure. The presence of the weak van der Waals
force can lead the BP to be exfoliated [3] into a few layers
and even a monolayer (ML) [4,5]. It has been found that
when the thickness of BP decreases from bulk to a few
layers and eventually the monolayer, the direct energy gap
between the conduction and valence bands increases [7]. For
monolayer BP (MLBP), the translational symmetry in the
z direction is broken and a direct energy gap of 1.5–2 eV
can be achieved at the � point [6] in the electronic band
structure. Hence, the few-layer (FL) and ML BP systems are
appealing candidates for tunable optoelectronic devices from
visible to infrared bandwidth [8]. Moreover, FLBP has been
recently demonstrated for potential applications as field-effect
transistors (FETs) [6], heterojunction p-n diodes [9], photo-
voltaic devices [10], photodetectors [11], etc. Particularly, in
MLBP the phosphorus atoms form a hexagonal lattice with a
puckered structure due to sp3 hybridization that can result in
an in-plane anisotropic electronic band structure and, thus,
in the anisotropic electronic [12], optoelectronic [12], and
thermoelectric [13,14] properties.

*wenxu_issp@aliyun.com

The previous experimental and theoretical studies have
been mainly focused on anisotropic electronic mobility for
holes in FLBP and MLBP systems [3,12,15]. One reason is
that the anisotropic electronic mobility for holes in these BP
systems is larger than that for electrons because the effective
mass in the valence band is lighter than that in the conduction
band [16,17]. Another reason is mainly due to the fact that it
is easier to obtain the p-type FLBP materials. It was found
both experimentally and theoretically [17] that the metastable
oxygen absorption on the surface of few-layer BP can lead
to p-type doping upon exposure to air. As a result, relatively
high hole density can be achieved in FLBP-based devices and
better electronic transport performance (e.g., the mobility)
can be observed for holes in FLBP [6,17]. Very recently,
the experimental study has been undertaken to observe and
measure the anisotropic electronic mobility for electrons in
n-type FLBP [17]. For the time being, less theoretical study
on electronic and transport properties of n-type FL and ML
BP has been carried out. In conjunction with very recent
experimental work on investigating n-type FLBP, here we
would like to conduct a theoretical study in understanding the
basic electronic and transport properties of electrons in MLBP.

From a viewpoint of theoretical study, it is desirable and
significant to be able to develop the simple and tractable
approach in order to save CPU time and to obtain more
transparent and understandable theoretical findings. In the
present study, we intend to compare the results obtained
from two band structure calculations. We would like to figure
out a simplified model for further and more complicated
calculations. The paper is organized as follows. The electronic
band structure, the electron density of states, the Fermi level,
the screening length, and the electron transport mobility in
n-type MLBP are investigated in Sec. II. In Sec. III, we present
the numerical results and detailed discussions on electronic and
transport properties of MLBP. The concluding remarks from
this study are summarized in Sec. IV.
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II. THEORETIC APPROACH

A. Hamiltonian

The Hamiltonian to describe a carrier in MLBP can be
obtained from the k · p band structure calculation, which is
proposed as [18]

H0 =
[
Ec + αck

2
x + βck

2
y γ kx

γ kx Ev − αvk
2
x − βvk

2
y

]
, (1)

where k = (kx,ky) is the in-plane electronic wave vector or
momentum operator, Ec and Ev are respectively the conduc-
tion and valence band edge energies, Eg = Ec − Ev is the band
gap, αc/v and βc/v are parameters for the conduction/valence
band, and γ describes the effective coupling strength between
the conduction and valence bands. By solving the correspond-
ing Schrödinger equation, the analytical expression of the
eigenvalue and eigenfunction for a free carrier in MLBP are
obtained, respectively, as [19]

E±(k) = [hc + hv ±
√

(hc − hv)2 + 4|hcv|2]/2 (2)

and

�k±(r) = hcv√
(E± − hc)2 + h2

cv

[
1

(E± − hc)/hcv

]
eik·r, (3)

where r = (x,y), hc = Ec + αck
2
x + βck

2
y , hv = Ev − αvk

2
x −

βvk
2
y , hcv = γ kx , and the upper (lower) case refers to the

conduction (valence) band. In this study, we choose the x

axis as the armchair direction and the y axis as the zigzag
direction of the MLBP system.

For the case of a small k, we have (hc − hv)2 ≈ E2
g �

4|hcv|2 so that

E±(k) � hc/v ± γ 2k2
x/Eg = Ec/v ± h̄2k2

x

2mxc/v

± h̄2k2
y

2myc/v

, (4)

which is much simpler than Eq. (2) from an analytical point
of view. Here mxc/v and myc/v are respectively the effective
electron masses in the conduction/valence band along different
directions. It should be noted that the band parameters αc/v and
βc/v are related to the effective electron masses along different
directions via [18]

mxc/v = h̄2/[2(αc/v + γ 2/Eg)] (5)

and

myc/v = h̄2/(2βc/v). (6)

In order to see more clearly and to compare the theoretical
results obtained from different electronic energy spectra given
by Eq. (2) and Eq. (4), from now on we denote Eq. (2) as
model I and Eq. (4) as model II. We would like to examine
how these two models for different electronic energy spectra
affect the electronic and transport properties of MLBP.

B. The electronic density of states

The Green’s function for a free electron in an electronic
system is defined as G±(E) = P (1/[E − E±(k)]) − iπδ[E −
E±(k)], with P being the principal value and E the electron
energy. From now on, we discuss the case for an electron in

the conduction band in MLBP and take the reference energy
from the bottom of the conduction band (i.e., take Ec = 0).
The density of states (DOS) for an electron can be obtained
from the imaginary part of the Green’s function, which reads

D+(E) = −gs

π

∑
k

ImG+(E)

= gs

(2π )2
	(E)

∑
i

∫ 2π

0
dφ

ki(φ)

|∂h(k,φ)/∂k|k=ki

, (7)

where 	(E) is a unit step function, gs = 2 counts for spin
degeneracy, and ki(φ) is the ith solution for k from the
equation h(k,φ) = E − E+(k) = 0 with φ being the angle
between k and the x direction. Here, we carry out the
calculation for model I in the polar coordinates. The details
about the derivation of ∂h(k,φ)/∂k for model I are presented
in the Appendix. For the case of a small k, the electronic
DOS from model II is simply given as D+(E) = D0	(E),
where D0 = md/πh̄2 and md = √

mxcmyc is the DOS effective
electron mass. The DOS for electrons obtained from model II
for MLBP is similar to that for a semiconductor-based 2D
electron gas (2DEG) with a parabolic subband structure.

C. The Fermi level

With the electronic DOS, we can determine the Fermi level
in an electronic system by applying the condition of electron
number conservation: ne = gs

∑
k f [E+(k)] with ne being the

electron density, f (x) = [e(x−EF )/kBT + 1]−1 being the Fermi-
Dirac function, and EF the chemical potential (or Fermi energy
at low temperatures). For the case of electrons in MLBP, at the
low-temperature limit T → 0, we have f (x) → 	(EF − x)
and

ne = 1

(2π )2

∫ 2π

0
dφ k2

i (φ), (8)

where ki(φ) is the solution for k from the equation EF −
E+(k) = 0, which is similar to the case of calculating the
DOS (see the Appendix). For the case of the electronic band
structure given by Eq. (2) (i.e., model I), Eq. (8) can only be
solved numerically. For the case of electronic band structure
given by Eq. (4) (model II), we can get an analytical expression
for the Fermi level as EF = neπh̄2/md = h̄2k2

F /2md with
kF = √

2πne being the Fermi wave vector. The Fermi level for
electrons obtained from model II for MLBP is similar to that
for a semiconductor-based 2DEG with a parabolic subband
structure.

D. The random phase approximation screening length

With the electron wave function, we can calculate the
electrostatic energy induced by the bare electron-electron (e-e)
interaction, which reads

V0(k,q) = V (k + q,k,k − q,k), (9)

with

V (k′
1,k1,k′

2,k2) =
∫

d2r1d
2r2�

∗
k′

1+(r1)�k1+(r1)

× e2

κ|r1 − r2|�
∗
k′

2+(r2)�k2+(r2)

= F0(k,q)Vq,
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where the momentum conservation law has been applied [20].
Here, Vq = 2πe2/κq is the Fourier transformation of the
Coulomb potential with κ being the static dielectric constant of
MLBP, q = (qx,qy) is the change of the electron wave vector
during an e-e interaction event, and F0(k,q) = 〈k + q|k〉〈k −
q|k〉 is the product of the electron wave functions. The strength
of the effective e-e interaction can be calculated through Veff =
ε−1(�,q)V0(k,q), where ε(�,q) is the dynamical dielectric
function matrix with � being the excitation frequency. Under
the random phase approximation (RPA) the dielectric function
matrix is written as

ε(�,q) = 1 −
∑

k

V0(k,q)�(�; k,q) (10)

and

�(�; k,q) = gs

f [E+(k + q)] − f [E+(k)]

h̄� + E+(k + q) − E+(k) + iδ

is the pair bubble or density-density correlation function.
Here f (x) is the Fermi-Dirac function. At a long-wavelength
limit q → 0, F0(k,q) � 1 and V0(k,q) � Vq . For a static case
� = 0 and at the T → 0 and q → 0 limits, the real part of the
pair bubble becomes

lim
q→0

∑
k

Re�(0; k,q)

= η = − gs

(2π )2

∑
i

∫ 2π

0
dφ

ki(φ)

|∂h(k,φ)/∂k|k=ki

, (11)

where ki(φ) is the ith solution for k from equation
h(k,φ) = EF − E+(k) = 0. At a low-temperature limit, the
equation df (x)/dx = −δ(EF − x) has been applied to de-
rive Eq. (11). Thus, the real part of the static dielec-
tric function can be written as Reε(0,q) = 1 + Ks(q)/q
with Ks(q) = −(2πe2/κ)

∑
k Re�(0; k,q) being the inverse

screening length. At the T → 0 and q → 0 limits, we have

Ks(q) → Ks = −2πe2η

κ
. (12)

For the case of model I, Ks can only be determined nu-
merically using Eq. (11). For the case of model II, we have
limq→0

∑
k Re�(0; k,q) = −md/πh̄2 = −D0 and the inverse

screening length is simply Ks = 2πe2D0/κ . Such a result is
in line with that published previously [15,21].

E. The electron-impurity scattering

At relatively low-temperatures, the electron-impurity (e-i)
scattering is the principle channel for relaxation of electrons
in an electronic system. For the case where the e-i scattering is
achieved through the Coulomb potential induced by charged
impurities that are three-dimensional-like, the e-i interaction
Hamiltonian is given as [20]

He−i = e2

κI

1

|R − Ra| , (13)

where R = (r,0) is the coordinate of an electron in MLBP,
the impurity is located at Ra = (ra,za) = (xa,ya,za), and κI is
the static dielectric constant of the medium that contains the
impurities. After assuming that the system can be separated
into the electrons of interest |k〉 and the rest of impurities |I 〉,
namely |k; I 〉 = |k〉|I 〉, the e-i interaction matrix element is
obtained, in the absence of e-e screening, as [20]

U (q,Ra) = 〈k′; I |He−i |k; I 〉

= 〈k′|k〉2πe2

κIq
e−q|za |√ni(za)e−iq·ra δk′,k+q, (14)

where 〈I ′|I 〉 = √
ni(za) with ni(z) being the impurity distri-

bution along the z direction, q = (qx,qy) being the change of
the electron wave vector during a scattering event, and

〈k′|k〉 = [E+(k′) − hc(k′)][E+(k) − hc(k)] + hcv(k′)hcv(k)√
[E+(k′) − hc(k′)]2 + h2

cv(k′)
√

[E+(k) − hc(k)]2 + h2
cv(k)

.

Here, we have assumed that the impurities are distributed
uniformly along the xy plane. Using Fermi’s golden rule, the
electronic transition rate for scattering of an electron from a
state |k〉 to a state |k′〉 due to e-i interaction is obtained in the
presence of e-e screening as [20]

W (k′,k) = 2π

h̄
|Uq |2F (k′,k)δk′,k+qδ[E+(k′) − E+(k)], (15)

where |Uq |2 = |2πe2/[κI (Ks + q)]|2 ∫
e−2q|z|ni(z)dz and

F (k′,k) = |〈k′|k〉|2.
When a MLBP sheet is placed on a dielectric substrate

such as hexagonal boron nitride (HBN) [17], the background
impurities in the MLBP layer and the remote impurities
in the HBN substrate can contribute to the e-i interaction.
Normally, the spacer distance and the concentrations of
the remote and background impurities are very hard to
determine experimentally. In order to reduce the fitting
parameters for the theoretical study, here we assume that

the impurities are effectively located at the interface between
the MLBP sheet and the dielectric HBN substrate with an
effective concentration ni , i.e., ni(z) = niδ(z). Thus, we have
|Uq |2 = ni |2πe2/[κI (Ks + q)]|2.

F. Anisotropic transport mobility

In this work, we employed the Boltzmann equation as the
governing transport equation to study the response of the
electrons in the conduction band in MLBP to the applied
dc driving electric field. Due to an anisotropic feature of the
electronic band structure in MLBP, the electronic transport
properties along different directions can be different. Thus,
one can apply the external electrical current along different
directions and measure the voltage along different directions
as well. The semiclassical Boltzmann equation in the presence
of an external electrical field Fx/y applied along the x/y
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direction is

−eFx/y

h̄

∂f (k)

∂kx/y

= gs

∑
k′

[f (k′)W (k′,k) − f (k)W (k,k′)],

(16)
where f (k) is the momentum-distribution function for an
electron at a state |k〉. It is known that there is no simple
and analytical solution to Eq. (16) with the electronic transition
rate given by Eq. (15). Hence, we utilize the usual momentum-
balance equation derived by multiplying gs

∑
k kx/y on both

sides of the Boltzmann equation, which results in

eFx/y

h̄
ne = 4

∑
k′,k

(k′
x/y − kx/y)f (k)W (k,k′), (17)

where the relation ne = −gs

∑
k kx/y∂f (k)/∂kx/y has been

employed. In this study, we assume that the momentum distri-
bution of an electron can be described by a statistical energy
distribution function as f (k) � f [E+(k∗)]. In the presence of
the driving electric field Fx/y , the electron momentum is shifted
by the presence of the drift electron velocity so that k → k∗ =
k − νv with v = (vx,vy) being the drift electron velocity along
different directions and ν = (νx,νy) = (mxc,myc)/h̄. For the
case of a weak driving field so that the drift electron velocity
is small, the energy distribution function can be expanded as

f [E+(k − νv)] � f [E+(k)] − [νxvx∂E+(k)/∂kx

+ νyvy∂E+(k)/∂ky]f ′(X)|X=E+(k).

Using the definition of electronic transport mobility, μxx/yy =
−vx/y/Fx/y = eτx/y/mx/yc, we get the momentum relaxation
time along different directions as

1

τx/y

= − 1

2π3h̄ne

×
∫ 2π

0

∫ 2π

0

dφdφ′Zx/y

|∂h(k′,φ′)/∂k′|k′=k′
i

k′
i(φ

′)ki(φ)|Uq |2
|∂h(k,φ)/∂k|k=ki

×F (φ′,φ)
∂E+(k)

∂kx/y

∣∣∣∣
(kx=ki cos φ,ky=ki sin φ)

, (18)

where q =
√

k
′2
i + k2

i − 2k′
iki cos θ , θ = φ′ − φ is the an-

gle between k′ and k, ki is the ith solution for k

from equation h(k,φ) = E+(k) − EF = 0, Zx = k′
i cos φ′ −

ki cos φ and Zy = k′
i sin φ′ − ki sin φ, and F (φ′,φ) = F (k′,k),

in which kx = ki cos φ, ky = ki sin φ, k′
x = k′

i cos φ′, and k′
y =

k′
i sin φ′.

For model II, we have dE+(k)/dkx = h̄2kx/mxc and
dE+(k)/dky = h̄2ky/myc; Eq. (18) then becomes

1

τx

= − lmxc

π2h̄3

∫ 2π

0

∫ 2π

0
dφdφ′ |Uq |2 cos φ

g(φ′)g3/2(φ)

×
(

cos φ′
√

g(φ′)
− cos φ√

g(φ)

)
F (φ′,φ) (19)

and

1

τy

= − lm2
xc

π2h̄3myc

∫ 2π

0

∫ 2π

0
dφdφ′ |Uq |2 sin φ

g(φ′)g3/2(φ)

×
(

sin φ′
√

g(φ′)
− sin φ√

g(φ)

)
F (φ′,φ), (20)

where g(φ) = cos2 φ + (mxc/myc) sin2 φ. Here, we should
note that ki = √

t/g(φ′), k′
i = √

t/g(φ′), where t =
2πnel with l = mxc/md , and q = [t/g(φ′) + t/g(φ) −
2t cos θ/

√
g(φ′)g(φ)]1/2.

III. NUMERICAL RESULTS AND DISCUSSION

In the numerical calculations, the band parameters αc/v ,
βc/v , and γ in Eqs. (5) and (6) for MLBP can be determined
by using the known effective electron masses and band
gaps for ML and bulk BP. In case of bulk BP, the band
gap Eg = 0.3 eV [22]; the effective electron masses in
different bands and along different directions were determined
by the cyclotron resonance measurement [23], which are
Mxc = Mxv = 0.08m0, Myc = 1.0m0, and Myv = 0.6m0 [23],
with m0 being the rest electron mass. At present, these
material parameters for MLBP have not yet been determined
experimentally. However, the effective electron masses for
FLBP have been measured experimentally [25]. Moreover,
the results obtained from ab initio calculations [24] suggest an
energy gap Eg = 2 eV for MLBP [24]. Hence, in the present
study, we take the data from experimental results [25] and
theoretical calculation [24] to determine the band parameters
for MLBP. The effective electron masses mxc = mxv � 0.2m0

for MLBP can be obtained from the relations mc = √
mxcmyc

and mv = √
mxvmyv , where myc = Myc = 1.0m0 and myv =

Myv = 0.6m0 are the same as those for bulk BP [27] and mc =
0.47m0 and mv = 0.34m0 are obtained from magnetotransport
measurements via Shubnikov–de Haas oscillations [25] for
FLBP. The effective electron masses mxc and mxv that we
obtain here are a bit larger than those used in the previous
work [26] where mxc = mxv � 0.15m0 were obtained from the
ab initio calculations [27]. It should be noted that the effective
electron masses used in the present study are mainly based on
published experimental results. In this study, we consider an
air/MLBP/substrate system. We take the dielectric constants
for air, bare MLBP sheet, and bare HBN substrate to be re-
spectively κAIR = 1, κBP = 10.2 [19], and κHBN = 5.1 [28].
Considering the mismatch of the dielectric constants at the
MLBP/HBN interface, we evaluate the effective dielectric
constants for MLBP, κ , and substrate, κI , from the bare
dielectric constants using the mirror image method [29]. Thus
we have κ = (κAIR + κHBN )/2 = 3.05 for electrons in the BP
layer and κI = (κBP + κHBN )/2 = 7.65 for impurities in the
substrate.

We would like to note that at present, some of the material
parameters (e.g., the band gap and the effective electron masses
in different bands and along different directions) for MLBP
are not well known from direct experimental measurements.
Thus, to determine these parameters theoretically we need
help from other theoretical calculations and from related
indirect experimental results. For example, we take the
value of the band gap for MLBP obtained from ab initio
calculation and calculate the effective masses for MLBP
on the basis of experimental data for FLBP. Although the
ab initio calculation are a CPU-consuming approach, once the
band gap is determined from this approach it can be applied
for other calculations. The approach employed in this study
has a complete theoretical framework. First, the k · p model is
applied to obtain analytically the electronic energy spectrum
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FIG. 1. The density of states D+(E) for electrons in MLBP as a
function of electron energy E. The solid and dashed curves represent
the results obtained from model I and model II, respectively. Here
D0 = md/(πh̄2).

and wave function. In such a calculation the band parameters
have to be applied. Second, with the obtained energy spectrum
and wave function, the momentum-balance equation derived
from the Boltzmann equation is employed to calculate the
electron mobility of MLBP at low temperatures. Therefore,
once the material parameters such as band gap and electron
masses are identified, the proposed theoretical approach can
work and simple and CPU-saving calculations are desirable.
Furthermore, it is known that the k · p model is valid for
the calculation of the electronic states near the bottom of
the conduction band and the top of the valence band. Since the
present study examines the electronic and transport properties
induced by electronic transition near the Fermi level, the
standard k · p model is therefore a suitable approach.

In Fig. 1, we plot the DOS for electrons in MLBP as a
function of electron energy E. We can see that the DOS D+(E)
only exists when electron energy E > 0 for both model I and
model II, noting that we have taken the reference energy from
the bottom of the conduction band. The results for model II,
D+(E) = D0	(E), show a steplike structure which is similar
to that for a semiconductor-based 2DEG system with parabolic
subband structure. The DOS given by Eq. (7) for model I
(solid curve) is larger than D0 over all allowed electron energy
regimes. This reflects the fact that model I corresponds to
a nonparabolic electronic band structure. However, we notice
that the difference of the electronic DOS obtained from model I
and model II is not significantly big, especially in the low-
energy regime.

In Fig. 2(a) we show the Fermi level EF as a function of
electron density ne for MLBP. When the number of electrons
increases in an electronic system, the electrons occupy the
lower energy states first then the higher energy level. Thus,
with increasing electron density ne, the Fermi level EF

increases. As we can can see from Fig. 2(a), the difference
of the Fermi levels determined from model I (solid curve)
and model II (dashed curve) is very little. Consequently,
model II can be applied to calculate rightly the Fermi energy
for electrons in MLBP.

FIG. 2. The Fermi energy EF , in (a), and the inverse screening
length Ks , in (b), as a function of electron density ne. The solid
and dashed curves represent the results from model I and model II,
respectively.

In Fig. 2(b), we plot the inverse screening length Ks

obtained from model I (solid curve) and model II (dashed
curve) as a function of electron density. The results obtained
from model I show that due to the nature of the RPA approach
and to a nonparabolic electron energy spectrum, the stronger
electronic screening effect can be achieved with increasing
electron density. This is in line with the electronic screening
effect found in graphene [20]. As shown by Eq. (12), at the
T → 0 and q → 0 limits the RPA inverse screening length Ks

obtained from model II is independent of the electron density.
This was also found by previous research work [15,21]. We
notice that in the low electron density regime (i.e., when
ne < 1013 cm−2), the difference of Ks obtained from two
models is not significant. Therefore, the simplified model II
can describe rather rightly the electronic screening effect for
the case of relatively low electron density. It should be noted
that Ks for MLBP has a magnitude of 108 cm−1, as shown
in Fig. 2(b). As we know, for semiconductor-based 2DEG
systems, Ks is often of the order of 107 cm−1 [30]. This
is mainly induced by a fact that Ks is proportional to the
DOS electron mass, namely Ks ∼ md , as shown by Eq. (12).
For MLBP md = 0.47m0, whereas for semiconductor-based
2DEG (i.e., InAs or GaAs based) md = 0.04m0 or 0.065m0.

In Fig. 3, the results of electron transport mobility in
MLBP along different directions, μxx/yy , are shown as a
function of electron density at a fixed impurity concentration
ni = 8.85 × 1012 cm−2. Here we compare the results obtained
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FIG. 3. The electron transport mobilities, μxx and μyy , as a
function of electron density at a fixed impurity concentration
ni = 8.85 × 1012 cm−2. The black and red curves represent the results
obtained from model I and model II, respectively. The blue dot for
μxx is the corresponding experimental result [17].

from two band structure models and from experimental
measurement [17]. We note the following points. (i) A
strong anisotropic feature of electron transport mobility along
different directions can be found. Because mxc is lighter
than myc, μxx is always larger than μyy . (ii) With increas-
ing electron density ne, both μxx and μyy increase. This
indicates that the application of the gate voltage on MLBP
can improve the electron mobility of the sample device. In
fact, such experimental measurements have been conducted
for FLBP-based field-effect-transistor (FET) devices [6]. (iii)
The results obtained from model I and model II for both
μxx and μyy are almost identical. This implies that the
simplified band structure model can describe rightly the
electron mobilities along different directions in MLBP. (iv)
When the effective impurity concentration is taken as ni =
8.85 × 1012 cm−2, the electron mobility μxx from models I
and II is at about 125 cm2/V s for ne = 3.4 × 1012 cm−2. This
value agrees with the experimental result μFE = 125 cm2/V s
measured for electrons in a FLBP-based FET device at
ne = 3.4 × 1012 cm−2 and T = 30 K [17], shown as a blue
dot in Fig. 3.

To show how impurity concentration affects the electron
mobility in n-type MLBP, in Fig. 4 we plot the electron
transport mobility along different directions as a function of
electron density for different impurity concentrations. Here
the results are presented by using model I alone. As for the
usual case, both μxx and μyy decrease with increasing impurity
concentration ni because a larger ni leads to a stronger e-i
scattering strength. In this study, only one fitting parameter,
ni , is applied to calculate the electron mobility in MLBP
and good agreement with experimental data can be achieved
(see Fig. 3).

We note that currently the experimental and theoretical
studies of electronic and transport properties of p-type FLBP
have been well conducted. Experimentally, it was found [31]
that the hole mobility increases from 2.0 × 104 cm2/V s

FIG. 4. The electron transport mobilities, μxx (solid curves) and
μyy (dashed curves), as a function of electron density ne for different
impurity concentrations ni as indicated.

to 2.5 × 104 cm2/V s as the hole density varies from
2.8 × 1012 cm−2 to 5.6 × 1012 cm−2 at T = 2 K. Theoretically,
it was predicted [15] that the impurity-limited low-temperature
mobility for holes in MLBP is of the order of 102−103 cm2/V s
as the hole density varies in the range of 1012−1013 cm−2. The
results obtained from this study for electron mobility in MLBP
indicate that for both p-type and n-type MLBP, the mobility
increases with carrier density. We would like to point out that
the employed theoretical approach in this study can be applied
to calculate the hole mobility in p-type MLBP as long as
the valence band is considered and the related effective hole
masses are taken. In Ref. [15], the electronic band structure was
taken as the same as our model II but with different hole masses
along different directions, and the hole mobility was calculated
on the basis of the Boltzmann equation using the relaxation
time approximation. From a theoretical point of view, the main
difference between the relaxation time approximation [15] and
the momentum-balance equation used here is the order to take
the average over k. Therefore, generally two approaches can
lead to very much the same results.

IV. CONCLUDING REMARKS

In this work, we have developed a simple theoretical
approach to evaluate the basic electronic and transport prop-
erties of n-type MLBP at low temperatures. We have taken
two electronic band structure models into consideration. The
electron density of states, the Fermi level, the inverse screening
length, and the electron transport mobility along different
directions have been examined. The main conclusions from
this study are summarized as follows.

The simplified band structure model (model II) can be
applied to study the electronic and transport properties for
n-type MLBP in the low-energy and low-electron-density
regime. Normally, the electron density in FLBP systems is
less than 5 × 1012 cm−2 [6,17]. As a result, the simplified
band structure is good enough for studying of the physical
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properties of n-type BP, instead of using a rather complicated
energy spectrum for model I.

By taking into account electron-impurity scattering in
n-type MLBP, the electron mobility along the armchair and
zigzag directions has been obtained by using the momentum
balance equation approach on the basis of the Boltzmann
equation. We have examined the dependence of the electron
mobility along different directions on electron density and
impurity concentration at low temperatures. It has been found
that (i) model I and model II can lead to almost identical results;
(ii) the anisotropic feature of electron transport mobility
along different directions can be observed; and (iii) the good
agreement between experimental and theoretical results can
be achieved via taking the impurity concentration as the sole
fitting parameter for numerical calculation.

The investigation of atomically thin electronic systems
(such as graphene and few-layer black phosphorus) has
become an important and fast-growing field of research in
recent years. We hope the results and discussions presented in
this work can help us to gain an in-depth understanding of the
basic electronic and transport properties of atomically thin BP
materials.
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APPENDIX: THE MATHEMATICAL FORMULAS

In this study, for using model I we need to determine ki(φ)
the ith solution for k from an equation h(k,φ) = E − E+(k) =
0 with φ being the angle between k and the x direction, along
with related analytical calculations. From the electron band
structure given by Eq. (2), we have that

k2
i = −b + √

b2 − 4ac

2a
(A1)

is the solution for k from h(k,φ) = E − E+(k) = 0, where

a = (A+ cos2 φ + B+ sin2 φ)2 − (A− cos2 φ + B− sin2 φ)2,

b = 2Eg[(A+ + A−) cos2 φ + (B+ + B−) sin2 φ] + 4E(A− cos2 φ + B− sin2 φ) + 4γ 2 cos2 φ,

c = −4E(E + Eg), (A2)

with A± = αc ± αv , B± = βc ± βv . The partial derivation of ∂h(k,φ)/∂k is given by

∂h(k,φ)

∂k
= −k(A− cos2 φ + B− sin2 φ) − k[(A+k2 cos2 φ + B+k2 sin2 φ + Eg)

× (A+ cos2 φ + B+ sin2 φ) + 2γ 2 cos2 φ][(A+k2 cos2 φ + B+k2 sin2 φ + Eg)2 + 4γ 2k2 cos2 φ]−
1
2 . (A3)

The partial derivations of E+(k) are given by

∂E+(k)

∂kx

= kxA− + kx

[(
A+k2

x + B+k2
y + Eg

)
A+ + 2γ 2

] × [(
A+k2

x + B+k2
y + Eg

)2 + 4γ 2k2
x

]− 1
2

and
∂E+(k)

∂ky

= kyB− + kyB+
(
A+k2

x + B+k2
y + Eg

) × [(
A+k2

x + B+k2
y + Eg

)2 + 4γ 2k2
x

]− 1
2 . (A4)
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