toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, Y.-R.; Gao, F.; Li, X.-C.; Bogaerts, A.; Wang, Y.-N. url  doi
openurl 
  Title Fluid simulation of the bias effect in inductive/capacitive discharges Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume (down) 33 Issue 33 Pages 061303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitive discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0300V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120V at 2MHz and 90V at 27.12 MHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365503800020 Publication Date 2015-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 9 Open Access  
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322  
  Call Number c:irua:126824 Serial 1229  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Tinck, S.; De Schepper, P.; Wang, Y.-N.; Bogaerts, A. url  doi
openurl 
  Title Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume (down) 33 Issue 33 Pages 021310  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional hybrid Monte Carlofluid model, incorporating a full-wave solution of Maxwell's equations, is employed to describe the behavior of high frequency (HF) and very high frequency capacitively coupled plasmas (CCPs), operating both at single frequency (SF) and dual frequency (DF) in a CF4/O2 gas mixture. First, the authors investigate the plasma composition, and the simulations reveal that besides CF4 and O2, also COF2, CF3, and CO2 are important neutral species, and CF+3 and F− are the most important positive and negative ions. Second, by comparing the results of the model with and without taking into account the electromagnetic effects for a SF CCP, it is clear that the electromagnetic effects are important, both at 27 and 60 MHz, because they affect the absolute values of the calculation results and also (to some extent) the spatial profiles, which accordingly affects the uniformity in plasma processing. In order to improve the plasma radial uniformity, which is important for the etch process, a low frequency (LF) source is added to the discharge. Therefore, in the major part of the paper, the plasma uniformity is investigated for both SF and DF CCPs, operating at a HF of 27 and 60 MHz and a LF of 2 MHz. For this purpose, the authors measure the etch rates as a function of position on the wafer in a wide range of LF powers, and the authors compare them with the calculated fluxes toward the wafer of the plasma species playing a role in the etch process, to explain the trends in the measured etch rate profiles. It is found that at a HF of 60 MHz, the uniformity of the etch rate is effectively improved by adding a LF power of 2 MHz and 300 W, while its absolute value increases by about 50%, thus a high etch rate with a uniform distribution is observed under this condition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000355739500026 Publication Date 2015-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322  
  Call Number c:irua:122650 Serial 2107  
Permanent link to this record
 

 
Author Ramakers, M.; Heijkers, S.; Tytgat, T.; Lenaerts, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Combining CO2 conversion and N2 fixation in a gliding arc plasmatron Type A1 Journal article
  Year 2019 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util  
  Volume (down) 33 Issue Pages 121-130  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Industry needs a flexible and efficient technology to convert CO2 into useful products, which fits in the Carbon Capture and Utilization (CCU) philosophy. Plasma technology is intensively being investigated for this purpose. A promising candidate is the gliding arc plasmatron (GAP). Waste streams of CO2 are often not pure and contain N2 as important impurity. Therefore, in this paper we provide a detailed experimental and computational study of the combined CO2 and N2 conversion in a GAP. Is it possible to take advantage of the presence of N2 in the mixture and to combine CO2 conversion with N2 fixation? Our experiments and simulations reveal that N2 actively contributes to the process of CO2 conversion, through its vibrational levels. In addition, NO and NO2 are formed, with concentrations around 7000 ppm, which is slightly too low for valorization, but by improving the reactor design it must be possible to further increase their concentrations. Other NO-based molecules, in particular the strong greenhouse gas N2O, are not formed in the GAP, which is an important result. We also compare our results with those obtained in other plasma reactors to clarify the differences in underlying plasma processes, and to demonstrate the superiority of the GAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487274100013 Publication Date 2019-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 3 Open Access Not_Open_Access: Available from 23.05.2021  
  Notes Fund for Scientific Research Flanders, G.0383.16N ; Excellence of Science program of the Fund for Scientific Research, G0F9618N ; Hercules Foundation, the Flemish Government; UAntwerpen; We acknowledge financial support from the Fund for Scientific Research Flanders (FWO; Grant no. G.0383.16N) and the Excellence of Science program of the Fund for Scientific Research (FWO-FNRS; Grant no. G0F9618N; EOS ID: 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Finally, we also want to thank Dr. Ramses Snoeckx for the very interesting discussions, and A. Fridman and A. Rabinovich for developing the GAP. Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159984 Serial 5173  
Permanent link to this record
 

 
Author Bissonnette-Dulude, J.; Heirman, P.; Coulombe, S.; Bogaerts, A.; Gervais, T.; Reuter, S. url  doi
openurl 
  Title Coupling the COST reference plasma jet to a microfluidic device: a computational study Type A1 Journal article
  Year 2024 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume (down) 33 Issue 1 Pages 015001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The use of microfluidic devices in the field of plasma-liquid interaction can unlock unique possibilities to investigate the effects of plasma-generated reactive species for environmental and biomedical applications. So far, very little simulation work has been performed on microfluidic devices in contact with a plasma source. We report on the modelling and computational simulation of physical and chemical processes taking place in a novel plasma-microfluidic platform. The main production and transport pathways of reactive species both in plasma and liquid are modelled by a novel modelling approach that combines 0D chemical kinetics and 2D transport mechanisms. This combined approach, applicable to systems where the transport of chemical species occurs in unidirectional flows at high Péclet numbers, decreases calculation times considerably compared to regular 2D simulations. It takes advantage of the low computational time of the 0D reaction models while providing spatial information through multiple plug-flow simulations to yield a quasi-2D model. The gas and liquid flow profiles are simulated entirely in 2D, together with the chemical reactions and transport of key chemical species. The model correctly predicts increased transport of hydrogen peroxide into the liquid when the microfluidic opening is placed inside the plasma effluent region, as opposed to inside the plasma region itself. Furthermore, the modelled hydrogen peroxide production and transport in the microfluidic liquid differs by less than 50% compared with experimental results. To explain this discrepancy, the limits of the 0D–2D combined approach are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001136607100001 Publication Date 2024-01-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes Natural Sciences and Engineering Research Council of Canada, RGPIN-06820 ; FWO, 1100421N ; McGill University, the TransMedTech Institute; Approved Most recent IF: 3.8; 2024 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:202783 Serial 8990  
Permanent link to this record
 

 
Author Albrechts, M.; Tsonev, I.; Bogaerts, A. pdf  url
doi  openurl
  Title Investigation of O atom kinetics in O2plasma and its afterglow Type A1 Journal Article
  Year 2024 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume (down) 33 Issue 4 Pages 045017  
  Keywords A1 Journal Article; oxygen plasma, pseudo-1D plug-flow kinetic model, O atoms, low-pressure validation, atmospheric pressure microwave torch; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract We have developed a comprehensive kinetic model to study the O atom kinetics in an O<sub>2</sub>plasma and its afterglow. By adopting a pseudo-1D plug-flow formalism within the kinetic model, our aim is to assess how far the O atoms travel in the plasma afterglow, evaluating its potential as a source of O atoms for post-plasma gas conversion applications. Since we could not find experimental data for pure O<sub>2</sub>plasma at atmospheric pressure, we first validated our model at low pressure (1–10 Torr) where very good experimental data are available. Good agreement between our model and experiments was achieved for the reduced electric field, gas temperature and the densities of the dominant neutral species, i.e. O<sub>2</sub>(a), O<sub>2</sub>(b) and O. Subsequently, we confirmed that the chemistry set is consistent with thermodynamic equilibrium calculations at atmospheric pressure. Finally, we investigated the O atom densities in the O<sub>2</sub>plasma and its afterglow, for which we considered a microwave O<sub>2</sub>plasma torch, operating at a pressure between 0.1 and 1 atm, for a flow rate of 20 slm and an specific energy input of 1656 kJ mol<sup>−1</sup>. Our results show that for both pressure conditions, a high dissociation degree of ca. 92% is reached within the discharge. However, the O atoms travel much further in the plasma afterglow for<italic>p</italic>= 0.1 atm (9.7 cm) than for<italic>p</italic>= 1 atm (1.4 cm), attributed to the longer lifetime (3.8 ms at 0.1 atm vs 1.8 ms at 1 atm) resulting from slower three-body recombination kinetics, as well as a higher volumetric flow rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001209453500001 Publication Date 2024-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access  
  Notes This research was supported by the Horizon Europe Framework Program ‘Research and Innovation Actions’ (RIA), Project CANMILK (Grant No. 101069491). Approved Most recent IF: 3.8; 2024 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:205920 Serial 9125  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W.; Gijbels, R. doi  openurl
  Title Investigation of growth mechanisms of clusters in a silane discharge with the use of a fluid model Type A1 Journal article
  Year 2004 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume (down) 32 Issue 2 Pages 691-698  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000222278400026 Publication Date 2004-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.052 Times cited 29 Open Access  
  Notes Approved Most recent IF: 1.052; 2004 IF: 1.042  
  Call Number UA @ lucian @ c:irua:46379 Serial 1732  
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M. pdf  url
doi  openurl
  Title Inductively coupled plasma-mass spectrometry: insights through computer modeling Type A1 Journal article
  Year 2017 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 32 Issue 32 Pages 233-261  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this tutorial review paper, we illustrate how computer modeling can contribute to a better insight in inductively coupled plasma-mass spectrometry (ICP-MS). We start with a brief overview on previous efforts, studying the fundamentals of the ICP and ICP-MS, with main focus on previous modeling activities. Subsequently, we explain in detail the model that we developed in previous years, and we show typical calculation results, illustrating the plasma characteristics, gas flow patterns and the sample transport, evaporation and ionization. We also present the effect of various experimental parameters, such as operating conditions, geometrical aspects and sample characteristics, to illustrate how modeling can help to elucidate the optimal conditions for improved analytical performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395529800002 Publication Date 2016-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 14 Open Access OpenAccess  
  Notes The authors are very grateful to H. Lindner for the initial model development and for the many interesting discussions. They also gratefully acknowledge nancial support from the Fonds voor Wetenschappelijk Onderzoek (FWO; Grant number 6713). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.379  
  Call Number PLASMANT @ plasmant @ c:irua:140074 Serial 4416  
Permanent link to this record
 

 
Author Biondo, O.; Hughes, A.; van der Steeg, A.; Maerivoet, S.; Loenders, B.; van Rooij, G.; Bogaerts, A. pdf  doi
openurl 
  Title Power concentration determined by thermodynamic properties in complex gas mixtures : the case of plasma-based dry reforming of methane Type A1 Journal article
  Year 2023 Publication Plasma sources science and technology Abbreviated Journal  
  Volume (down) 32 Issue 4 Pages 045001-45020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigate discharge contraction in a microwave plasma at sub-atmospheric pressure, operating in CO2 and CO2/CH4 mixtures. The rise of the electron number density with plasma contraction intensifies the gas heating in the core of the plasma. This, in turn, initiates fast core-periphery transport and defines the rate of thermal chemistry over plasma chemistry. In this context, power concentration describes the overall mechanism including plasma contraction and chemical kinetics. In a complex chemistry such as dry reforming of methane, transport of reactive species is essential to define the performance of the reactor and achieve the desired outputs. Thus, we couple experimental observations and thermodynamic calculations for model validation and understanding of reactor performance. Adding CH4 alters the thermodynamic properties of the mixture, especially the reactive component of the heat conductivity. The increase in reactive heat conductivity increases the pressure at which plasma contraction occurs, because higher rates of gas heating are required to reach the same temperature. In addition, we suggest that the predominance of heat conduction over convection is a key condition to observe the effect of heat conductivity on gas temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000963579500001 Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.8; 2023 IF: 3.302  
  Call Number UA @ admin @ c:irua:196044 Serial 8397  
Permanent link to this record
 

 
Author Tsonev, I.; Boothroyd, J.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Simulation of glow and arc discharges in nitrogen: effects of the cathode emission mechanisms Type A1 Journal Article
  Year 2023 Publication PLASMA SOURCES SCIENCE & TECHNOLOGY Abbreviated Journal  
  Volume (down) 32 Issue 5 Pages 054002  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Experimental evidence in the literature has shown that low-current direct current nitrogen discharges can exist in both glow and arc regimes at atmospheric pressure. However, modelling investigations of the positive column that include the influence of the cathode phenomena are scarce. In this work we developed a 2D axisymmetric model of a plasma discharge in flowing nitrogen gas, studying the influence of the two cathode emission mechanisms—thermionic field emission and secondary electron emission—on the cathode region and the positive column. We show for an inlet gas flow velocity of 1 m s<sup>−1</sup>in the current range of 80–160 mA, that the electron emission mechanism from the cathode greatly affects the size and temperature of the cathode region, but does not significantly influence the discharge column at atmospheric pressure. We also demonstrate that in the discharge column the electron density balance is local and the electron production and destruction is dominated by volume processes. With increasing flow velocity, the discharge contraction is enhanced due to the increased convective heat loss. The cross sectional area of the conductive region is strongly dependent on the gas velocity and heat conductivity of the gas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000987841800001 Publication Date 2023-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes This research is financially supported by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 965546. Approved Most recent IF: 3.8; 2023 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:196972 Serial 8788  
Permanent link to this record
 

 
Author Vanraes, P.; Parayil Venugopalan, S.; Besemer, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Assessing neutral transport mechanisms in aspect ratio dependent etching by means of experiments and multiscale plasma modeling Type A1 Journal Article
  Year 2023 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume (down) 32 Issue 6 Pages 064004  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Since the onset of pattern transfer technologies for chip manufacturing, various strategies have been developed to circumvent or overcome aspect ratio dependent etching (ARDE). These methods have, however, their own limitations in terms of etch non-idealities, throughput or costs. Moreover, they have mainly been optimized for individual in-device features and die-scale patterns, while occasionally ending up with poor patterning of metrology marks, affecting the alignment and overlay in lithography. Obtaining a better understanding of the underlying mechanisms of ARDE and how to mitigate them therefore remains a relevant challenge to date, for both marks and advanced nodes. In this work, we accordingly assessed the neutral transport mechanisms in ARDE by means of experiments and multiscale modeling for SiO<sub>2</sub>etching with CHF<sub>3</sub>/Ar and CF<sub>4</sub>/Ar plasmas. The experiments revealed a local maximum in the etch rate for an aspect ratio around unity, i.e. the simultaneous occurrence of regular and inverse reactive ion etching lag for a given etch condition. We were able to reproduce this ARDE trend in the simulations without taking into account charging effects and the polymer layer thickness, suggesting shadowing and diffuse reflection of neutrals as the primary underlying mechanisms. Subsequently, we explored four methods with the simulations to regulate ARDE, by varying the incident plasma species fluxes, the amount of polymer deposition, the ion energy and angular distribution and the initial hardmask sidewall angle, for which the latter was found to be promising in particular. Although our study focusses on feature dimensions characteristic to metrology marks and back-end-of-the-line integration, the obtained insights have a broader relevance, e.g. to the patterning of advanced nodes. Additionally, this work supports the insight that physisorption may be more important in plasma etching at room temperature than originally thought, in line with other recent studies, a topic on which we recommend further research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001021250100001 Publication Date 2023-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes P Vanraes acknowledges funding by ASML for the project ‘Computational simulation of plasma etching of trench structures’. P Vanraes and A Bogaerts want to express their gratitude to Mark J Kushner (University of Michigan) for the sharing of the HPEM and MCFPM codes, and for the interesting exchange of views. P Vanraes wishes to thank Violeta Georgieva and Stefan Tinck for the fruitful discussions on the HPEM code, Yu-Ru Zhang for an example of the CCP reactor code and Karel Venken for his technical help with the server maintenance and use. S P Venugopalan and M Besemer wish to thank Luigi Scaccabarozzi, Sander Wuister, Coen Verschuren, Michael Kubis, Kuan-Ming Chen, Ruben Maas, Huaichen Zhang and Julien Mailfert (ASML) for the insightful discussions. Approved Most recent IF: 3.8; 2023 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:197760 Serial 8811  
Permanent link to this record
 

 
Author Herrebout, D.; Bogaerts, A.; Gijbels, R.; Goedheer, W.J.; Vanhulsel, A. doi  openurl
  Title A one-dimensional fluid model for an acetylene rf discharge: a study of the plasma chemistry Type A1 Journal article
  Year 2003 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume (down) 31 Issue Pages 659-664  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000184833400022 Publication Date 2003-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.052 Times cited 26 Open Access  
  Notes Approved Most recent IF: 1.052; 2003 IF: 0.840  
  Call Number UA @ lucian @ c:irua:44021 Serial 2462  
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M. openurl 
  Title What modeling reveals about the properties of an inductively coupled plasma Type A1 Journal article
  Year 2016 Publication Spectroscopy Abbreviated Journal Spectroscopy-Us  
  Volume (down) 31 Issue 1 Pages 52-59  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To get better performance from inductively coupled plasma (ICP)-based methods, it is informative to study the properties of the ICP under different conditions. Annemie Bogaerts and Maryam Aghaei at the University of Antwerp, Belgium, are using computational modeling to examine how various properties of the ICP, such as gas flow path lines and velocity, temperature changes, and ionization effects, are affected by numerous factors, such as the gas flow rates of injector and auxiliary gas, applied power, and even the very presence of a mass spectrometry (MS) sampler. They have also applied their models to study particle transport through the ICP. Using their developed model, it is now possible to predict optimum conditions for specific analyses. Bogaerts and Aghaei spoke to us about this work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Springfield, Or. Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0887-6703 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.466 Times cited Open Access  
  Notes Approved Most recent IF: 0.466  
  Call Number UA @ lucian @ c:irua:131601 Serial 4278  
Permanent link to this record
 

 
Author Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 31 Issue 5 Pages 055014  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000797660000001 Publication Date 2022-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069  
Permanent link to this record
 

 
Author Biondo, O.; Fromentin, C.; Silva, T.; Guerra, V.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Insights into the limitations to vibrational excitation of CO2: validation of a kinetic model with pulsed glow discharge experiments Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 31 Issue 7 Pages 074003  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Vibrational excitation represents an efficient channel to drive the dissociation of CO<sub>2</sub>in a non-thermal plasma. Its viability is investigated in low-pressure pulsed discharges, with the intention of selectively exciting the asymmetric stretching mode, leading to stepwise excitation up to the dissociation limit of the molecule. Gas heating is crucial for the attainability of this process, since the efficiency of vibration–translation (V–T) relaxation strongly depends on temperature, creating a feedback mechanism that can ultimately thermalize the discharge. Indeed, recent experiments demonstrated that the timeframe of V–T non-equilibrium is limited to a few milliseconds at ca. 6 mbar, and shrinks to the<italic>μ</italic>s-scale at 100 mbar. With the aim of backtracking the origin of gas heating in pure CO<sub>2</sub>plasma, we perform a kinetic study to describe the energy transfers under typical non-thermal plasma conditions. The validation of our kinetic scheme with pulsed glow discharge experiments enables to depict the gas heating dynamics. In particular, we pinpoint the role of vibration–vibration–translation relaxation in redistributing the energy from asymmetric to symmetric levels of CO<sub>2</sub>, and the importance of collisional quenching of CO<sub>2</sub>electronic states in triggering the heating feedback mechanism in the sub-millisecond scale. This latter finding represents a novelty for the modelling of low-pressure pulsed discharges and we suggest that more attention should be paid to it in future studies. Additionally, O atoms convert vibrational energy into heat, speeding up the feedback loop. The efficiency of these heating pathways, even at relatively low gas temperature and pressure, underpins the lifetime of V–T non-equilibrium and suggests a redefinition of the optimal conditions to exploit the ‘ladder-climbing’ mechanism in CO<sub>2</sub>discharges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000839466500001 Publication Date 2022-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes Fundação para a Ciência e a Tecnologia, PLA/0076/2021 ; H2020 Marie Skłodowska-Curie Actions, 813393 ; This research was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). V Guerra and T Silva were partially funded by the Portuguese ‘FCT-Fundação para a Ciência e a Tecnologia’, under Projects UIDB/50010/2020, UIDP/50010/2020, PTDC/FISPLA/1616/2021 and EXPL/FIS-PLA/0076/2021. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:190008 Serial 7106  
Permanent link to this record
 

 
Author Tennyson, J.; Mohr, S.; Hanicinec, M.; Dzarasova, A.; Smith, C.; Waddington, S.; Liu, B.; Alves, L.L.; Bartschat, K.; Bogaerts, A.; Engelmann, S.U.; Gans, T.; Gibson, A.R.; Hamaguchi, S.; Hamilton, K.R.; Hill, C.; O’Connell, D.; Rauf, S.; van ’t Veer, K.; Zatsarinny, O. url  doi
openurl 
  Title The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 31 Issue 9 Pages 095020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The Quantemol database (QDB) provides cross sections and rates of processes important for plasma models; heavy particle collisions (chemical reactions) and electron collision processes are considered. The current version of QDB has data on 28 917 processes between 2485 distinct species plus data for surface processes. These data are available via a web interface or can be delivered directly to plasma models using an application program interface; data are available in formats suitable for direct input into a variety of popular plasma modeling codes including HPEM, COMSOL, ChemKIN, CFD-ACE+, and VisGlow. QDB provides ready assembled plasma chemistries plus the ability to build bespoke chemistries. The database also provides a Boltzmann solver for electron dynamics and a zero-dimensional model. Thesedevelopments, use cases involving O<sub>2</sub>, Ar/NF<sub>3</sub>, Ar/NF<sub>3</sub>/O<sub>2</sub>, and He/H<sub>2</sub>O/O<sub>2</sub>chemistries, and plans for the future are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000895762200001 Publication Date 2022-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes Engineering and Physical Sciences Research Council, EP/N509577/1 ; Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Science and Technology Facilities Council, ST/K004069/1 ; National Science Foundation, OAC-1834740 ; Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:192845 Serial 7245  
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R. doi  openurl
  Title Evolution of charged particle densities after laser-induced photodetachment in a strongly electronegative RF discharge Type A1 Journal article
  Year 2002 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume (down) 30 Issue 1 Pages 132-133  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000175845900065 Publication Date 2002-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.052 Times cited Open Access  
  Notes Approved Most recent IF: 1.052; 2002 IF: 1.170  
  Call Number UA @ lucian @ c:irua:40186 Serial 1097  
Permanent link to this record
 

 
Author Kelly, S.; van de Steeg, A.; Hughes, A.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Thermal instability and volume contraction in a pulsed microwave N2plasma at sub-atmospheric pressure Type A1 Journal article
  Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 30 Issue 5 Pages 055005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the evolution of an isolated pulsed plasma in a vortex flow stabilised microwave (MW) discharge in N2 at 25 mbar via the combination of 0D kinetics modelling, iCCD imaging and laser scattering diagnostics. Quenching of electronically excited N2 results in fast gas heating and the onset of a thermal-ionisation instability, contracting the discharge volume. The onset of a thermal-ionisation instability driven by vibrational excitation pathways is found to facilitate significantly higher N2 conversion (i.e. dissociation to atomic N2 ) compared to pre-instability conditions, emphasizing the potential utility of this dynamic in future fixation applications. The instability onset is found to be instigated by super-elastic heating of the electron energy distribution tail via vibrationally excited N2 . Radial contraction of the discharge to the skin depth is found to occur post instability, while the axial elongation is found to be temporarily contracted during the thermal instability onset. An increase in power reflection during the thermal instability onset eventually limits the destabilising effects of exothermic electronically excited N2 quenching. Translational and vibrational temperature reach a quasi-non-equilibrium after the discharge contraction, with translational temperatures reaching ∼1200 K at the pulse end, while vibrational temperatures are found in near equilibrium with the electron energy (1 eV, or ∼11 600 K). This first description of the importance of electronically excited N2 quenching in thermal instabilities gives an additional fundamental understanding of N2 plasma behaviour in pulsed MW context, and thereby brings the eventual implementation of this novel N2 fixation method one step closer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648710900001 Publication Date 2021-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited Open Access OpenAccess  
  Notes Stichting voor de Technische Wetenschappen, 733.000.002 ; Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; H2020 Marie Skłodowska-Curie Actions, 813393 838181 ; SK & AB acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘PENFIX’ within Horizon 2020 (Grant No. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. SK and AB would like to thank Mr Luc van ’t dack, Dr Karen Leyssens and Ing. Karel Venken for their technical assistance. AvdS, AH and GvR are grateful to Ampleon for the use of their solid-state microwave amplifier units and acknowledge financial support from the Netherlands Organisation for Scientific Research (NWO Grant No. 733.000.002) in the framework of the CO2 -to-products programme with kind support from Shell, and the ENW PPP Fund for the top sectors. This project has been partially funded by the European Union’s Horizon 2020 research and innovation programme ‘Pioneer’ under the Marie Skłodowska-Curie Grant Agreement No. 813393. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:178122 Serial 6759  
Permanent link to this record
 

 
Author Bahnamiri, O.S.; Verheyen, C.; Snyders, R.; Bogaerts, A.; Britun, N. pdf  url
doi  openurl
  Title Nitrogen fixation in pulsed microwave discharge studied by infrared absorption combined with modelling Type A1 Journal Article;nitrogen fixation
  Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 30 Issue 6 Pages 065007  
  Keywords A1 Journal Article;nitrogen fixation; pulsed microwave discharge; FTIR spectroscopy; discharge modelling; vibrational excitation; NO yield; energy cost; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract A pulsed microwave surfaguide discharge operating at 2.45 GHz was used for the conversion of molecular nitrogen into valuable compounds in several gas mixtures: N2 :O2 , N2 :O2 :CO2 and N2 :CO2 . The ro-vibrational absorption bands of the molecular species were monitored by a Fourier transform infrared apparatus in the post-discharge region in order to evaluate the relative number density of species, specifically NO production. The effects of specific energy input, pulse frequency, gas flow fraction, gas admixture and gas flow rate were studied for better understanding and optimization of the NO production yield and the corresponding energy cost (EC). By both the experiment and modelling, a highest NO yield is obtained at N2 :O2 (1:1) gas ratio in N2 :O2 mixture. The NO yield reveals a small growth followed by saturation when pulse repetition frequency increases. The energy efficiency start decreasing after the energy input reaches about 5 eV/molec, whereas the NO yield rises steadily at the same time. The lowest EC of about 8 MJ mol−1 corresponding to the yield and the energy efficiency of about 7% and 1% are found, respectively, in an optimum discharge condition in our case.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659671000001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited Open Access OpenAccess  
  Notes Fonds De La Recherche Scientifique—FNRS, EOS O005118F ; The research is supported by the FNRS-FWO project ‘NITROPLASM’, EOS O005118F. O Samadi also acknowledges PhD student F Manaigo for cooperation in doing the additional measurements. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:179170 Serial 6798  
Permanent link to this record
 

 
Author Borovinskaya, O.; Aghaei, M.; Flamigni, L.; Hattendorf, B.; Tanner, M.; Bogaerts, A.; Günther, D. pdf  doi
openurl 
  Title Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis Type A1 Journal article
  Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 29 Issue 2 Pages 262-271  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The reproducible temporal separation of ion signals generated from a single multi-element droplet, observed in previous studies, was investigated in detail in this work using an ICPTOFMS with high temporal resolution. It was shown that the signal peak intensities of individual elements temporally shift relative to each other only for droplets moving through the plasma off-axis. The magnitude of these shifts correlated with the vaporization temperatures of the analytes and depended on the radial position of the droplets as well as on the thermal properties and velocity profiles of the carrier gases of the ICP. The occurrence of the signal shifting was explained by a spatial separation of analytes already present in the vapor phase in the ICP from a yet unvaporized residue of the droplet. This separation is most likely driven by anisotropic diffusion of vaporized analytes towards the plasma axis and a radial velocity gradient. The proposed explanation is supported by modeling of the gas velocities inside the ICP and imaging of the atomic and ionic emissions produced from single droplets, whose patterns were sloping towards the center of the torch. The effects observed in these studies are important not only for the fundamental understanding of analyteplasma interactions but have also a direct impact on the signal intensities and stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000329934000006 Publication Date 2013-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.379; 2014 IF: 3.466  
  Call Number UA @ lucian @ c:irua:112897 Serial 697  
Permanent link to this record
 

 
Author Aghaei, M.; Flamigni, L.; Lindner, H.; Günther, D.; Bogaerts, A. pdf  doi
openurl 
  Title Occurrence of gas flow rotational motion inside the ICP torch : a computational and experimental study Type A1 Journal article
  Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 29 Issue 2 Pages 249-261  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma, connected to the sampling cone of a mass spectrometer, is computationally investigated. The occurrence of rotational motion of the auxiliary and carrier gas flows is studied. The effects of operating parameters, i.e., applied power and gas flow rates, as well as geometrical parameters, i.e., sampler orifice diameter and injector inlet diameter, are investigated. Our calculations predict that at higher applied power the auxiliary and carrier gas flows inside the torch move more forward to the sampling cone, which is validated experimentally for the auxiliary gas flow, by means of an Elan 6000 ICP-MS. Furthermore, an increase of the gas flow rates can also modify the occurrence of rotational motion. This is especially true for the carrier gas flow rate, which has a more pronounced effect to reduce the backward motion than the flow rates of the auxiliary and cooling gas. Moreover, a larger sampler orifice (e.g., 2 mm instead of 1 mm) reduces the backward flow of the auxiliary gas path lines. Finally, according to our model, an injector inlet of 2 mm diameter causes more rotations in the carrier gas flow than an injector inlet diameter of 1.5 mm, which can be avoided again by changing the operating parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000329934000005 Publication Date 2013-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 21 Open Access  
  Notes Approved Most recent IF: 3.379; 2014 IF: 3.466  
  Call Number UA @ lucian @ c:irua:112896 Serial 2427  
Permanent link to this record
 

 
Author Sun, S.R.; Wang, H.X.; Bogaerts, A. pdf  url
doi  openurl
  Title Chemistry reduction of complex CO2chemical kinetics: application to a gliding arc plasma Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 29 Issue 2 Pages 025012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A gliding arc (GA) plasma has great potential for CO2 conversion into value-added chemicals, because of its high energy efficiency. To improve the application, a 2D/3D fluid model is needed to investigate the CO2 conversion mechanisms in the actual discharge geometry. Therefore, the complex CO2 chemical kinetics description must be reduced due to the huge computational cost associated with 2D/3D models. This paper presents a chemistry reduction method for CO2 plasmas, based on the so-called directed relation graph method. Depending on the defined threshold values, some marginal species are identified. By means of a sensitivity analysis, we can further reduce the chemistry set by removing one by one the marginal species. Based on the socalled flux-sensitivity coupling, we obtain a reduced CO2 kinetics model, consisting of 36 or 15 species (depending on whether the 21 asymmetric mode vibrational states of CO2 are explicitly included or lumped into one group), which is applied to a GA discharge. The results are compared with those predicted with the full chemistry set, and very good agreement is reached. Moreover, the range of validity of the reduced CO2 chemistry set is checked, telling us that this reduced set is suitable for low power GA discharges. Finally, the time and spatial evolution of the CO2 plasma characteristics are presented, based on a 2D model with the reduced kinetics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525600600001 Publication Date 2020-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO; Grant No. G.0383.16 N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. This work was also supported by the National Natural Science Foundation of China. (Grant Nos. 11735004, 11575019). SR Sun thanks the financial support from the National Postdoctoral Program for Innovative Talents (BX20180029). Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:167135 Serial 6338  
Permanent link to this record
 

 
Author van ‘t Veer, K.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Zero-dimensional modeling of unpacked and packed bed dielectric barrier discharges: the role of vibrational kinetics in ammonia synthesis Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 29 Issue 4 Pages 045020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a zero-dimensional plasma kinetics model, including both surface and gas phase kinetics, to determine the role of vibrationally excited states in plasma-catalytic ammonia synthesis. We defined a new method to systematically capture the conditions of dielectric barrier discharges (DBDs), including those found in packed bed DBDs. We included the spatial and temporal nature of such discharges by special consideration of the number of micro-discharges in the model. We introduce a parameter that assigns only a part of the plasma power to the microdischarges, to scale the model conditions from filamentary to uniform plasma. Because of the spatial and temporal behaviour of the micro-discharges, not all micro-discharges occurring in the plasma reactor during a certain gas residence time are affecting the molecules. The fraction of power considered in the model ranges from 0.005 %, for filamentary plasma, to 100 %, for uniform plasma. If vibrational excitation is included in the plasma chemistry, these different conditions, however, yield an ammonia density that is only varying within one order of magnitude. At only 0.05 % of the power put into the uniform plasma component, a model neglecting vibrational excitation clearly does not result in adequate amounts of ammonia. Thus, our new model, which accounts for the concept in which not all the power is deposited by the micro-discharges, but some part may also be distributed in between them, suggests that vibrational kinetic processes are really important in (packed bed) DBDs. Indeed, vibrational excitation takes place in both the uniform plasma between the micro-discharges and in the strong micro-discharges, and is responsible for an increased N2 dissociation rate. This is shown here for plasma-catalytic ammonia synthesis, but might also be valid for other gas conversion applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570241500001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Dr. Fatme Jardali for the discussions on plasma kinetic modelling and Dr. Jungmi Hong and Dr. Anthony B. Murphy for their aid in the calculation of the diffusion coefficients. Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:168097 Serial 6359  
Permanent link to this record
 

 
Author Zhang, H.; Zhang, H.; Trenchev, G.; Li, X.; Wu, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Multi-dimensional modelling of a magnetically stabilized gliding arc plasma in argon and CO2 Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 29 Issue 4 Pages 045019  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study focuses on a magnetically stabilized gliding arc (MGA) plasma. Two fully coupled flow-plasma models (in 3D and 2D) are presented. The 3D model is applied to compare the arc dynamics of the MGA with a traditional gas-driven gliding arc. The 2D model is used for a detailed parametric study on the effect of the external magnetic field. The results show that the relative velocity between the plasma and feed gas is generated due to the Lorentz force, which can increase the plasma-treated gas fraction. The magnetic field also helps to decrease the gas temperature by enhancing heat transfer and to increase the electron number density. This work shows the potential of an external magnetic field to control the gliding arc behavior, for enhanced gas conversion at low gas flow rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570241800001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; National Natural Science Foundation of China, 51706204 51707144 ; State Key Laboratory of Electrical Insulation and Power Equipment, EIPE19302 ; The authors acknowledge financial support from the Fund for Scientific Research—Flanders (FWO; Grant G.0383.16 N), National Natural Science Foundation of China under Grant Nos. 51706204, 51707144, and State Key Laboratory of Electrical Insulation and Power Equipment (EIPE19302). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and Universiteit Antwerpen. Finally, Hantian Zhang acknowledges financial support from the China Scholarship Council. Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:169218 Serial 6360  
Permanent link to this record
 

 
Author Verheyen, C.; Silva, T.; Guerra, V.; Bogaerts, A. pdf  url
doi  openurl
  Title The effect of H2O on the vibrational populations of CO2in a CO2/H2O microwave plasma: a kinetic modelling investigation Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 29 Issue 9 Pages 095009  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma has been studied for several years to convert CO2 into value-added products. If CO2 could be converted in the presence of H2O as a cheap H-source for making syngas and oxygenates, it would mimic natural photosynthesis. However, CO2/H2O plasmas have not yet been extensively studied, not by experiments, and certainly not computationally. Therefore, we present here a kinetic modelling study to obtain a greater understanding of the vibrational kinetics of a CO2/H2O microwave plasma. For this purpose, we first created an electron impact cross section set for H2O, using a swarm-derived method. We added the new cross section set and CO2/H2O-related chemistry to a pure CO2 model. While it was expected that H2O addition mainly causes quenching of the CO2 asymmetric mode vibrational levels due to the additional CO2/H2O vibrational-translational relaxation, our model shows that the modifications in the vibrational kinetics are mainly induced by the strong electron dissociative attachment to H2O molecules, causing a reduction in electron density, and the corresponding changes in the input of energy into the CO2 vibrational levels by electron impact processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570601300001 Publication Date 2020-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1184820N ; Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020 and ; This research was supported by FWO–PhD fellowshipaspirant, Grant 1184820N. VG and TS were partially supported by the Portuguese FCT, under projects UIDB/50010/2020 and UIDP/50010/2020 Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:172011 Serial 6433  
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A. pdf  doi
openurl 
  Title The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP Type A1 Journal article
  Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 28 Issue 9 Pages 1485-1492  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma, connected to a sampling cone of a mass spectrometer, is computationally investigated. The effects of the sampler orifice diameter (ranging from 1 to 2 mm) and distance of the sampler cone from the load coil (ranging from 7 to 17 mm) are studied. An increase in sampler orifice diameter leads to a higher central plasma temperature at the place of the sampler, as well as more efficient gas transfer through the sampler, by reducing the interaction of the plasma gas with the sampling cone. However, the flow velocity at the sampler position is found to be independent of the sampler orifice diameter. Moreover, by changing the sampler orifice diameter, we can control whether only the central gas or also the auxiliary gas can exit through the sampler. Finally, with the increasing distance of the sampler from the load coil, the plasma temperature at the place of the sampler decreases slightly, which might also have consequences for the ion generation and transport through the sampling cone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000322922300016 Publication Date 2013-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.379; 2013 IF: 3.396  
  Call Number UA @ lucian @ c:irua:109204 Serial 848  
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A. doi  openurl
  Title Effect of a mass spectrometer interface on inductively coupled plasma characteristics : a computational study Type A1 Journal article
  Year 2012 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 27 Issue 4 Pages 604-610  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma connected to a mass spectrometer interface (sampling cone) is computationally investigated. Typical plasma characteristics, such as gas flow velocity, plasma temperature and electron density, are calculated in two dimensions (cylindrical symmetry) and compared with and without a mass spectrometer sampling interface. The results obtained from our model compare favorably with experimental data reported in the literature. A dramatic increase in the plasma velocity is reported in the region close to the interface. Furthermore, a cooled metal interface lowers the plasma temperature and electron density on the axial channel very close to the sampling cone but the corresponding values in the off axial regions are increased. Therefore, the effect of the interface strongly depends on the measurement position. It is shown that even a small shift from the actual position of the sampler leads to a considerable change of the results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000301496700005 Publication Date 2012-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.379; 2012 IF: 3.155  
  Call Number UA @ lucian @ c:irua:97386 Serial 791  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Monte Carlo model for the argon ions and fast argon atoms in a radio-frequency discharge Type A1 Journal article
  Year 1999 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume (down) 27 Issue 5 Pages 1406-1415  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000083453000023 Publication Date 2002-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.052 Times cited 15 Open Access  
  Notes Approved Most recent IF: 1.052; 1999 IF: 1.085  
  Call Number UA @ lucian @ c:irua:28321 Serial 2197  
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A. pdf  doi
openurl 
  Title Numerical study of the sputtering in a dc magnetron Type A1 Journal article
  Year 2009 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Phys Chem C  
  Volume (down) 27 Issue 1 Pages 20-28  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000263299600018 Publication Date 2009-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 66 Open Access  
  Notes Approved Most recent IF: 4.536; 2009 IF: 4.224  
  Call Number UA @ lucian @ c:irua:71634 Serial 2411  
Permanent link to this record
 

 
Author Berezhnoi, S.; Kaganovich, I.; Misina, M.; Bogaerts, A.; Gijbels, R. doi  openurl
  Title Semianalytical description of nonlocal secondary electrons in a radio-frequency capacitively coupled plasma at intermediate pressures Type A1 Journal article
  Year 1999 Publication IEEE transactions plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume (down) 27 Issue Pages 1339-1347  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000083453000014 Publication Date 2002-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.052 Times cited 7 Open Access  
  Notes Approved Most recent IF: 1.052; 1999 IF: 1.085  
  Call Number UA @ lucian @ c:irua:28314 Serial 2980  
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A.; Guerra, V.; Turner, M.M. pdf  url
doi  openurl
  Title Foundations of modelling of nonequilibrium low-temperature plasmas Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 27 Issue 2 Pages 023002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma–surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425688600001 Publication Date 2018-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 17 Open Access OpenAccess  
  Notes The authors would like to thank A Tejero-Del-Caz and A Berthelot for their technical contributions in writing the manuscript. This work was partially funded by Portuguese FCT —Fundação para a Ciência e a Tecnologia, under projects UID/ FIS/50010/2013, PTDC/FISPLA/1243/2014 (KIT-PLAS- MEBA) and PTDC/FIS-PLA/1420/2014 (PREMiERE). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:149391 Serial 4810  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: