|
Record |
Links |
|
Author |
Ramakers, M.; Heijkers, S.; Tytgat, T.; Lenaerts, S.; Bogaerts, A. |
|
|
Title |
Combining CO2 conversion and N2 fixation in a gliding arc plasmatron |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Journal of CO2 utilization |
Abbreviated Journal |
J Co2 Util |
|
|
Volume |
33 |
Issue |
|
Pages |
121-130 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL) |
|
|
Abstract |
Industry needs a flexible and efficient technology to convert CO2 into useful products, which fits in the Carbon Capture and Utilization (CCU) philosophy. Plasma technology is intensively being investigated for this purpose. A promising candidate is the gliding arc plasmatron (GAP). Waste streams of CO2 are often not pure and contain N2 as important impurity. Therefore, in this paper we provide a detailed experimental and computational study of the combined CO2 and N2 conversion in a GAP. Is it possible to take advantage of the presence of N2 in the mixture and to combine CO2 conversion with N2 fixation? Our experiments and simulations reveal that N2 actively contributes to the process of CO2 conversion, through its vibrational levels. In addition, NO and NO2 are formed, with concentrations around 7000 ppm, which is slightly too low for valorization, but by improving the reactor design it must be possible to further increase their concentrations. Other NO-based molecules, in particular the strong greenhouse gas N2O, are not formed in the GAP, which is an important result. We also compare our results with those obtained in other plasma reactors to clarify the differences in underlying plasma processes, and to demonstrate the superiority of the GAP. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000487274100013 |
Publication Date |
2019-05-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2212-9820 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.292 |
Times cited |
3 |
Open Access |
Not_Open_Access: Available from 23.05.2021
|
|
|
Notes |
Fund for Scientific Research Flanders, G.0383.16N ; Excellence of Science program of the Fund for Scientific Research, G0F9618N ; Hercules Foundation, the Flemish Government; UAntwerpen; We acknowledge financial support from the Fund for Scientific Research Flanders (FWO; Grant no. G.0383.16N) and the Excellence of Science program of the Fund for Scientific Research (FWO-FNRS; Grant no. G0F9618N; EOS ID: 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Finally, we also want to thank Dr. Ramses Snoeckx for the very interesting discussions, and A. Fridman and A. Rabinovich for developing the GAP. |
Approved |
Most recent IF: 4.292 |
|
|
Call Number |
PLASMANT @ plasmant @UA @ admin @ c:irua:159984 |
Serial |
5173 |
|
Permanent link to this record |