|
Record |
Links |
|
Author |
Tsonev, I.; Boothroyd, J.; Kolev, S.; Bogaerts, A. |
|
|
Title |
Simulation of glow and arc discharges in nitrogen: effects of the cathode emission mechanisms |
Type |
A1 Journal Article |
|
Year |
2023 |
Publication |
PLASMA SOURCES SCIENCE & TECHNOLOGY |
Abbreviated Journal |
|
|
|
Volume |
32 |
Issue |
5 |
Pages |
054002 |
|
|
Keywords |
A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
Experimental evidence in the literature has shown that low-current direct current nitrogen discharges can exist in both glow and arc regimes at atmospheric pressure. However, modelling investigations of the positive column that include the influence of the cathode phenomena are scarce. In this work we developed a 2D axisymmetric model of a plasma discharge in flowing nitrogen gas, studying the influence of the two cathode emission mechanisms—thermionic field emission and secondary electron emission—on the cathode region and the positive column. We show for an inlet gas flow velocity of 1 m s<sup>−1</sup>in the current range of 80–160 mA, that the electron emission mechanism from the cathode greatly affects the size and temperature of the cathode region, but does not significantly influence the discharge column at atmospheric pressure. We also demonstrate that in the discharge column the electron density balance is local and the electron production and destruction is dominated by volume processes. With increasing flow velocity, the discharge contraction is enhanced due to the increased convective heat loss. The cross sectional area of the conductive region is strongly dependent on the gas velocity and heat conductivity of the gas. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000987841800001 |
Publication Date |
2023-05-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0963-0252 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
3.8 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
This research is financially supported by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 965546. |
Approved |
Most recent IF: 3.8; 2023 IF: 3.302 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:196972 |
Serial |
8788 |
|
Permanent link to this record |