toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Claes, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Decoupled DFT-1/2 method for defect excitation energies Type A1 Journal Article
  Year 2023 Publication Physical Review B Abbreviated Journal Phys. Rev. B  
  Volume 108 Issue 12 Pages 125306  
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;  
  Abstract The DFT-1/2 method is a band-gap correction with GW precision at a density functional theory (DFT) computational cost. The method was also extended to correct the gap between defect levels, allowing for the calculation of optical transitions. However, this method fails when the atomic character of the occupied and unoccupied defect levels is similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied and unoccupied defect levels and call this the decoupled DFT-1/2 method for defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001089302800003 Publication Date 2023-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes This work was supported by the FWO (Research Foundation-Flanders), Project No. G0D1721N. This work was performed in part using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number CMT @ cmt @c:irua:201287 Serial 8976  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Tailoring weak and metallic phases in a strong topological insulator by strain and disorder : conductance fluctuations signatures Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 4 Pages 045129-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport measurements are readily used to probe different phases in disordered topological insulators (TIs), where determining topological invariants explicitly is challenging. On that note, universal conductance fluctuations (UCF) theory asserts the conductance G for an ensemble has a Gaussian distribution, and that standard deviation 8G depends solely on the symmetries and dimensions of the system. Using a real-space tight -binding Hamiltonian on a system with Anderson disorder, we explore conductance fluctuations in a thin Bi2Se3 film and demonstrate the agreement of their behavior with UCF hypotheses. We further show that magnetic field applied out-of-plane breaks the time -reversal symmetry and transforms the system's Wigner-Dyson class from root symplectic to unitary, increasing 8G by 2. Finally, we reveal that while Bi2Se3 is a strong TI, weak TI and metallic phases can be stabilized in presence of strain and disorder, and detected by monitoring the conductance fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001173938400008 Publication Date 2024-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:204765 Serial 9177  
Permanent link to this record
 

 
Author Moura, V.N.; Chaves, A.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title McMillan-Ginzburg-Landau theory of singularities and discommensurations in charge density wave states of transition metal dichalcogenides Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 9 Pages 094507-94511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The McMillan-Ginzburg-Landau (MGL) model for charge density waves (CDW) is employed in a systematic phenomenological study of the different phases that have been probed in recent experiments involving transition metal dichalcogenides. We implemented an efficient imaginary time evolution method to solve the MGL equations, which enabled us to investigate the role of different coupling parameters on the CDW patterns and to perform calculations with different energy functionals that lead to several experimentally observed singularities in the CDW phase profiles. In particular, by choosing the appropriate energy functionals, we were able to obtain phases that go beyond the well-known periodic phase slips (discommensurations), exhibiting also topological defects (i.e., vortex-antivortex pairs), domain walls where the CDW order parameter is suppressed, and even CDW with broken rotational symmetry. Finally, we briefly discuss the effect of these different CDW phases on the profile and critical temperature of the competing superconducting state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199651500001 Publication Date 2024-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:205491 Serial 9158  
Permanent link to this record
 

 
Author Pascucci, F.; Conti, S.; Perali, A.; Tempère, J.; Neilson, D. url  doi
openurl 
  Title Effects of intralayer correlations on electron-hole double-layer superfluidity Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 9 Pages 094512-94515  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract We investigate the intralayer correlations acting within the layers in a superfluid system of electron -hole spatially separated layers. In this system, superfluidity is predicted to be almost exclusively confined to the Bose-Einstein condensate (BEC) and crossover regimes where the electron -hole pairs are well localized. In this case, Hartree-Fock is an excellent approximation for the intralayer correlations. We find in the BEC regime that the effect of the intralayer correlations on superfluid properties is negligible but in the BCS-BEC crossover regime the superfluid gap is significantly weakened by the intralayer correlations. This is caused by the intralayer correlations boosting the number of low -energy particle -hole excitations that drive the screening. We further find that the intralayer correlations suppress the predicted phenomenon in which the average pair size passes through a minimum as the crossover regime is traversed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199662600001 Publication Date 2024-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:205476 Serial 9145  
Permanent link to this record
 

 
Author Wang, J.; Zhao, W.-S.; Hu, Y.; Filho, R.N.C.; Peeters, F.M. url  doi
openurl 
  Title Charged vacancy in graphene : interplay between Landau levels and atomic collapse resonances Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 10 Pages 104103-104106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interplay between a magnetic field and the Coulomb potential from a charged vacancy on the electron states in graphene is investigated within the tight-binding model. The Coulomb potential removes locally Landau level degeneracy, while the vacancy introduces a satellite level next to the normal Landau level. These satellite levels are found throughout the positive-energy region, but in the negative-energy region, they turn into atomic collapse resonances. Crossings between Landau levels with different angular quantum number m are found. Unlike the point impurity system in which an anticrossing occurs between Landau levels of the same m, in this work anticrossing is found between the normal Landau level and the vacancy-induced level. The atomic collapse resonance hybridizes with the Landau levels. The charge at which the lowest Landau level m = -1, N = 1 crosses E = 0 increases with enhancing magnetic field. A Landau level scaling anomaly occurs when the charge is larger than the critical charge beta 0.6 and this critical charge is independent of the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199561900008 Publication Date 2024-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:205508 Serial 9137  
Permanent link to this record
 

 
Author Li, Q.N.; Vasilopoulos, P.; Peeters, F.M.; Xu, W.; Xiao, Y.M.; Milošević, M.V. url  doi
openurl 
  Title Collective excitations in three-dimensional Dirac systems Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 11 Pages 115123-115129  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We provide the plasmon spectrum and related properties of the three-dimensional (3D) Dirac semimetals Na 3 Bi and Cd 3 As 2 based on the random -phase approximation. The necessary one -electron eigenvalues and eigenfunctions are obtained from an effective k <middle dot> p Hamiltonian. Below the energy at which the velocity v z along the k z axis vanishes, the density of states differs drastically from that of a 3D electron gas (3DEG) or graphene. The dispersion relation is anisotropic for wave vectors parallel ( q ) and perpendicular ( q z ) to the ( x , y ) plane and is markedly different than that of graphene or a 3DEG. The same holds for the energy -loss function. Both depend sensitively on the position of the Fermi energy E F relative to the region of the Berry curvature of the bands. For E F below the energy at which v z vanishes, the range of the relevant wave vectors q and q z shrinks, for q z by about one order of magnitude.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001235353700005 Publication Date 2024-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:206669 Serial 9278  
Permanent link to this record
 

 
Author Li, Y.; Xiao, Y.M.; Xu, W.; Ding, L.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Magneto-optical conductivity of monolayer transition metal dichalcogenides in the presence of proximity-induced exchange interaction and external electrical field Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 16 Pages 165441-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the magneto-optical (MO) properties of monolayer (ML) transition metal dichalcogenides (TMDs) in the presence of external electrical and quantizing magnetic fields and of the proximity-induced exchange interaction. The corresponding Landau Level (LL) structure is studied by solving the Schr & ouml;dinger equation and the spin polarization in ML-TMDs under the action of the magnetic field is evaluated. The impact of trigonal warping on LLs and MO absorption is examined. Furthermore, the longitudinal MO conductivity is calculated through the dynamical dielectric function under the standard random-phase approximation (RPA) with the Kubo formula. We take ML-MoS 2 as an example to examine the effects of proximity-induced exchange interaction, external electrical and magnetic fields on the MO conductivity induced via intra- and interband electronic transitions among the LLs. For intraband electronic transitions within the conduction or valence bands, we can observe two absorption peaks in terahertz (THz) frequency range. While the interband electronic transitions between conduction and valence LLs show a series of absorption peaks in the visible range. We find that the proximity-induced exchange interaction, the carrier density, the strengths of the external electrical and magnetic fields can effectively modulate the positions of the absorption peaks and the shapes of the MO absorption spectra. The results obtained from this study can benefit to an in-depth understanding of the MO properties of ML-TMDs which can be potentially applied for magneto-optic, spintronic, and valleytronic devices working in visible to THz frequency bandwidths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001231884200004 Publication Date 2024-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:206589 Serial 9305  
Permanent link to this record
 

 
Author Liu, J.; Xu, W.; Xiao, Y.M.; Ding, L.; Li, H.W.; Van Duppen, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Longitudinal and transverse mobilities of n-type monolayer transition metal dichalcogenides in the presence of proximity-induced interactions at low temperature Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 19 Pages 195418-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical investigation on the electronic transport properties of n-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr & ouml;dinger equation with a k <middle dot> p Hamiltonian, and the electric screening induced by electron-electron interaction is evaluated under a standard random phase approximation approach. In particular, the longitudinal and transverse or Hall mobilities are calculated by using a momentum-balance equation derived from a semiclassical Boltzmann equation, where the electron-impurity interaction is considered as the principal scattering center at low temperature. The obtained results show that the RSOC can induce the in-plane spin components for spin-split subbands in different valleys, while the exchange interaction can lift the energy degeneracy for electrons in different valleys. The opposite signs of Berry curvatures in the two valleys would introduce opposite directions of Lorentz force on valley electrons. As a result, the transverse currents from nondegenerate valleys can no longer be canceled out so that the transverse current or Hall mobility can be observed. Interestingly, we find that at a fixed effective Zeeman field, the lowest spin-split conduction subband in ML-TMDs can be tuned from one in the K'-valley to one in the K-valley by varying the Rashba parameter. The occupation of electrons in different valleys also varies with changing carrier density. Therefore, we can change the magnitude and direction of the Hall current by varying the Rashba parameter, effective Zeeman field, and carrier density by, e.g., the presence of a ferromagnetic substrate and/or applying a gate voltage. By taking the ML-MoS2 as an example, these effects are demonstrated and examined. The important and interesting theoretical findings can be beneficial to experimental observation of the valleytronic effect and to gaining an in-depth understanding of the ML-TMD systems in the presence of proximity-induced interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001237245700001 Publication Date 2024-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:206596 Serial 9302  
Permanent link to this record
 

 
Author Thomen, D.M.N.; Sevik, C.; Milošević, M.V.; Teles, L.K.; Chaves, A. url  doi
openurl 
  Title Strain and stacking registry effects on the hyperbolicity of exciton polaritons in few-layer black phosphorus Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 24 Pages 245413-245419  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We analyze, from first -principles calculations, the excitonic properties of monolayer black phosphorus (BP) under strain, as well as of bilayer BP with different stacking registries, as a base platform for the observation and use of hyperbolic polaritons. In the unstrained case, our results confirm the in -plane hyperbolic behavior of polaritons coupled to the ground -state excitons in both mono- and bilayer systems, as observed in recent experiments. With strain, we reveal that the exciton-polariton hyperbolicity in monolayer BP is enhanced (reduced) by compressive (tensile) strain in the zig-zag direction of the crystal. In the bilayer case, different stacking registries are shown to exhibit hyperbolic exciton polaritons with different dispersion, while also peaking at different frequencies. This renders both mechanical stress and stacking registry control as practical tools for tuning physical properties of hyperbolic exciton polaritons in black phosphorus, which facilitates detection and further optoelectronic use of these quasiparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001247621000008 Publication Date 2024-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:206631 Serial 9316  
Permanent link to this record
 

 
Author Paramasivam, S.K.; Gangadharan, S.P.; Milošević, M.V.; Perali, A. url  doi
openurl 
  Title High-Tc Berezinskii-Kosterlitz-Thouless transition in two-dimensional superconducting systems with coupled deep and quasiflat electronic bands with Van Hove singularities Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 110 Issue 2 Pages 024507-24511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the pursuit of higher critical temperature of superconductivity, quasiflat electronic bands and Van Hove singularities in two dimensions (2D) have emerged as a potential approach to enhance Cooper pairing on the basis of mean-field expectations. However, these special electronic features suppress the superfluid stiffness and, hence, the Berezinskii-Kosterlitz-Thouless (BKT) transition in 2D superconducting systems, leading to the emergence of a significant pseudogap regime due to superconducting fluctuations. In the strong-coupling regime, one finds that superfluid stiffness is inversely proportional to the superconducting gap, which is the predominant factor contributing to the strong suppression of superfluid stiffness. Here we reveal that the aforementioned limitation is avoided in a 2D superconducting electronic system with a quasiflat electronic band with a strong pairing strength coupled to a deep band with weak electronic pairing strength. Owing to the multiband effects, we demonstrate a screening-like mechanism that circumvents the suppression of the superfluid stiffness. We report the optimal conditions for achieving a large enhancement of the BKT transition temperature and a substantial shrinking of the pseudogap regime by tuning the intraband couplings and the pair-exchange coupling between the two band-condensates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001267 Publication Date 2024-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:207014 Serial 9295  
Permanent link to this record
 

 
Author Cadorim, L.R.; Sardella, E.; Milošević, M.V. url  doi
openurl 
  Title Vortical versus skyrmionic states in the topological phase of a twisted bilayer with d-wave superconducting pairing Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 110 Issue 6 Pages 064508-64511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It was recently shown that a chiral topological phase emerges from the coupling of two twisted monolayers of superconducting Bi2Sr2CaCu2O8+delta for 2 Sr 2 CaCu 2 O 8 +delta for certain twist angles. In this work, we reveal the behavior of such twisted superconducting bilayers with d x 2 – y 2 pairing symmetry in the presence of an applied magnetic field. Specifically, we show that the emergent vortex matter can serve as a smoking gun for the detection of topological superconductivity in such bilayers. Moreover, we report two distinct skyrmionic states that characterize the chiral topological phase and provide a full account of their experimental signatures and their evolution with the twist angle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001290 Publication Date 2024-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:208602 Serial 9327  
Permanent link to this record
 

 
Author Verberck, B.; Nikolaev, A.V.; Michel, K.H. url  doi
openurl 
  Title Theoretical model for the structural phase transition at the metal-insulator transition in polymerized KC60 Type A1 Journal article
  Year 2002 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 66 Issue 16 Pages 165425-165425,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The recently discovered structural transition in polymerized KC60 at about 50 K results in a doubling of the unit cell volume and accompanies the metal-insulator transition. Here we show that the ((a) over right arrow+(c) over right arrow,(b) over right arrow,(a) over right arrow-(c) over right arrow) superstructure results from small orientational charge density waves along the polymer chains and concomitant displacements of the surrounding K+ ions. The effect is specific for the space group Pmnn of KC60 and is absent in RbC60 and CsC60 (space group I2/m). The mechanism is relevant for the metal-insulator transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000179286400135 Publication Date 2002-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:94907 Serial 3608  
Permanent link to this record
 

 
Author Nogaret, A.; Lambert, N.J.; Peeters, F.M. url  doi
openurl 
  Title Electrically induced spin resonance fluorescence : 2 : fluorescence spectra Type A1 Journal article
  Year 2007 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 76 Issue 7 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We model the fluorescence spectra of planar spin oscillators to find conditions that maximize spin resonance fluorescence. Spin oscillators perform Rabi oscillations under the effect of a periodic effective magnetic field caused by the winding motion of an electron in a gradient of magnetic field. We show that, despite the weak coupling of the spin magnetic dipole to the vacuum, spin oscillators excited by a direct current output a few nanowatts of microwave power, which is comparable to the best microwave sources. The large quantum efficiency relies on the combination of two effects. On the one hand, the spontaneous emission rate is enhanced by the synchronization of spin oscillators, which interact through the microwave field that they emit. On the other hand, the huge Rabi frequencies experienced by spin oscillators promote spins into upper levels of Zeeman transitions, from which a radiative cascade is triggered. We demonstrate different regimes of fluorescence which correspond to different values of the Rabi period relative to the spontaneous decay time and to the oscillator dwell time in the gradient of magnetic field. We investigate the device parameters which make these regimes experimentally accessible and find conditions that optimize microwave output. We find that microwave emission is centered around the cutoff frequency of spin oscillators. This has the advantage that the peak emission frequency may be tuned from zero continuously up to a few hundred gigahertz using an electrostatic gate. Quite remarkably for a spintronics effect, electrically induced spin resonance fluorescence does not require the injection of a spin polarized current. In fact, we show that microwave spectra are mostly independent of the incoming spin polarization except for magnetic waveguides which are shorter than a certain critical length, which we will specify.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000249155300092 Publication Date 2007-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:66118 Serial 898  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M. url  doi
openurl 
  Title Rippling, buckling, and melting of single- and multilayer MoS2 Type A1 Journal article
  Year 2015 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 014101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Large-scale atomistic simulations using the reactive empirical bond order force field approach is implemented to investigate thermal and mechanical properties of single-layer (SL) and multilayer (ML) molybdenum disulfide (MoS2). The amplitude of the intrinsic ripples of SL MoS2 are found to be smaller than those exhibited by graphene (GE). Furthermore, because of the van der Waals interaction between layers, the out-of-plane thermal fluctuations of ML MoS2 decreases rapidly with increasing number of layers. This trend is confirmed by the buckling transition due to uniaxial stress which occurs for a significantly larger applied tension as compared to graphene. For SL MoS2, the melting temperature is estimated to be 3700 K which occurs through dimerization followed by the formation of small molecules consisting of two to five atoms. When different types of vacancies are inserted in the SL MoS2 it results in a decrease of both the melting temperature as well as the stiffness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000347921300001 Publication Date 2015-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 40 Open Access  
  Notes ; This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. We would like to thanks Prof. Douglas E. Spearot [26] for giving us the implemented parameters of Mo-S in LAMMPS. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:123834 Serial 2909  
Permanent link to this record
 

 
Author Fernández Becerra, V.; Sardella, E.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Vortical versus skyrmionic states in mesoscopic p-wave superconductors Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 014518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p-wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369217400004 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO). E.S. acknowledges support from the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131581 Serial 4275  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Optical properties of GaS-Ca(OH)2 bilayer heterostructure Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 075111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Finding novel atomically thin heterostructures and understanding their characteristic properties are critical for developing better nanoscale optoelectronic devices. In this study, we investigate the electronic and optical properties of a GaS-Ca(OH)(2) heterostructure using first-principle calculations. The band gap of the GaS-Ca(OH)(2) heterostructure is significantly reduced when compared to those of the isolated constituent layers. Our calculations showthat the GaS-Ca(OH)(2) heterostructure is a type-II heterojunction which can be used to separate photoinduced charge carriers where electrons are localized in GaS and holes in the Ca(OH)(2) layer. This leads to spatially indirect excitons which are important for solar energy and optoelectronic applications due to their long lifetime. By solving the Bethe-Salpeter equation on top of a single shot GW calculation (G(0)W(0)), the dielectric function and optical oscillator strength of the constituent monolayers and the heterostructure are obtained. The oscillator strength of the optical transition for the GaS monolayer is an order of magnitude larger than the Ca(OH)(2) monolayer. We also found that the calculated optical spectra of different stacking types of the heterostructure show dissimilarities, although their electronic structures are rather similar. This prediction can be used to determine the stacking type of ultrathin heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369401000001 Publication Date 2016-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus long Marie Curie Fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131614 Serial 4220  
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Kang, J.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Moreschini, L.; Chang, Y.J.; Peeters, F.M.; Horn, K.; Rotenberg, E.; url  doi
openurl 
  Title New family of graphene-based organic semiconductors : an investigation of photon-induced electronic structure manipulation in half-fluorinated graphene Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 075439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of similar to 5 eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half-fluorinated carbon on Sic(0001), i.e., the (6 root 3 x 6 root 3) R30 degrees C/SiC “buffer layer,” graphene on this (6 root 3 x 6 root 3) R30 degrees C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (similar to 2.5-eV band gap) and metallic regions, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371398000007 Publication Date 2016-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work in Erlangen was supported by the DFG through SPP 1459 “Graphene” and SFB 953 “Synthetic Carbon Allotropes” and by the ESF through the EURO-Graphene project GraphicRF. A.L.W. acknowledges support from the Max-Planck-Gesellschaft, the Donostia International Physics Centre, and the Centro de Fisica de Materiales in San Sebastian, Spain, and Brookhaven National Laboratory under US Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-SC0012704. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. Y.J.C. acknowledges support from the National Research Foundation of Korea under Grant No. NRF-2014R1A1A1002868. The authors gratefully acknowledge the work of T. Seyller's group at the Institut fur Physik, Technische Universitat Chemnitz, Germany for providing the samples. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132352 Serial 4213  
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Magnetic field dependence of energy levels in biased bilayer graphene quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 085401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we study the influence of a perpendicular magnetic field on the energy levels of hexagonal, triangular, and circular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We obtain the energy levels for AB (Bernal)-stacked BLG QDs in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). We find different regions in the spectrum of biased QDs with respect to the crossing point between the lowest-electron and -hole Landau levels of a biased BLG sheet. Those different regions correspond to electron states that are localized at the center, edge, or corner of the BLG QD. Quantum Hall corner states are found to be absent in circular BLG QDs. The spatial symmetry of the carrier density distribution is related to the symmetry of the confinement potential, the position of zigzag edges, and the presence or absence of interlayer inversion symmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369402400008 Publication Date 2016-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes ; This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the Process No. BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836  
  Call Number c:irua:131623 Serial 4038  
Permanent link to this record
 

 
Author Roy, P.; Torun, E.; de Groot, R.A. url  doi
openurl 
  Title Effect of doping and elastic properties in (Mn,Fe)2(Si,P) Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 094110  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Mixed magnetism (the coexistence of strong and weak magnetism in one material) is regarded as the origin of the giant magnetocaloric effect (GMCE). A good example is (Mn,Fe)(2)(Si,P), which is established as one of the best magnetocaloric materials available. Tuning the material properties are essential for optimizing its performance, and a straightforward way to do that is by doping. In this article, an ab initio electronic structure method was used to calculate the structure and magnetic properties of 3d-transition-metal-doped (Mn,Fe)(2)(Si,P) materials for magnetocaloric applications (transition metals are Cr, Co, Mn, Ni, Cu). For a steady performance, the material should be mechanically stable. A detailed analysis of the elastic constants shows that the mechanical stability of the (Mn,Fe)(2)(Si,P) system increases significantly by doping with boron without affecting the magnetic properties. Insights of the influence of doping enable future studies to understand and predict bettermagnetocaloric materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372712100001 Publication Date 2016-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work is part of an Industrial Partnership Programme (IPP I28) of Fundamenteel Onderzoek der Materie (FOM) (The Netherlands) and co-financed by BASF New Business. The authors would like to thank Phuong Thao Nguyen and Dr. Gilles A. de Wijs for very useful discussions. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133192 Serial 4164  
Permanent link to this record
 

 
Author Chaves, A.; Mayers, M.Z.; Peeters, F.M.; Reichman, D.R. url  doi
openurl 
  Title Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 115314  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct quasiparticle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high binding energies and an elongated electron-hole structure with a preference for alignment along the armchair direction, where the effective masses are lower. We find that biexciton binding energies are also notably large, especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer transition metal dichalcogenides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372715700001 Publication Date 2016-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes ; This work has been financially supported by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs, the FWO-CNPq bilateral program between Brazil and Flanders, and the Lemann Foundation. M.Z.M. is supported by a fellowship from the National Science Foundation, under Grant No. DGE-11-44155. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133191 Serial 4262  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Transport properties of bilayer graphene in a strong in-plane magnetic field Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 115423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong in-plane magnetic field drastically alters the low-energy spectrum of bilayer graphene by separating the parabolic energy dispersion into two linear Dirac cones. The effect of this dramatic change on the transport properties strongly depends on the orientation of the in-plane magnetic field with respect to the propagation direction of the charge carriers and the angle at which they impinge on the electrostatic potentials. For magnetic fields oriented parallel to the potential boundaries an additional propagating mode that results from the splitting into Dirac cones enhances the transmission probability for charge carriers tunneling through the potentials and increases the corresponding conductance. Our results show that the chiral suppression of transmission at normal incidence, reminiscent of bilayer graphene's 2 pi Berry phase, is turned into a chiral enhancement when the magnetic field increases, thus indicating a transition from a bilayer to a monolayer-like system at normal incidence. Further, we find that the typical transmission resonances stemming from confinement in a potential barrier are shifted to higher energy and are eventually transformed into antiresonances with increasing magnetic field. For magnetic fields oriented perpendicular to the potential boundaries we find a very pronounced transition from a bilayer system to two separated monolayer-like systems with Klein tunneling emerging at certain incident angles symmetric around 0, which also leaves a signature in the conductance. For both orientations of the magnetic field, the transmission probability is still correctly described by pseudospin conservation. Finally, to motivate the large in-plane magnetic field, we show that its energy spectrum can be mimicked by specific lattice deformations such as a relative shift of one of the layers. With this equivalence we introduce the notion of an in-plane pseudomagnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372409900006 Publication Date 2016-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO-Vl) through an aspirant research grant to M.V.D.D. and B.V.D. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133197 Serial 4267  
Permanent link to this record
 

 
Author Bacaksiz, C.; Cahangirov, S.; Rubio, A.; Senger, R.T.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Bilayer SnS2 : tunable stacking sequence by charging and loading pressure Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 125403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Employing density functional theory-based methods, we investigate monolayer and bilayer structures of hexagonal SnS2, which is a recently synthesized monolayer metal dichalcogenide. Comparison of the 1H and 1T phases of monolayer SnS2 confirms the ground state to be the 1T phase. In its bilayer structure we examine different stacking configurations of the two layers. It is found that the interlayer coupling in bilayer SnS2 is weaker than that of typical transition-metal dichalcogenides so that alternative stacking orders have similar structural parameters and they are separated with low energy barriers. A possible signature of the stacking order in the SnS2 bilayer has been sought in the calculated absorbance and reflectivity spectra. We also study the effects of the external electric field, charging, and loading pressure on the characteristic properties of bilayer SnS2. It is found that (i) the electric field increases the coupling between the layers at its preferred stacking order, so the barrier height increases, (ii) the bang gap value can be tuned by the external E field and under sufficient E field, the bilayer SnS2 can become a semimetal, (iii) the most favorable stacking order can be switched by charging, and (iv) a loading pressure exceeding 3 GPa changes the stacking order. The E-field tunable band gap and easily tunable stacking sequence of SnS2 layers make this 2D crystal structure a good candidate for field effect transistor and nanoscale lubricant applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371405000005 Publication Date 2016-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B., H.S., and R.T.S. acknowledge support from TUBITAK Project No. 114F397. H.S. is supported by an FWO Pegasus Marie Curie Fellowship. S.C. and A.R. acknowledge financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, the European Research Council (ERC-2010-AdG-267374), and Spanish grant Grupos Consolidados (IT578-13). S.C. acknowledges support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132345 Serial 4144  
Permanent link to this record
 

 
Author Missault, N.; Vasilopoulos, P.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Spin- and valley-dependent miniband structure and transport in silicene superlattices Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 125425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate silicene superlattices in the presence of a tunable barrier potential U, an exchange field M, and a perpendicular electric field E-z. The resulting miniband structure depends on the spin and valley indices and on the fields M and E-z. These fields determine the minigaps and also affect the additional Dirac points brought about by the periodic potential U. In addition, we consider diffusive transport and assess its dependence on the spin and valley indices as well as on temperature. The corresponding spin and valley polarizations strongly depend on the potential U and can be made almost 100% at very low temperatures at particular values of the Fermi energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372715800009 Publication Date 2016-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 49 Open Access  
  Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (P.V.), and by the Flemish Science Foundation FWO-Vl) with the “Odysseus” Program (N. M.) and with a PhD research grant (B.V.D.). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133194 Serial 4246  
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; da Silva Pereira, T.A.; Milošević, M.V. url  doi
openurl 
  Title Electronic states in an atomistic carbon quantum dot patterned in graphene Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 155417  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We reveal the emergence of metallicKondo clouds in an atomistic carbon quantum dot, realized as a single-atom junction in a suitably patterned graphene nanoflake. Using density functional dynamical mean-field theory (DFDMFT) we show how correlation effects lead to striking features in the electronic structure of our device, and how those are enhanced by the electron-electron interactions when graphene is patterned at the atomistic scale. Our setup provides a well-controlled environment to understand the principles behind the orbital-selective Kondo physics and the interplay between orbital and spin degrees of freedom in carbon-based nanomaterials, which indicate new pathways for spintronics in atomically patterned graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373760900004 Publication Date 2016-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; L.C.'s work is supported by CNPq (Proc. No. 307487/2014-8). Acknowledgment (L.C.) is also made to G. Seifert for discussions and the Department of Theoretical Chemistry at Technical University Dresden for hospitality. T.A.S.P. thanks PRONEX/CNPq/FAPEMAT 850109/2009 for financial support. M.V.M. acknowledges support from Research Foundation-Flanders (FWO), TOPBOF, and the CAPES-PVE program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133260 Serial 4171  
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Ketabi, S.A.; da Costa, D.R.; Peeters, F.M. url  doi
openurl 
  Title Energy levels of hybrid monolayer-bilayer graphene quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 165410  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373572700004 Publication Date 2016-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO)-CNPq project between Flanders and Brazil and the Brazilian Science Without Borders program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133261 Serial 4174  
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title N-doped graphene : polarization effects and structural properties Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174112  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural and mechanical properties of N-doped graphene (NG) are investigated using reactive force field (ReaxFF) potentials in large-scale molecular dynamics simulations. We found that ripples, which are induced by the dopants, change the roughness of NG, which depends on the number of dopants and their local arrangement. For any doping ratio N/C, the NG becomes ferroelectric with a net dipole moment. The formation energy increases nonlinearly with N/C ratio, while the Young's modulus, tensile strength, and intrinsic strain decrease with the number of dopants. Our results for the structural deformation and the thermoelectricity of the NG sheet are in good agreement with recent experiments and ab initio calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376245900002 Publication Date 2016-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134148 Serial 4212  
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Vinokur, V.M.; Aguiar, J.A.; Peeters, F.M. url  doi
openurl 
  Title Superconductivity between standard types: Multiband versus single-band materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375527500001 Publication Date 2016-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes Conselho Nacional de Desenvolvimento Científico e Tecnológico, 307552/2012-8 141911/2012-3 ; Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-0589-1.05/08 ; U.S. Department of Energy; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:141732 Serial 4480  
Permanent link to this record
 

 
Author Madan, I.; Kusar, P.; Baranov, V.V.; Lu-Dac, M.; Kabanov, V.V.; Mertelj, T.; Mihailovic, D. url  doi
openurl 
  Title Real-time measurement of the emergence of superconducting order in a high-temperature superconductor Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 22 Pages 224520  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Systems which rapidly evolve through symmetry-breaking transitions on timescales comparable to the fluctuation timescale of the single-particle excitations may behave very differently than under controlled near-ergodic conditions. A real-time investigation with high temporal resolution may reveal insights into the ordering through the transition that are not available in static experiments. We present an investigation of the system trajectory through a normal-to-superconductor transition in a prototype high-temperature superconducting cuprate in which such a situation occurs. Using a multiple pulse femtosecond spectroscopy technique we measure the system trajectory and time evolution of the single-particle excitations through the transition in La1.9Sr0.1CuO4 and compare the data to a simulation based on the time-dependent Ginzburg-Landau theory, using the laser excitation fluence as an adjustable parameter controlling the quench conditions in both experiment and theory. The comparison reveals the presence of significant superconducting fluctuations which precede the transition on short timescales. By including superconducting fluctuations as a seed for the growth of the superconducting order we can obtain a satisfactory agreement of the theory with the experiment. Remarkably, the pseudogap excitations apparently play no role in this process.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000378815800003 Publication Date 2016-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; We wish to acknowledge the useful discussion with T. W. Kibble regarding the importance of a variable quench rate in the experiment. The funding was provided by European Research Council advanced grant TRAJECTORY. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:144701 Serial 4683  
Permanent link to this record
 

 
Author Grujić, M.M.; Ezawa, M.; Tadic, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Tunable skewed edges in puckered structures Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 245413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E-z. A topological argument is presented, revealing the condition for the emergence of such edge states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377802700010 Publication Date 2016-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). M.E. is thankful for the support by the Grants-in-Aid for Scientific Research from MEXT KAKENHI (Grants No. 25400317 and No. 15H05854). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134599 Serial 4268  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Comment on “Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer” Type Editorial
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 247401  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract In a recent paper [Phys. Rev. B 89, 125418 (2014)], the authors argue that it is possible to map the electronic properties of twisted bilayer graphene to those of bilayer graphene in an in-plane magnetic field. However, their description of the low-energy dynamics of twisted bilayer graphene is restricted to the extended zone scheme and therefore neglects the effects of the superperiodic structure. If the energy spectrum is studied in the supercell Brillouin zone, we find that the comparison with an in-plane magnetic field fails because (i) the energy spectra of the two situations exhibit different symmetries and (ii) the low-energy spectra are very different.  
  Address  
  Corporate Author Thesis  
  Publisher Amer physical soc Place of Publication College pk Editor  
  Language Wos 000377802200009 Publication Date 2016-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134601 Serial 4151  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: