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Effect of doping and elastic properties in (Mn,Fe)2(Si,P)
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Mixed magnetism (the coexistence of strong and weak magnetism in one material) is regarded as the origin
of the giant magnetocaloric effect (GMCE). A good example is (Mn,Fe)2(Si,P), which is established as one
of the best magnetocaloric materials available. Tuning the material properties are essential for optimizing its
performance, and a straightforward way to do that is by doping. In this article, an ab initio electronic structure
method was used to calculate the structure and magnetic properties of 3d-transition-metal-doped (Mn,Fe)2(Si,P)
materials for magnetocaloric applications (transition metals are Cr, Co, Mn, Ni, Cu). For a steady performance,
the material should be mechanically stable. A detailed analysis of the elastic constants shows that the mechanical
stability of the (Mn,Fe)2(Si,P) system increases significantly by doping with boron without affecting the magnetic
properties. Insights of the influence of doping enable future studies to understand and predict better magnetocaloric
materials.
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I. INTRODUCTION

In recent years, the growing demand for energy has become
a major concern for us. Since conventional sources of energy
are limited and traditional technology has almost reached
its technical boundary of energy efficiency, it is necessary
to explore new potential electric devices that can overcome
these challenges. Refrigeration is a major source of energy
consumption in both domestic and in industrial environments.
The traditional method for refrigeration has many weakness,
primarily its low efficiency. Hence, more advanced methods
such as magnetic cooling, which incorporate magnetocaloric
materials, is promising. After the discovery of the giant
magnetocaloric effect (GMCE) by Pecharsky and Gschneidner
in Gd5Ge2Si2 [1], room-temperature refrigeration has become
a reality. During the past decade, a lot of research [2,3]
has focused on this field and several classes of materials
including MnFe(P1−xAsx)[4], La(Fe,Si)13 [5–7] and their
hydrides [8] Mn(As,Sb), FeRh [9], Heusler alloys [10], and
Mn2Sb have been proposed as promising candidates for mag-
netic refrigerants. Some of the materials exhibiting the giant
magnetocaloric effect, viz. La(Fe,Si)13 and MnFe(P1−xTx)
(with T = Si, Ge, and As) can be tuned for minimal hysteresis
loss around the phase transition, which is necessary for
its cyclic operation. The lower hysteresis is particularly
important when aiming at operations in low magnetic fields
(below 1 T), making La(Fe,Si)13- and MnFe(P1−xTx)- based
materials most promising for real-life applications [11]. The
large MCE in cubic La(Fe,Si)13-based materials is associated
with both temperature and a field-induced metamagnetic
transition that comes along with a 1.5% volume change.
Whereas hexagonal MnFe(P1−xTx)-based materials display
a temperature and field-induced magneto-elastic transition
that is accompanied by a significant change in the ratio
c/a but hardly no change in the volume. This simultaneous
occurrence of magnetic and elastic transition at the Curie
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temperature TC is responsible for their enhanced performances.
In last few years, further attempts were made to tune the
material properties to raise the performance of these materials
for better applications. For example, the Si : P ratio or the
Mn : Fe ratio can be varied [12–14] to modify the transition
temperature, transition order, hysteresis, crystal parameters,
and magnetic properties. Similarly, different doping elements
(such as Co, Ni, Cu, Cr, etc.) were used during the experiments
for similar purposes [15,16]. A small amount of dopants can
enhance their performance significantly without changing the
stoichiometry of the lattice. An atomistic understanding of
the effect of dopant on the material is required to classify
better dopant and to tune the properties in a controlled way.
In addition to this, the magnetocaloric material is required
to be mechanically stable for sustainable repetitive operation
in a magnetic cooler. The elastic properties near the phase
transition play the pivotal role for their stability and brittleness.
Various studies [17–20] were done previously to measure the
mechanical stability of a material under stress. During the
magneto-elastic transition, (Mn,Fe)2(Si,P) does not exhibit
an abrupt volume change at the phase transition but only
the crystal parameters change [21]. This also suggests a
minor change in the volume-dependent elastic constants at TC;
however, the directional elastic constants might experience
greater changes.

In this paper, we investigate the electronic structure and
the magnetic properties of (Mn,Fe)2(Si,P) by using density
functional theory (DFT) and the effect of doping on these prop-
erties. The results presented here will help future studies select
the appropriate dopant elements for the desired magnetocaloric
operations. We also evaluate the complete set of elastic
parameters for boron-doped and undoped MnFeSi0.33P0.66 by
applying several volume-conserved deformations. By using
the values obtained from our studies we classify the materials
based on their mechanical stability. Our study establishes
the fact that doping with boron significantly increases the
elastic constants as well as the mechanical stability of the
magnetocaloric material for sustainable operation without
altering the magnetic properties.
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II. DETAILS OF CALCULATION

We performed density functional theory calculations by
using the Vienna ab initio simulation package (VASP) [22],
employing the projector augmented wave (PAW) method.
Exchange interactions were taken into account by using the
generalized gradient approximation (GGA) by Perdew, Burke,
and Ernzerhof (PBE) [23]. For all the calculations, PAW data
sets were used with 1s, 2s, 2p, and 3s core states frozen for
Mn. In Fe atoms, an additional 3p semicore state was kept
frozen, since it lies deeper in energy. For Si and P, 1s, 2s,
and 2p core states were kept frozen. For the Brillouin zone
integration we used a �-centered k-point mesh of 3 × 3 × 10
points in the irreducible part of the Brillouin zone. The energy
cutoff of the plane-wave function is taken at 500 eV, and
for smearing a Gaussian function with smearing width of
0.05 eV was employed. The atomic positions were relaxed for
all the calculations with a criterion for the force convergence
of 1 meV/Å for the atoms. The energies and eigenvalues were
converged to 0.01 meV. The (Mn,Fe)2(Si,P) series of materials
has a layered hexagonal structure (space group 189/P6̄2m). Fe
and Mn atoms prefer to occupy 3f and 3g sites [24] and Si and P
atoms usually occupy 2c and 1b sites [25], respectively (Fig. 1).
These Wyckoff sites containing Mn and Fe atoms comprise
two parallel alternating layers. Both the Mn and Fe atoms are
magnetic and Dung et al. [12] have explained the behavior of
individual atoms within the crystal. It was shown that Mn and
Fe behave as strong and weak magnets, respectively, within
the lattice; i.e., the magnetic moment rearranges for the Mn
atoms but vanishes in case of Fe atoms during a ferromagnetic
(FM) to paramagnetic (PM) phase transition. Since both of
these elements are transition metals located in the third row
of the periodic table, other 3d-transition-metal elements were
chosen for doping (Cr, Mn, Co, Ni, Cu at the 3f site and Co,
Ni, Cu at the 3g site) without deforming the crystal structure
substantially. For obtaining a systematic understanding of the
effect of dopant atoms within the crystal structure, charge
density differences were plotted and the occupation of electron
orbitals was calculated.

An antiparallel magnetic ordering with a 1 × 1 × 2 super-
cell is used as an approximation to model the PM phase for
the undoped system. The moments of the atoms within the
same unit cell remain constant and an alternating arrangement

FIG. 1. Schematic representation of MnFeSi0.33P0.66 unit cell.
Mn and Fe atoms are placed at 3g (square pyramidal, red) and 3f
(tetrahedral, green) crystallographic sites, respectively.

of spin-up and spin-down moments were used along the z

direction; for details see the supplemental material [26]. This
approximation worked well with this series of materials, as
proved in Sec. IV. We have chosen MnFeSi0.66P0.33 stoichiom-
etry for the calculations with a 1 : 1 and 2 : 1 ratio for the
metallic and nonmetallic atoms, respectively, to distinguish the
crystallographic sites with the chemical species. The undoped
unit cell of MnFeSi0.66P0.33 is composed of nine atoms and
the lattice parameters are afer = 6.16 Å, cfer = 3.25 Å in the
FM state and apara = 6.08 Å, cpara = 3.47 Å in the PM state
as obtained from the optimization of the crystal parameters.
This matches well with the experiments [16]. The point group
symmetry reduces from D3h to C3v due to the flipping of
moments between nearest unit cells in the 1 × 1 × 2 supercell.
Since a small amount of doping (8%) will not change the
lattice parameters significantly, we kept the optimized lattice
parameters the same throughout our calculation after doping.
We created a 2 × 2 × 1 supercell with one dopant atom
replacing Mn or Fe at the 3g or 3f sites, respectively, in the
FM state. The PM phase is modeled by doubling that FM
supercell with antiparallel ordering along the z direction to
make the total moment zero (see supplemental material [26])].
The lattice parameters for this 2 × 2 × 2 supercell are taken
from the optimized undoped unit cell. For both magnetic cases,
the atomic positions were relaxed with the force and energy
convergence criteria specified before.

III. RESULTS AND DISCUSSIONS

A. Effects of doping

In the FM state of undoped MnFeSi0.66P0.33, the local
moments of Fe and Mn are 1.509μB and 2.823μB , respec-
tively. In the PM state the local moments of Fe and Mn are
0.695μB and 2.805μB , respectively. These values of local (and
total) magnetic moments directly influence the magnetocaloric
properties and can be tuned by doping with other magnetic
atoms from the 3d transition-metal row. In the first case of
doping, an Fe atom at the 3f Wyckoff position is replaced by a
Cr, Mn, Co, Ni, or Cu atoms. It is predicted in our calculation
(see Table I) that the local magnetic moments of the dopant
atoms (Cr to Cu) at the 3f site are lower than that of the Fe
atoms at the same site and ranging from 0.930μB to 0.008μB

in the FM state. This is a consequence of the fact that the
number of valence electrons increase from left to right in the
periodic table and hence the magnitude of magnetic moment
decreases. The Cr-doped sample is interesting in particular,
since the direction of magnetic moment of the Cr atom is
antiparallel to the other Fe atoms in the unit cell. However, in
all other cases of doping, the magnetic moment of the dopant
atoms are parallel to the Fe moment within the 3f plane. The
local moment of all the magnetic atoms increase with doping
ranging from Cr to Cu. The 3d shell of the Cr atom is largely
unoccupied while for Cu it is almost filled; hence, Cr is more
prone to bonding compared to Cu with neighboring Fe or Mn
atoms. Considering that the chemical bonding competes with
magnetism, the polar-covalent bond with the Mn or Fe atoms
in Cr-doped sample shows a lower magnetic moment than that
in the Cu-doped sample. Cu has the weakest bond; which in
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TABLE I. The local and total magnetic moment and energy
calculated per formula unit (f.u.) for MnFe0.92T0.08Si0.66P0.33 where
T = Cr, Mn, Co, Ni, and Cu in both ferromagnetic and paramagnetic
configurations replace Fe atom at the 3f Wyckoff site.

FM PM PM-FM
moment moment energy
μB/f.u. μB/f.u. eV/f.u.

MnFe0.92Cr0.08Si0.66P0.33

Mn (3g) 2.797 2.793
Fe (3f) 1.461 0.541
Cr (3f) − 0.930 1.796
Total 3.966 0.004 0.260
Mn1.08Fe0.92 Si0.66 P0.33

Mn (3g) 2.802 2.798
Fe (3f) 1.491 0.629
Mn (3f) 0.718 2.170
Total 4.129 0.000 0.259
MnFe0.92Co0.08Si0.66P0.33

Mn (3g) 2.838 2.815
Fe (3f) 1.525 0.802
Co (3f) 0.587 0.017
Total 4.185 0.001 0.267
MnFe0.92Ni0.08Si0.66P0.33

Mn (3g) 2.853 2.826
Fe (3f) 1.556 0.710
Ni (3f) 0.168 0.003
Total 4.195 0.000 0.262
MnFe0.92Cu0.08Si0.66P0.33

Mn (3g) 2.859 2.823
Fe (3f) 1.575 0.551
Cu (3f) 0.008 0.002
Total 4.206 0.000 0.244

turn enhances local moments of the neighboring atoms and
henceforth the total moment.

There are certain trends that we observe from the density
of states (DOS) pictures (see Fig. 2). The partial density of
states (pDOS) for all the dopant atoms within the unit cell of
MnFe0.92T0.08Si0.66P0.33 are shown. As the empty 3d shells are
filling up (top to bottom of Fig. 2), the states above the Fermi
energy decrease and the DOS shifts towards lower energy.

In the second set of calculations, the Mn atom at the 3g
site is replaced with Co, Ni, and Cu with the FM and PM
configurations. Changing the dopant atoms from Co to Cu,
the local as well as total magnetic moment declines as the
number of unfilled 3d orbitals decreases. The local moment of
the dopant atoms at the 3g sites (see Table II) are marginally
higher than that in the 3f sites, as shown in Table I.

This can be explained on the basis of the nearest-neighbor
distances. The 3f site is tetragonal whereas the 3g site is square
pyramidal with nearest-neighbor distances of 2.26 and 2.46 Å,
respectively. Therefore the dopant elements at the 3g site have
lesser bonding probability as compared to those at the 3f site.
As a result, the local moment at the 3f position is comparatively
smaller than that in the other site for the same element. For the
same reason, Mn and Fe atoms in Mn0.92T0.08FeSi0.66P0.33 have
lesser fluctuation in their local moment values with various
doping compared to those shown in Table I. We noted from

FIG. 2. Partial density of states of T = Cr, Mn, Co, Ni and Cu in
MnFe0.92T0.08Si0.66P0.33 compounds in the ferromagnetic phase. Zero
corresponds to the Fermi energy (EFermi). The red and blue correspond
to the spin-up and spin-down states, respectively.

TABLE II. The local and total magnetic moment and energy
calculated per f.u. for Mn0.92T0.08FeSi0.66P0.33 where T = Co, Ni,
Cu in both ferromagnetic and paramagnetic configurations replace
the Mn atom at the 3g Wycloff site.

FM PM PM-FM
moment moment energy
μB/f.u. μB/f.u. eV/f.u.

MnFe0.92Co0.08Si0.66P0.33

Mn (3g) 2.848 2.837
Fe (3f) 1.523 0.809
Co (3g) 0.989 0.705
Total 4.118 0.000 0.763
Mn0.92Ni0.08FeSi0.66P0.33

Mn (3g) 2.863 2.835
Fe (3f) 1.558 4.115
Ni (3g) 0.322 0.196
Total 4.115 0.000 0.765
Mn0.92Cu0.08FeSi0.66P0.33

Mn (3g) 2.849 2.815
Fe (3f) 1.523 0.802
Cu (3g) 0.023 0.017
Total 4.041 0.001 0.267
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FIG. 3. Partial density of states of T = Co, Ni and Cu in
Mn0.92T0.08FeSi0.66P0.33 compounds in the ferromagnetic phase. Zero
corresponds to the Fermi energy (EFermi). The red and blue correspond
to the spin-up and spin-down states, respectively.

Tables I and II that the local moment of the same dopant
elements are relatively larger in the 3g site compared to the
3f site and that the pDOS (Figs. 2 and 3) is more localized
below the Fermi energy. A sizable difference is observed when
we compared the change in local moments for each dopant
atoms from the FM to PM state. The magnetic moments of
these atoms at the 3f site change significantly (70%–100%)
during the phase transition whereas the same elements at the 3g
site show rather smaller (25%–40%) change. This observation
suggested that the strong or weak magnetic behavior is more
of a site-dependent property rather than an element-specific
property.

B. Charge density difference and d-orbital occupancy

To explain the insight of the effect of doping, we plotted the
electron-density differences for the compounds. The charge
densities were calculated for both the FM and PM phases,
respectively. Then the latter is subtracted from the FM charge
density. We noticed that the change in the charge density is
much smaller in the 3g plane compared with the 3f plane, so
we have shown only the 3f planes for all three cases of doping
(Fig. 4). This change in charge density is responsible for the
change in chemical bonding that initiates the magneto-elastic
transition [12]. In Figs. 4(a) and 4(b), the highlighted section
around the Cr and Mn sites have similar characteristics of
charge density while the Co site shows some differences. This
can be explained by bonding characteristics of the dopant atom
with its neighbors. The charge density depletes between Si
and T (=Cr, Mn) atoms for FM-to-PM transition leading to
the decline of bonding strength between them. Since chemical
bonding and magnetic moments are competing with each other,
the magnetic moment increases for those two dopant atoms
during that transition, as shown in Table I.

Since the dopant elements used in this present discussion
are 3d elements with a nonzero DOS near the Fermi energy
(see Fig. 2), the magnetic properties and bonding with the
neighboring atoms are primarily governed by the 3d electrons.
In this study, we calculated the occupation number of all
individual 3d orbitals in both the FM and PM phases. In
Fig. 4 we observe that, at the doping site, two different sets
of orbitals are centered around the dopant atom. Since the
p-orbital occupancy does not change with the phase transition,
these orbitals are 3d orbitals. Comparing with Table III and
Fig. 4 we find that the orbital with four lobes (red around Cr
and Mn and blue around Co) is the dzx orbital. Similarly, in
Table III the 3d orbital occupation numbers suggest that the
blue orbitals around Cr and Mn atoms are dz2 orbitals.

The highlighted orbitals around Co atom, as shown in
Fig. 4(c), are same in appearance as the rest of the Fe atoms
within the plane; however, the change in orbital occupation

FIG. 4. Charge-density-difference plots for (a) Cr-doped, (b) Mn-doped, and (c) Co-doped samples. Paramagnetic charge density is
subtracted from ferromagnetic charge density. The color scheme is red for positive charge density and blue for negative charge density. The
black lines correspond to isosurfaces with no change in electron densities. The insets show the charge density around the dopant atoms in all
three cases.
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TABLE III. The d-orbital occupancy of T (=Co, Cr, Mn) in
MnFe0.92T0.08Si0.66P0.33 for both ferromagnetic (FM) and paramag-
netic (PM) configurations.

dxy dyz dzx dz2 dx2−y2

Co-FM 1.511 1.453 1.523 1.469 1.445
Co -PM 1.487 1.445 1.554 1.438 1.473
Mn -FM 1.051 1.041 1.084 0.983 1.032
Mn -PM 1.031 1.062 0.960 1.062 1.060
Cr -FM 0.885 0.945 0.815 0.874 0.981
Cr -PM 0.927 0.995 0.752 0.921 0.936

is much less pronounced during the FM-to-PM transition.
It indicates a smaller change in the local magnetic moment
for Co atoms compared to Fe atoms (see Table I). In all
the above-discussed cases, doping at the Fe sites leads to
the devaluation of local magnetic moment, which affects the
magnetocaloric materials.

IV. ELASTIC PROPERTIES

The elastic properties for the polycrystalline magne-
tocaloric materials are important because of their relation to the
mechanical stability of the system. During the simultaneous
elastic and magnetic transition at TC, the material remains
stable if it exhibits a minimal change in crystal-structure
parameters and has higher elastic constants. An understanding
is essential of the relation between the elastic constants and
their mechanical stability for the magnetocaloric material and
also of the influence of suitable dopant material (viz. boron)
on the elastic properties. Boron is a nonmagnetic semimetal
and can be placed in a nonmagnetic (2c or 1b site) site with a
significant influence in the elastic properties but with hardly no
affect on the magnetic properties. Studies have been carried out
previously to find the elastic constants of several systems by
using DFT [18–20]. Since MnFeSiP systems have a hexagonal
crystal structure, there are five independent elastic constants to
construct the full elastic-constant matrix [27,28]. Using those
directional elastic constants, we calculated the polycrystalline
elastic constants by using the Voigt or Reuss assumptions [29].

First we optimized the structure of MnFeSi0.33P0.66 using
VASP [22] for both ferromagnetic and paramagnetic phases.

FIG. 5. Total energy per formula unit as a function of volume per
unit cell for MnFeSi0.33 P0.66 in FM and PM states. The energy scale
has been shifted to the energy minima in the FM state. The parabolas
are fit with the Murnaghan equation of state [30]. The bulk moduli
are calculated from the slope.

Then, starting from these equilibrium structures, the volume
of the unit cell is varied in small steps. For every such step,
the lattice parameters and the ionic positions of the lattice
are optimized with energy- and force-convergence criteria
of 10−5 eV/atom and 0.005 eV/Å, respectively. By using
the relation for an isotropic lattice, Bv = −V0∂

2E/∂V 2, the
bulk modulus is obtained for both of the magnetic states.
From Fig. 5, the optimized volume in ferromagnetic and

paramagnetic states is obtained as 106.06 and 103.54 Å
3

with the c/a ratio of 0.495 and 0.566, respectively. The
bulk modulus changes from 184.30 to 177.44 GPa during the
ferromagnetic-to-paramagnetic phase transition. Although the
c/a ratio is estimated below the experimentally obtained value,
the increment from ferromagnetic to paramagnetic transition is
consistent with experiment. The bulk modulus values suggest
that the ferromagnetic state is elastically more stable than the
paramagnetic phase.

In an alternative method, the energy is calculated from
multiple sets with different lattice parameters. The atomic
positions are optimized for every such individual calculation.

FIG. 6. Lattice parameter as a function of total energy per unit cell for MnFeSi0.33P0.66 in (a) ferromagnetic, (b) paramagnetic, and
(c) nonmagnetic cases. The red dots correspond to the data obtained from the calculations, and the paraboloids were fit to those points by
using a fourth-order polynomial. The green dots represent the minimum-energy points on the paraboloid, representing the equilibrium lattice
constants.
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TABLE IV. Local and total magnetic moment (in μB/f.u.) for MnFeSi0.33P0.66 and MnFeSi0.33P0.58B0.08 in ferromagnetic (FM) and
paramagnetic (PM) states.

MnFeSi0.33P0.66 MnFeSi0.33P0.58B0.08

FM PM FM PM

Mn 2.895 2.884 2.875 2.862
Fe 1.549 0.683 1.526 0.675
B − 0.196 − 0.015
Total 4.350 0.001 4.297 0.000

In Fig. 6, the total energy as a function of lattice parameters
is plotted. The minima of the paraboloid gives the optimized
value of the lattice parameters. Thus, in the ferromagnetic
phase, the equilibrium lattice parameters obtained are a =
6.25 Å, c = 3.12 Å. To model the paramagnetic phase, we
conducted two separate sets of calculations. In the first case,
a nonmagnetic calculation is performed and the lattice param-
eters a = 5.75 Å and c = 3.55 Å are obtained. In the other
case, a paramagnetic configuration is chosen and a = 6.01 Å,
c = 3.42 Å are obtained. The values of lattice parameters
in the FM and PM states are close to experiment with a
similar trend (FM: a = 6.17 Å, c = 3.28 Å; PM: a = 6.02 Å,
c = 3.48 Å) [16]. This makes the PM configuration a better
approximation to model the paramagnetic state compared to
the nonmagnetic calculation. In a similar graph of energy
versus lattice parameter, the semimajor axis of the paraboloid
would make a 45◦ angle with both the a and c directions
for isotropic cubic material. And in an extremely anisotropic
material like graphite where the atomic interaction along the c

direction is negligible compared with that within the a-b plane,
the semimajor axis is almost parallel to the c direction [20].
From the shape of the paraboloid as projected on the a-c
plane in Fig. 6, it can be identified that the anisotropy is along
the c direction; however, the anisotropy is well below that of
graphite.

The hexagonal lattice has five independent elastic constants
which can be calculated by applying volume-conserved defor-
mations along the certain crystal directions specified by Lars
Fast et al. [27] The directional elastic constants are calculated
for MnFeSi0.33P0.66 after optimizing the equilibrium volume
of the unit cell for both ferromagnetic and paramagnetic
alignment. Recently F. Guillou et al. found experimentally
that a small amount of boron doping enhances the mechanical
stability of the MnFeSiP system while keeping the magne-
tocaloric properties intact [31–33]. To understand the effect of
doping on elastic properties of the MnFeSiP-based systems,
8% boron was doped at the nonmagnetic site by substituting a
Si atom. The volume and the lattice parameters of the unit cell
are optimized for MnFeSi0.33P0.58B0.08. The local and the total
magnetic moments are listed in Table IV for both undoped
and boron-doped systems. Boron is a nonmagnetic atom, and
it was chosen to be placed at the nonmagnetic 2c site. As a
result, the boron carries very small induced magnetic moment
in the FM phase that vanishes in the low-moment phase. It
is important to notice from Table IV that boron doping has
minimal influence on the total magnetic moment of the unit cell
(reduces by ≈1.2%). However, this small amount of doping
significantly modifies the elastic properties of the systems,
which is essential to obtain the mechanical stability of the

material without compromising the magnetocaloric effect. It
was also noted that the nearest Fe atoms to the dopant atoms
gain ≈3% moments, while the nearest Mn atoms lose ≈1%
local moments.

In Table V the elastic constants for these two systems in both
FM and PM phases are listed; they are obtained by applying
the volume-conserved deformation to the unit cell. However,
for a polycrystalline sample, the polycrystalline bulk modulus
(B), shear modulus (G) are determined by using the Voigt and
Reuss assumptions (Table VI). In the Voigt assumption, the
uniform strain in the polycrystalline sample was equated to the
external strain and in Reuss assumption; the uniform stress was
balanced with external stress. By using energy considerations,
Hill later proved that these two assumptions represent the
upper and lower limit for a true polycrystalline constant and
an arithmetic mean would represent the true value [29]. The
Young modulus (Y ) and the Poisson’s ratio (σ ) were also
calculated according to Hill’s method. From the calculated
elastic constants we further determined Debye temperature
(θD) [34], which correlates with the physical properties of
the solid; for example, specific heat, melting temperature, etc.
Below θD, there is no difference between the adiabatic and
isothermal elastic constants. Within this low-temperature limit,
the vibrational excitations originate from acoustic vibrations;
so θD calculated from elastic constants is the same as that
obtained from the specific-heat data. In Table VI the values
of BH, GH, and YH for MnFeSi0.33P0.66 are lower than that of
MnFeSi0.33P0.58B0.08 for the FM and PM states, respectively.
This suggests that doping with boron increases the resistance
of the material against deformation, thus giving enhanced
mechanical stability to the system. The bulk modulus as
calculated from the volume deformation using the isotropic
lattice assumption and that of the polycrystalline Voigt
assumption gives comparable values for MnFeSi0.33P0.66. The
Debye temperature as evaluated in Table VI is sufficiently

TABLE V. Directional elastic constants (in eV/Å
3
) for

MnFeSi0.33P0.66 and MnFeSi0.33P0.58B0.08 in ferromagnetic (FM) and
paramagnetic (PM) states.

MnFeSi0.33P0.66 MnFeSi0.33P0.58B0.08

FM PM FM PM

C11 1.925 1.850 2.046 1.888
C12 0.749 0.677 0.804 0.672
C13 0.899 0.841 0.983 0.831
C33 1.422 1.812 1.509 1.798
C55 0.746 0.703 0.791 0.722
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TABLE VI. Polycrystalline bulk modulus (B in GPa) and shear modulus (G in GPa) under Voigt, Reuss, and Hill assumptions. Young
modulus (Y in GPa), Poisson’s ratio (σ ) and Debye temperature (θD in K) with the Hill’s assumption for MnFeSi0.33P0.66 and MnFeSi0.33P0.58B0.08

in ferromagnetic (FM) and paramagnetic (PM) states.

BV BR BH GV GR GH YH σH θD

MnFeSi0.33P0.66 (FM) 184.62 182.32 186.08 95.69 86.70 91.19 235.07 0.286 544.24
MnFeSi0.33P0.66 (PM) 164.31 181.91 173.11 87.40 95.81 91.61 233.61 0.284 552.76
MnFeSi0.33P0.58B0.08 (FM) 198.43 196.08 197.25 100.92 90.20 95.56 246.74 0.292 556.49
MnFeSi0.33P0.58B0.08 (PM) 182.42 182.36 182.39 100.41 97.99 99.20 251.92 0.269 563.78

larger than that of TC of the respective systems, indicating that
the calculated polycrystalline elastic constants for both the
FM and PM states shall be comparable to the elastic constants
obtained from the specific-heat data.

According to Pugh [35], B measures the resistance to
fracture and G represents its resistance towards plastic de-
formation. So a ratio of B/G determines the ductility and
brittleness of the corresponding material. The critical value
of 1.75 separates these two kinds. A value above (below) 1.75
represents ductility (brittleness). For example, the B/G ratio of
steel (ductile) and glass (brittle) are 2.01 and 1.33, respectively.
For MnFeSi0.33P0.66 (in Table VI), the ratio is 2.04 in the FM
phase and 1.88 in the PM phase and, for MnFeSi0.33P0.58B0.08,
the ratio is 2.06 and 1.84, respectively, for the FM and PM
phases. These values clearly suggest that the material under
discussion exhibits ductility, which reduces during a phase
transition from the ferromagnetic to the paramagnetic phase.
The Poisson ratio is just above the lower limit (0.25) of central
force solid and higher values represent directional bonding.

V. CONCLUSIONS

In this article, we discuss the effect of doping by var-
ious 3d transition metals on the magnetic properties of
MnFeSi0.66P0.33. A clear and complete explanation of the
change in electronic and magnetic properties is provided by
analyzing the electronic structure around the dopant atoms.
We show how different 3d-transition-metal atoms in the series
bond with neighboring atoms in both 3f and 3g crystal-
lographic sites. The charge-density plot and the following
analysis based on the d-orbital occupation numbers help us
to identify the orbital structure and its influence on chemical
bonding. The size of the magnetocaloric effect, as measured by
quantities such as latent heat and �Tad (adiabatic temperature

change) depend on the magneto-elastic transition. And the
latent heat in this magneto-elastic transition has electronic and
magnetic contributions and elastic transitions [7]. This study
accompanied by experiments will help in the understanding of
the interconnection between the change in magnetic properties
and the size of the magnetocaloric effect.

We studied the elastic properties and the mechanical
stability of magnetocaloric materials, which are essential
for determining the long-term applicability in a magnetic
refrigerator, and the effect of doping on them. A good
magnetocaloric material, which can be used with a repeating
magnetization and demagnetization cycle, must exhibit me-
chanical stability at temperatures around its phase transition.
Both lattice structure and the crystallinity of GMC materials
determine this. We presented a complete documentation of
the crystalline and polycrystalline elastic constants, which
decide this mechanical stability of the material. The individual
directional and polycrystalline elastic constants are within
an implicit error of 10% for the DFT calculations [36].
In our calculation, we found the relatively high values of
elastic constants that are essential for resistance against
deformation. Our study conclusively shows that doping with
boron significantly increases the elastic constants and hence
the mechanical stability of magnetocaloric material without
compromising the magnetic properties (Table IV), which is
essential for its sustainable operation.
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