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We provide the plasmon spectrum and related properties of the three-dimensional (3D) Dirac semimetals

(DSMs) Na3Bi and Cd3As2 based on the random-phase approximation (RPA). The necessary one-electron

eigenvalues and eigenfunctions are obtained from an effective k ·p Hamiltonian. Below the energy at which

the velocity vz along the kz axis vanishes, the density of states differs drastically from that of a 3D electron gas

(3DEG) or graphene. The dispersion relation is anisotropic for wave vectors parallel (q) and perpendicular (qz)

to the (x,y) plane and is markedly different than that of graphene or a 3DEG. The same holds for the energy-

loss function. Both depend sensitively on the position of the Fermi energy EF relative to the region of the Berry

curvature of the bands. For EF below the energy at which vz vanishes, the range of the relevant wave vectors q

and qz shrinks, for qz by about one order of magnitude.

I. INTRODUCTION

In the last decade three-dimensional (3D) Dirac semimetals
(DSMs), in which doubly degenerate conduction and valence
bands cross linearly at one or more Dirac points, have been
studied extensively [1–8]. The electronic dispersion relation
of the low-energy excitations around the Dirac points is linear
and resembles the massless Dirac equation of relativistic par-
ticle physics. In particular, it has been found that Na3Bi and
Cd3As2 are 3D DSMs that have two symmetry Dirac points
connected by a pair of opposite chiral Fermi arcs [2, 3].

Angle-resolved photoemission spectroscopy (ARPES) ex-
periments unveil a pair of stable 3D bulk Dirac points in both
Na3Bi and Cd3As2 located on opposite sides of the Brillouin
zone center (Γ piont) which are protected by crystal symme-
tries [4–8]. The Fermi arc surface state, Berry curvatures, and
anisotropic energy dispersions are observed as well in their
3D energy bands which is in line with theoretical predictions
[4, 6]. This unique energy dispersion of 3D DSMs leads to
many interesting properties, such as ultrahigh carrier mobili-
ties [9–11], chiral anomalies [12, 13], topological phase tran-
sitions [14, 15], ultrafast transient times [16], nonlinear opti-
cal responses [19, 20], and quantum Hall effect in thin films
[17] and in the bulk [18]. Reviews of their properties, as well
as of those of Weyl semimetals, can be found in Refs. [21]
and [22].

Despite the strong research activity in DSMs, we find that
their collective excitations have not been studied as exten-
sively as other properties. We are aware only of the studies
of Ref. [23] for Na3Bi and Cd3As2, of Refs. [24, 25] for gen-
eral 3D DSMs, and of Ref. [26] for PtTe2. In all of them
only limited aspects of these excitations have been studied
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with very simplified energy spectra that are valid only very
close to the Dirac points. In particular, Ref. [24] used the
spectrum Ek,s = sh̄vF k, where k is the 3D momentum, vF is
the Fermi velocity, and s the band index. This spectrum was
criticized in Ref. [21]. Transport studies of 3D DSMs indicate
that the simple energy spectra cannot explain their electronic
excitations well due to their unique electronic band structures
so that their plasmon modes remain unclear [10, 11].

The aim of this work is to present a comprehensive RPA
treatment of collective excitations in Na3Bi and Cd3As2 us-
ing the broadly accepted energy spectrum of the k ·p approx-
imation [2, 3], i.e., without unnecessary simplifications, and
present a full account of the plasmon spectrum and of the
corresponding energy loss. Using the energy band structures
of 3D DSMs we found that their collective excitations are
anisotropic and sensitively affected by the Berry curvature
of the bands. This is in sharp contrast to graphene or other
3D systems like layered graphene [27], Weyl semimetals [28],
and 3D DSMs with isotropic Dirac cones [26].

The work is organized as follows. In Sec. II, we present the
basics of the one-electron aspects and in Sec. III the relevant
dielectric functions. In Sec. IV, we present our results and
discussion and in Sec. V our summary.

II. ONE-ELECTRON ASPECTS

Na3Bi is a hexagonal crystal normally in its P63/mmc or
D4

6h phase. There are two nonequivalent Na sites noted as
Na(1) and Na(2). Na(1) and Bi can form simple honeycomb
lattice layers stacked along the c-axis. The Na(2) atoms are
sandwiched between the above-mentioned lattice layers and
connect to the Bi atoms in forming the layers of honeycomb
lattices. Na3Bi has an inverted band structure and its Fermi
surface consists of two isolated Fermi points [2]. Both time-
reversal and inversion symmetries are present in Na3Bi so that
there is fourfold degeneracy at each Fermi point around which
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the band dispersion can be linearized. Due to the lattice struc-
ture, asymmetric features of the electronic band structure are
expected for Na3Bi Dirac fermions. In the k·p approximation
[2], the Hamiltonian for low-energy electrons is given by

H(K) = εK × I +







MK Ak+ 0 B∗
K

Ak− −MK B∗
K 0

0 BK MK −Ak−
BK 0 −Ak+ −MK






, (1)

where K = (k,kz) = (kx,ky,kz) is the electron wave vector or
momentum operator, and I is the 4×4 unitary matrix. The z-
axis is the direction of stacking honeycomb lattice layers to
form Na(1) and Bi. Further, k± = kx ± iky, εK =C0 +C1k2

z +

C2k2, MK = M0 −M1k2
z −M2k2, and C0, C1, C2, M0, M1, M2

and A are band parameters [2, 29]. In Eq. (1), BK =
B3kzk

2
+ ∼ K3 gives a high-order contribution to the electron

motion, which is significant only at relatively large electron
momentum. The corresponding Schrödinger equation can be
solved analytically and the eigenvalues obtained are E±(K) =

εK ± [M2
K +A2k2 + |BK|2]1/2, where the + (−) sign refers to

the conduction (valence) band. There exist two Dirac points
at k = 0 and kz =±kc =±[M0/M1]

1/2, see Fig. 1.
The ARPES and spin-resolved ARPES measurements in-

dicate that the energy bands for both Na3Bi and Cd3As2 are
spin degenerate near the Dirac points [4, 7] and the observable
energy band splitting occurs in large energy and high mag-
netic field ranges [30]. These experimental works are in good
agreement with theoretical predictions for Na3Bi and Cd3As2

[2, 3]. The plasmons, induced by electron-electron (e-e) in-
teractions mainly occur in low-energy and small-momentum
regimes, in which case a spin degeneracy occurs. Thus, we
can neglect the high-order terms containing BK in Eq. (1). The
4× 4 matrix becomes block-diagonal in form with two 2× 2
matrices, the upper-left block Hu(K) and lower-right block
Hl(K), respectively. By time reversal symmetry of 3D DSMs,
we have Hl(K) = H∗

u (−K) [21]. This allows us to focus on
studying the Hu(K) which reads

Hu(K) =

(

εK +MK Ak+
Ak− εK −MK

)

. (2)

The resulting eigenvalues and eigenfunction of Eq. (2) are,
respectively,

EK,l = εK + l
[

M2
K +A2k2

]1/2
= εK + l

[

ξK,l +MK

]

, (3)

where l =+1 (−1) represents the conduction (valence) band,
and

ψK,l(R) = |K, l⟩= aK,l

(

1
bK,l

)

eiK·R, (4)

with R = (x,y,z), ξK,l =
[

M2
K +A2k2

]1/2 − lMK,

aK,l = Ak(ξ 2
K,l +A2k2)−1/2, bK,l = lξK,l/Ak−. (5)

Eqs. (1) - (5) also apply to Cd3As2 but with different parame-
ters [29].

It’s worth emphasizing that the band structures of 3D DSMs
are different from those of single-layer or multilayer 3D
DSMs. In the bulk 3D DSM samples that are unconfined
along the z-axis, kz is a continuous variable while in confined
systems kz is quantized for sufficiently small thicknesses due
to the formed quantum-well structure [2, 3]. The finite-size
effect removes the band inversion and opens a band gap for
sufficiently thin samples [3, 31]. The effect weakens with
increasing thickness and eventually the band inversion is re-
stored. A recent experimental study confirmed this prediction
in Cd3As2 thin films indicating that this feature is unique and
worth exploring it further [15]. In our case the bulk 3D DSMs
are extended and, in line with Eqs. (2) and (4), there is no
finite-size effect to consider.

In Fig. 1 we show the energy dispersions EK of Na3Bi (left
panels) and of Cd3As2 (right panels) given by Eq. (3). The
first row of panels shows the full dispersions, the second one
shows them as functions of k for fixed kz = kc, and the third as
functions of kz, for k = 0. We notice the following features.

(i) Both Na3Bi and Cd3As2 have two symmetric Dirac
points at the bottom of conduction band and at the top of the
valence band for k = 0 and kz = ±kc. The corresponding en-
ergies are E0 = C0 +C1M0/M1 (Na3Bi ∼ 7.62 meV, Cd3As2

∼−218.68 meV).
(ii) Near the two Dirac points the electron energies are

approximately linear, but the dispersions for both bands are
asymmetric and depend nonlinearly on k and kz.

(iii) The dispersions along the kz direction for both systems
show arch-bridge-like Berry curvatures from −kc to kc in both
conduction and valence bands. The top of the arch-bridge-like
energy spectrum is reached at k = kz = 0, which is in contrast
to a conventional 3D electron system where the minimum of
the conduction band is at k = 0 and kz = 0. The top of the
Berry curvature in the conduction band is at E1 = C0 + |M0|
(Na3Bi ∼ 23 meV, Cd3As2 ∼−209 meV).

(iv) The Berry curvatures in the energy bands imply that
the electronic density of states (DOS) should be much smaller
for E < E1 than that for E > E1 in n-doped 3D DSMs. Be-
cause the effect of Berry curvature in Na3Bi is stronger than
in Cd3As2, the DOS in Na3Bi should also change more than
in Cd3As2.

(v) The condition of carrier number conservation deter-
mines the Fermi energy EF . With Ne the electron density and

f+(EK,+) = [e(x−E+
F )/kBT + 1]−1 the Fermi-Dirac distribution

for electrons reads

Ne =
1

π2

∫ ∞

0
dkz

∫ ∞

0
dkk f+(EK,+). (6)

For n-doped Na3Bi, the Fermi level EF is in the conduction
band and the Fermi wave vector kF along the kz axis is much
larger than along the k direction; near the Dirac points it’s
about 10-20 times larger. But for Cd3As2 kF along the k di-
rection, it is about twice larger than along the kz axis. Ac-
cordingly, the electronic transitions will be different in Na3Bi
along the k or kz directions, but in Cd3As2 these differences
will be smaller. This conclusion, that Na3Bi has stronger
anisotropic properties than Cd3As2, has already been pointed
out in the literature [2–6].
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FIG. 1. (a) Energy dispersion EK of Na3Bi as a function of k and kz,

as given by Eq. (3). (b) EK as a function of k at kz = kc. The Dirac

point is at k = 0 with energy E0 = 7.6 meV. (c) EK as a function of kz

at k = 0. There are two Dirac points at kz =±kc. The top of the Berry

curvature in the conduction band is E1 ≃ 23 meV, its bottom in the

valence band at E2 ≃ −151 meV, and they are both located at k = 0

and kz = 0. (d), (e), (f): idem. as in (a), (b), and (c), respectively,

for Cd3As2. The energy of the Dirac point is at E0 ≃−218.68 meV.

The top of the Berry curvature in the conduction band is E1 ≃−209

meV and its bottom in the valence band at E2 ≃−229 meV. The red

curve shows the conduction band and the blue-dash-dotted curve is

the valance band. The green-dashed and black-dotted lines show the

Fermi energy EF for high and low electron density, respectively, see

Figs. 3 - 6.

(vi) It should be noted that the magnitude of the Fermi ve-
locity vF = 2A in Na3Bi (≃ 7.473 × 105 m/s) is similar to
that in Cd3As2 (≃ 7.6× 105 m/s). This is because the elec-
tron effective mass in Cd3As2 [32] (∼ 0.02− 0.042 me), as
found experimentally, is much smaller than that in Na3Bi [10]
(∼ 0.11− 0.24 me). The effective mass term M0 −M1k2

z in
Eq. (3), with parameters obtained from experiments, leads to
similar Fermi velocities in both systems though Na3Bi has a
larger kF wave vector than Cd3As2.

(vii) As in previous work [11] we measure EF from E0 =
7.6 meV. This suggests that EF will locate inside the range of
the Berry curvature when the electron density is lower than
Ne ∼ 4× 1018 cm−3 at low temperatures at which we have
EF < E1 −E0 meV [33].

For a n-type 3D DSM, the valence band is fully occupied
and electronic transitions occur from the valence to the con-
duction band. The density of states (DOS) for the conduction

FIG. 2. Density of states (DOS) D(E) for Na3Bi as a function of

the electron energy E (blue curve) with D0 =C2
0/A3 for Na3Bi. The

top of the Berry curvature in the conduction band is E1 ≃ 23.2 meV

and is marked by the red-dashed curve. At this value of the energy

the velocity ∂EK/∂kz vanishes (cf. Fig. 1), i.e., it corresponds to

an integrable van Hove singularity. The DOS for a 3DEG is shown

by the orange-dotted curve using the effective mass m∗ ≃ 0.11me of

Na3Bi and D0 = m∗3/2
√

2|C0|/(π h̄3) for a 3DEG. The black-dashed

curve is the result for graphene with energy dispersion E = h̄vF k

and D0 =C2
0/(h̄vF )

3. Arrows indicate the two values of EF used to

obtain the results shown in Figs. 3 - 6.

band is given by

D+(E) =−(gs/π)∑
k,kz

δ (E −EK,+), (7)

where gs = 2 counts for spin degeneracy. Though one of the
sums can be evaluated analytically, the result is too cumber-
some to be given here. Instead, the δ function is replaced by a
Lorentzian, of width Γ = 1 meV, and the integrals over k and
kz are carried out numerically.

In Fig. 2, we show the DOS D(E) as a function of the
electron energy E based on Eq. (7). For clarity we contrast
it with the result for a 3DEG and that for graphene using the
details given in the caption. As is known, for a 3DEG the

DOS is D(E)3D =
√

2m∗3E/(π h̄)2 ∝ E1/2. The sharp con-
trast between the two DOSs implies that a 3DEG has different
physical properties than 3D DSMs especially for E < E1, i.e.,
when EF is relatively low and near the Berry curvature. As
can be seen, the effect of the Berry curvature is still clear for
energies lower than E1 ≃ 23.2 meV.

These properties of the DOS for 3D DSMs imply that
their plasmon modes, for low energies and small momentum,
should mainly occur for small qz. In addition, it’s worth point-
ing out that the variation of the DOS in Cd3As2 will be differ-
ent from that of Na3Bi although the two systems are similar
and have the same energy dispersion. Based on the results of
Fig. 1, the electron energy for Cd3As2 along different wave
vector directions shows much less difference than in Na3Bi,
which means that the DOS in Cd3As2 changes less. In addi-



4

tion, the effect of Berry curvature in Cd3As2 will be weaker
than in Na3Bi and will lead to more weakly anisotropic prop-
erties in Cd3As2; this is in line with the experimental finding
in Na3Bi [4, 5] and Cd3As2 [6, 7].

III. DIELECTRIC FUNCTIONS

As we stated in Sec. II, for bulk 3D DSMs the low energy
electronic excitations along k and kz directions are well de-
scribed by the effective Hamiltonian Eq. (2). Thus, we can
study their anisotropic plasmon modes by applying Eqs. (3)-
(5) to the RPA dielectric functions based on a 3D Coulomb
potential V (R) with R = (x,y,z).

The electrostatic potential induced by the bare electron-
electron (e-e) interaction, V (R) = e2/(κ|R|), can be calcu-
lated via [34]

Vind(Q, t) =VQ ∑
K

∑
l,l′
⟨K+Q, l′|δN|K, l⟩⟨K+Q, l′|e−iQ·R|K, l⟩

= lim
η→0

VQV (Q, t)∑
K

∑
l,l′

Fl′,l(K,Q)Πl′,l(ω;K,Q),

(8)

where

Πl′,l(ω;K,Q) = gs

fl′(EK+Q,l′)− fl(EK,l)

EK+Q,l′ −EK,l − h̄ω + ih̄η
, (9)

is the corresponding density-density correlation function and

fl(x) = [e(x−E l
F )/kBT + 1]−1 is the Fermi-Dirac distribution

function. Further, E l
F is the Fermi energy or chemical po-

tential just above the band l and gs = 2 counts for spin de-
generacy. Here, the conservation law for momentum flowing
into and out of the interaction region has been applied, κ is
the dielectric constant for Na3Bi or Cd3As2, Q = (q,ϕ,qz) is
the change of the electron wave vector during an e-e scatter-
ing event, and VQ = 4πe2/(κQ2) is the 3D Fourier transform
of the Coulomb potential induced by the e-e interaction. δN

is the induced density and V (Q, t) is the total self-consistent
perturbed potential energy.

Using the expressions for the dielectric function Ê (ω,Q),
induced and total potential energy, we obtain

Ê (ω,Q) = 1− Vind(Q, t)

V (Q, t)

= 1− lim
η→0

VQ ∑
K

∑
l,l′

Fl′,l(K,Q)Πl′,l(ω;K,Q), (10)

where F(K,Q) is the form factor for many-body interactions
given by

Fl′,l(K,Q) = |⟨K+Q, l′|e−iQ·R|K, l⟩|2

= |a∗K+Q,l′aK,l(1+b∗K+Q,l′bK,l)|2

=

∣

∣

∣

∣

A2k|k+q|
√

(ξ 2
K+Q,l′ +A2|k+q|2)(ξ 2

K,l +A2k2)

×
(

1+
ll′ξK,lξK+Q,l′

A2[k2 +(kx − iky)(qx + iqy)]

)∣

∣

∣

∣

2

, (11)

here, |k+q|2 = k2+q2+2kq(cosθ cosϕ+sinθ sinϕ) = k2+
q2 +2kqcos(θ −ϕ), θ is the angle between k and x-axis, and
ϕ is the angle between q and x-axis. Eventually, the dielectric
function takes the form

Ê (ω,Q) =1− lim
η→0

4πe2gs

κQ2 ∑
K

∑
l′,l

Fl′,l(K,Q)

× fl′(EK+Q,l′)− fl(EK,l)

EK+Q,l′ −EK,l − h̄ω − ih̄η
. (12)

We now use the identity: limη→0[1/(x± iη)] = P{1/x}∓
iπδ (x), with P{1/x} the principal value and δ (x) the Dirac
delta function, to obtain the real and imaginary parts of the
dielectric function. Moreover, we replace h̄η by a small value
Γ, assumed to be caused, e.g., by impurity scattering. Then,
we obtain the real part

ERe(ω,Q) =1− 4πe2gs

κQ2 ∑
K

∑
l′,l

Fl′,l(K,Q)

× [ fl′(EK+Q,l′)− fl(EK,l)]

× (EK+Q,l′ −EK,l − h̄ω)

(EK+Q,l′ −EK,l − h̄ω)2 +Γ2
. (13)

Meanwhile, the imaginary part EIm(ω,Q) becomes

EIm(ω,Q) =
4π2e2gs

κQ2 ∑
K

∑
l′,l

Fl′,l(K,Q)[ fl′(EK+Q,l′)

− fl(EK,l)]δ (EK+Q,l′ −EK,l − h̄ω). (14)

It is very difficult to study the plasmon mode along an arbi-
trary direction of the 3D wave vector Q. Instead, we decom-
pose it in two components: Q⊥ = (0,0,qz) perpendicular to
the (x,y) plane, which will only act along the kz direction, and
Q∥ = (q,ϕ,0), with ϕ the angle between q and x-axis, which
is parallel to this plane.

A. Q perpendicular to the (x,y) plane

In the first case, the real part of Ê (K,Q) from Eq. (13) for
Q⊥ = (0,0,qz) becomes

E
⊥
Re(ω,qz) =1− 8e2

κπq2
z
∑
l′,l

∫ ∞

0
dkz

∫ ∞

0
dkk

×Fl′,l(K,qz)[ fl′(EK,qz,l′)− fl(EK,l)]

× (EK,qz,l′ −EK,l − h̄ω)

(EK,qz,l′ −EK,l − h̄ω)2 +Γ2
, (15)

with

EK,qz,l′ =C0 +C1(kz +qz)
2 +C2k2 + l′

√

M2
qz
+A2k2, (16)

Mqz = [M0 −M1(kz +qz)
2 −M2k2],

Fl′,l(K,qz) =

∣

∣

∣

∣

A2k2

√

(ξ 2
K,qz,l′

+A2k2)(ξ 2
K,l +A2k2)

×
(

1+ ll′ξK,lξK,qz,l′
/

A2k2
)

∣

∣

∣

∣

2

, (17)
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where

ξK,qz,l′ =
√

M2
qz
+A2k2 − l′Mqz . (18)

In the meantime, assuming a broadening of the energy lev-
els due to scattering we can write δ (E) ≈ (Γ/π)(E2 +Γ2)−1

in Eq. (14), where Γ = h̄/τ and τ is the lifetime. Then the

imaginary part of Ê (K,Q) for Q⊥ = (0,0,qz) becomes

E
⊥
Im(ω,qz) =

8e2h̄

κπτq2
z
∑
l′,l

∫ ∞

0
dkz

∫ ∞

0
dkk

×Fl′,l(K,qz)[ fl′(EK,qz,l′)− fl(EK,l)]

×
[

Γ2 +(EK,qz,l′ −EK,l − h̄ω)2
]−1

. (19)

B. Q parallel to the (x,y) plane

In this case we take the wavevector Q as Q∥ = (q,ϕ,0)
where ϕ is the angle between q and x-axis. From Eq. (13), we
obtain the real part of Ê (K,Q) as

E
∥
Re(ω,q,ϕ) =1− 4e2

κπ2q2 ∑
l′,l

∫ ∞

0
dkz

∫ 2π−ϕ

0
dφ

∫ ∞

0
dkk

×Fl′,l(K,q,ϕ)[ fl′(EK,q,ϕ)− fl(EK)]

× EK,q,ϕ −EK − h̄ω

(EK,q,ϕ −EK − h̄ω)2 +Γ2
(20)

with

EK,q,ϕ =C0 +C1k2
z +C2|k+q|2 + l′

√

M2
q +A2|k+q|2, (21)

where Mq = M0 −M1k2
z −M2|k+q|2,

Fl′,l(K,q,ϕ) =

∣

∣

∣

∣

A2k|k+q|
√

(ξ 2
K,q,ϕ,l′ +A2|k+q|2)(ξ 2

K,l +A2k2)

×
(

1+ ll′ξK,lξK,q,ϕ,l′
/

A2k|k+q|
)∣

∣

∣

∣

2

, (22)

and

ξK,q,ϕ,l′ =
√

M2
q +A2|k+q|2 − l′Mq. (23)

By applying relaxation time approximation to Eq. (14), the
imaginary part of Ê (K,Q) for Q∥ = (q,ϕ,0) has the form

E
∥
Im(ω,q,ϕ) =

4e2h̄

κπ2τq2 ∑
l′,l

∫ ∞

0
dkz

∫ 2π−ϕ

0
dφ

∫ ∞

0
dkk

×Fl′,l(K,q,ϕ)[ fl′(EK,q,ϕ)− fl(EK)]

×
[

Γ2 +(EK,q,ϕ,l′ −EK,l − h̄ω)2
]−1

. (24)

Here, we made the change φ = θ − ϕ , so that |k+q|2 =
k2 + q2 + 2kqcos(θ −ϕ). Then the integration over θ from

0 to 2π becomes one over φ from 0 to (2π −ϕ), which de-
scribes how different wave vector q directions affect the di-
electric function. After obtaining the expressions of the di-
electric function for 3D DSMs in different directions, we con-
sider the transitions between different energy bands. The band
index l = 1 (−1) represents the conduction (valence) band,
and the dielectric function will have four parts

∑
ll′

Ê = E+++E−++E+−+E−−. (25)

Since we focus on n-type 3D DSMs, in which the conduction
band is occupied, the valence band is fully occupied so that
f−(x) = 1, and Πl′,l(ω;K,Q) = 0 for l′ = l =−1. At the same
time, electron transitions from the conduction band (l = +1)
to the valence band (l′ =−1) have only a very small influence
on plasmon modes, so we take E+− ≃ 0. Thus, eventually
we consider only intraband transitions in the conduction band
(E++) and interband transitions from the valence to the con-
duction band (E−+) into account. Then, the resulting plasmon
modes are the solutions of Re[Ê (ω,Q)] = |ERe(ω,Q)| = 0.
The energy loss rate can be evaluated using the imaginary part
of the dielectric function through the energy loss function:

Eloss =−Im

[

1

Ê (ω,Q)

]

=
−EIm(ω,Q)

ERe(ω,Q)2 −EIm(ω,Q)2
. (26)

As shown in Fig. 1, 3D DSMs have anisotropic energy dis-
persions but in the (x,y) plane their dispersions are isotropic
and similar to that of graphene. Thus, we first consider the
simple case in which q is parallel to k by setting ϕ = 0 in Eqs.
(20) and (24). Following the standard procedure [40] we first
obtain the plasmon dispersion from the zeros of the real part
of the dielectric function and then we calculate the energy loss
using Eq. (26).

IV. RESULTS AND DISCUSSION

For the numerical calculations we use the band parame-
ters for Na3Bi shown in Table I [2]. They were determined
by fitting the energy spectrum of the effective Hamiltonian
in Eq. (1) to those obtained from ab initio calculations and
the ARPES experimental results [4, 5] since both agree well
with those of Ref. [2]. For the 3D DSM Cd3As2, the experi-
mental works from ARPES measurements [6, 7] and scanning
tunnelling microscopy measurements [29] indicate that the en-
ergy spectrum deduced from experiments is basically the same
as the theoretical one [3], though with some minor differences.
The main one is that the experimentally determined Fermi ve-
locities in Cd3As2 [6, 29] are much larger than the theoreti-
cal ones [3]. As a result, we use the band parameters from
ARPES measurements shown in Table I [29]. Furthermore, it
has been shown experimentally that for 3D DSMs, the lifetime
is different for samples with different carrier densities, but for
low temperatures both Na3Bi and Cd3As2 samples exhibit fast
lifetimes (∼ 1−7 ps) [10, 35, 36]. Hence, we use 6.71 ps for
Na3Bi [10] and 6.87 ps for Cd3As2 [36].

As shown in Fig. 2, the DOSs for 3DEG, graphene, and
3D DSMs are different from each other. Accordingly, their
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TABLE I. The energy band parameters and dielectric constant of

Na3Bi are taken from Ref. [2] and Ref. [37], respectively. Note

that for Cd3As2, the original band parameters are M′
0 = −0.060

eV, M′
1 = 96 eVÅ2, and M3 = 0.05 eV. For small momenta |kz| ≪

M3/
√

M′
1, the energy dispersion in Cd3As2 will have the same form

as in Na3Bi, and the band parameters become: M0 = M′
0 + |M3| and

M1 = 0.5M′
1/|M3| in Eqs. (1) - (4) [29]. The dielectric constant for

Cd3As2 is taken from Ref. [24].

Na3Bi band parameters

C0 (eV) C1 (eVÅ2) C2 (eVÅ2) M0 (eV)

−0.06382 8.7536 −8.4008 −0.8686

M1 (eVÅ2) M2 (eVÅ2) A (eVÅ) κ

−10.6424 −10.361 2.4598 5.99

Cd3As2 band parameters

C0 (eV) C1 (eVÅ2) C2 (eVÅ2) M0 (eV)

−0.219 −30 −16 −0.01

M1 (eVÅ2) M2 (eVÅ2) A (eVÅ) κ

960 18 2.75 12

plasmon modes will also be different. In the long-wavelength
limit (Q → 0), the plasmon dispersion of 3DEG is given by an
optical-like formula ωQ = ωP + 3v2

F Q2/(10ωP) ∼ Q2, where

ωP = [Nee2/(mκ0)]
1/2 is the plasma frequency, κ0 the vac-

uum dielectric constant, and vF = h̄kF/m is the Fermi ve-
locity. In a real metal, e.g., sodium, we have Ne ∼ 1023

cm−3, the plasmon energy h̄ωP ∼ 5.9 eV is much larger than
kBT ∼ 25 meV, so that plasmons in a 3DEG are not easily,
i.e., thermally excitable; this means it’s very difficult to di-
rectly observe them in experiments. However, for graphene
in the long-wavelength limit (q → 0), the dispersion rela-

tion ωq = (2e2EF q/κ0)
1/2 ∼ q1/2 ∼ N

1/4
e with EF = h̄vF kF ,

kF = (πNe)
1/2, is acoustic-like and depends strongly on q

[38]. In addition, a conventional 2D electron gas (2DEG) has

a dispersion relation similar to graphene ωq ∼ q1/2 ∼ N
1/2
e

[39]. The plasmon energies for both 2DEG and graphene are
h̄ωq → 0 for q → 0, i.e., quite small. Consequently, plasmons
in them are easier to excite and observe in experiments.

Fig. 3 shows the plasmon dispersion and energy loss rate
for different wave vector directions for high electron density
in Na3Bi and fixed temperature. The corresponding Fermi
level is much higher than the Berry curvature (cf. green-
dashed line in Fig. 1 (b) and (c)), and the Fermi wave vector
kFz is about five times larger than kF .

We notice the following features.

(i) Panels (a) and (b) in Fig. 3 show the dispersion relations
along q and qz are anisotropic in Na3Bi. This is in line with
the anisotropic band structure of Na3Bi shown in Fig. 1 (b)
and (c) which indicates that its electron excitation energy EK

requires a different momentum k or kz along different direc-
tions.

(ii) The plasmon energy h̄ω → 0, in the long-wavelength
limit q → 0 and qz → 0, which is in sharp contrast with the
results for a 3DEG and also with those for 3D DSMs with
a single Dirac point [24–26]. The collective oscillations of

FIG. 3. Dispersion relations and energy loss functions in Na3Bi

along different Q directions at temperature T = 10 K, electron den-

sity Ne = 1× 1019 cm−3 (see green-dashed lines in Fig. 1 (b) and

(c), corresponding to EF1 ≃ 59.076 meV), and lifetime τ = 6.71 ps.

In panels (a) and (c) we have Q∥ = (q,ϕ,0) at ϕ = 0, the Fermi wave

vector kF along the k direction is about ∼ 2.25×108 m−1. In panels

(b) and (d) we have Q⊥ = (0,0,qz), the Fermi wave vector kFz along

the kz direction is about ∼ 10.4×108 m−1. The orange-dotted curve

in (a) is graphene’s plasmon dispersion relation for Ne = 1× 1012

cm−2. The black-dash-dotted curves in (a) and (b) represent, for a

3DEG with m∗ ≃ 0.24me, the beginning of the particle-hole (p-h) ex-

citations area in which ω ≃ h̄2(q2 +2qkF )/2m∗.

electrons should be easier to excite and observe in Na3Bi due
to its unique energy band.

(iii) The dispersions are linear for small q or qz (h̄ω ∝ q,
qz), but with increasing q or qz, they become similar to that
of a 3DEG (h̄ω ∝ q2 or q2

z ). Also, these changes are more
distinct vs qz in Fig. 3 (b) and (d) than vs q in Fig. 3 (a)
and (c). In Fig. 1 (b) we found that the electron energy along
the k direction is approximately linear in k in a higher energy
range, but along the kz direction, cf. Fig. 1 (c), it is linear only
close to the Dirac points whereas at high energies it becomes
parabolic. That is, the plasmon dispersion vs q is linear in a
broader range than vs qz.

(iv) The energy loss function, corresponding to panels (a)
and (b), is shown in panels (c) and (d), respectively. As ex-
pected, plasmons appear as peaks in the energy loss functions
for both Q∥ and Q⊥. Meanwhile, the wave vector depen-
dence is consistent with that of the plasmon dispersion and
it is anisotropic. The energy loss peaks are broader at large q

and qz, but still they converge up to a high energy h̄ω = 2EF .

(v) The plasmon energies will involve the particle-hole
(p-h) excitation continuum in 3DEG, graphene [39], and
single-cone 3D DSMs [25, 26], e.g, for h̄ω < h̄2(Q2

c +
2QcKF)/(2m∗) and Q>Qc in 3DEG. However, we found that
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FIG. 4. As in Fig. 3 with electron density Ne = 1× 1017 cm−3

(see black-dotted lines in Fig. 1 (b) and (c), corresponding to EF2 ≃
14.634 meV). For Q∥ = (q,ϕ,0) at ϕ = 0, the Fermi wave vector

kF along the k direction is about ∼ 0.298× 108 m−1. For Q⊥ =
(0,0,qz), the Fermi wave-vector kFz along the kz axis is about ∼
9.24×108 m−1.

in Na3Bi the plasmon dispersion curves only occur in a rela-
tively small wave vector range and the plasmon energies are
above the continuum of the 3D p-h excitations in the entire
wave vector range in both Fig. 3 (a) and (b). Meanwhile, we
would like to point out that this work is based on the effec-
tive Hamiltonian, which is only valid for small momenta and
low-energy ranges. Thus, our study indicates that plasmons in
Na3Bi do not merge into the Landau damping range, i.e., the
plasmon energy will not decay by single-particle excitations
for small q and qz.

The results of Fig. 3 are for high values of the electron den-
sity Ne = 1× 1019 cm−3 and EF is much higher than the en-
ergy for Berry curvature region, cf. green-dashed line in Fig.
1 (b). A significant change occurs for low electron density,
Ne = 1×1017 cm−3 and EF is lower than the Berry curvature,
cf. black-dotted line in Fig. 1 (b). The results are shown in
Fig. 4. Although the overall trend looks similar, the range
of the relevant wave vectors changes. In particular, that for
qz shrinks dramatically, it’s approximately 30 times shorter
whereas q is only about 4 times shorter. This due to the pres-
ence of the Berry curvature in energy bands. As seen from
Fig. 2, the DOS of Na3Bi decreases rapidly with decreasing
EF , especially for EF < E1, and Fig. 1 indicates that the Berry
curvature mainly effects the energy along kz direction. As a
result, reducing electron doping leads to a much smaller wave
vector dependence of plasmon dispersion for Q⊥. Similar ef-
fects of the Berry curvature were reported in Ref. [11].

The results shown in Figs. 3 and 4 are for Na3Bi. The
corresponding ones for Cd3As2 are shown in Figs. 5 and 6,

FIG. 5. Plasmon dispersions and energy loss functions in Cd3As2

along different Q directions at fixed temperature T = 10 K, electron

density Ne = 1×1019 cm−3 (see Fig. 1 (e) and (f), corresponding to

EF1 ≃−185.651 meV), and lifetime τ = 6.87 ps. For Q∥ = (q,ϕ,0)
at ϕ = 0, the Fermi wave vector kF along the k direction is about

∼ 1.33× 108 m−1. For Q⊥ = (0,0,qz), the Fermi wave vector kFz

along the kz axis is about ∼ 0.68×108 m−1. The orange-dotted curve

in (a) is graphene’s dispersion relation for Ne = 1×1012 cm−2. The

black-dash-dotted curves in (a) and (b) represent, for a 3DEG with

m∗ ≃ 0.24me, the beginning of the particle-hole (p-h) excitations area

in which ω ≃ h̄2(q2 +2qkF )/2m∗.

respectively. As shown, the plasmon dispersion relations and
energy losses for high electron density Cd3As2 are similar to
those in Na3Bi. In some detail we observe the following.

(i) The plasmon energies are h̄ω → 0 for q → 0 and qz → 0.

(ii) The plasmon modes are anisotropic, the plasmon dis-
persions are linear for small q and qz but become parabolic
with increasing q and qz. The dispersion for q is linear in a
boarder range than qz.

(iii) The plasmon energies in both directions do not in-
volve p-h excitations so its plasma oscillations will also not
be damped nor will they decay into the single-particle contin-
uum. For low electron densities, cf. Fig. 6, a significant small
qz dependence for plasmon energy can be found and results
from the Berry curvature of the energy band.

The overall trend is similar to Na3Bi, but we notice some
differences between Na3Bi and Cd3As2. We mentioned that
Cd3As2 has less anisotropic properties than Na3Bi in Figs. 1
and 2. Specifically, when we reduce the electron doping, both
plasmon wave vectors for Na3Bi and Cd3As2 will decrease,
but the qz range in Na3Bi will shrink much more than that
in Cd3As2 . In addition, the kFz value in Cd3As2 is smaller
than its kF whereas in Na3Bi kFz is about 20 times larger than
its kF . We emphasize that in both 3D DSMs the distance of
EF from the Berry curvature importantly affects the pertinent
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FIG. 6. As in Fig. 5 with electron density Ne = 1 × 1017 cm−3

(see Fig. 1 (e) and (f), corresponding to EF2 ≃ −211.237 meV).

For Q∥ = (q,ϕ,0) at ϕ = 0, the Fermi wave vector kF along the

k direction is about ∼ 0.301× 108 m−1). For Q⊥ = (0,0,qz), the

Fermi wave-vector kFz along the kz axis is about ∼ 0.438×108 m−1.

wave vector ranges.

Finally, it is of interest to see how the results vs q change
when qz is not zero and how the results change vs qz when q

takes certain values. We show them in Fig. 7 for Na3Bi on
panels (a) and (b) and for Cd3As2 in panels (c) and (d), using
the parameters of the caption and the constant qz or q values
specified in the insets. As shown in Fig. 7, for qz ̸= 0 (or
q ̸= 0) the dispersion becomes similar to that of a 3DEG as
either qz or q take some constant values and the anisotropic
features are distinct.

Considering the results from all figures, we see that the
plasmon modes in the bulk materials Na3Bi and Cd3As2, show
unique properties and advantages over other materials. For
instance, 3D DSMs have similar gapless Dirac properties as
graphene, such as high carrier mobility, but the samples for
bulk 3D DSMs are easier to manufacture. Also, in 3D DSMs
the plasmons are easier to observe than in metals due to the
their energy h̄ω being close to kBT ∼ 25 meV as we dis-
cussed before. The Fermi energy EF related to the carrier
density is gate-tunable in 3D DSMs [12], therefor the plas-
mons, which are sensitively affected by the position of EF

relative to the Berry curvature region of the bands, will also
have the anisotropic gate-tunable properties in sharp contrast
to other 3D materials such as multilayered graphene [27],
Weyl semimetals [28], and isotropic Dirac semimetals [26].
Furthermore, other interesting properties, such as anisotropic
plasmon polaritons and surface plasmons can be expected
based on our results.

FIG. 7. (a) Plasmon dispersion for Na3Bi as a function of q at

fixed temperature T = 10 K, electron density Ne = 1× 1019 cm−3,

lifetime τ = 6.71 ps, and fixed qz. (b) Plasmon dispersion for Na3Bi

with q and qz interchanged is shown. (c), (d): idem. as in (a) and

(b), respectively, for Cd3As2 for the same temperature and electron

density, and τ = 6.87 ps. All curves for selected qz or q isovalues are

marked as shown in the insets.

V. SUMMARY

We presented a premiere RPA treatment of collective ex-
citations in the three-dimensional (3D) Dirac semimetals
(DSMs) Na3Bi and Cd3As2 using one-electron properties de-
rived from a k ·p Hamiltonian. The density of states of these
Dirac semimetals differ significantly from those of a 3D elec-
tron gas or graphene. The anisotropy of the one-electron spec-
trum shows up in the dispersion relations that are markedly
different from those of graphene or a 3D electron gas. The
same holds for the energy-loss function. There are important
differences between results valid for high and low electron
densities that result in the Fermi energy being far or close to
the region of the Berry curvature of the bands. A one partic-
ularly worth mentioning is that for EF less than the energy at
which vz vanishes, the range of the relevant wave vectors q and
qz shrinks, especially the one for qz shrinks by nearly a factor
of 10. Therefore, changing the electron density of 3D Dirac
semimetals will allow one to tune the frequency range of their
plasmon modes, particularly along the z-direction. Moreover,
other intriguing properties like anisotropic plasmon polaritons
and surface plasmons, which will also be affected by electron
density due to the Berry curvature of the energy band, can be
expected.
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