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We present a detailed theoretical investigation on the electronic transport properties of n-type
monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of
proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange in-
teraction. The electronic band structure is calculated by solving the Schrödinger equation with a
k · p Hamiltonian, and the electric screening induced by electron-electron interaction is evaluat-
ed under a standard random phase approximation approach. In particular, the longitudinal and
transverse or Hall mobilities are calculated by using a momentum-balance equation derived from
a semi-classical Boltzmann equation, where the electron-impurity interaction is considered as the
principal scattering center at low temperature. The obtained results show that the RSOC can in-
duce the in-plane spin components for spin-split subbands in different valleys, while the exchange
interaction can lift the energy degeneracy for electrons in different valleys. The opposite signs of
Berry curvatures in the two valleys would introduce opposite directions of Lorentz force on valley
electrons. As a result, the transverse currents from nondegenerate valleys can no longer be canceled
out so that the transverse current or Hall mobility can be observed. Interestingly, we find that at
a fixed effective Zeeman field, the lowest spin-split conduction subband in ML-TMDs can be tuned
from one in the K′-valley to one in the K-valley by varying the Rashba parameter. The occupation
of electrons in different valleys also varies with changing carrier density. Therefore, we can change
the magnitude and direction of the Hall current by varying the Rashba parameter, effective Zeeman
field, and carrier density by, e.g., the presence of a ferromagnetic substrate and/or applying a gate
voltage. By taking the ML-MoS2 as an example, these effects are demonstrated and examined.
The important and interesting theoretical findings can be beneficial to experimental observation of
the valleytronic effect and to gaining an in-depth understanding of the ML-TMDs systems in the
presence of proximity-induced interactions.

I. INTRODUCTION

In recent years, the investigation of transition-metal
dichalcogenides (TMDs) -based atomically thin two-
dimensional (2D) electronic systems has attracted a great
deal of attention in condensed-matter physics and nano-
electronics communities due to their spintronic and val-
leytronic properties [1, 2]. These unique and interesting
electronic properties are promising for advanced electron-
ics and optoelectronics, with potential applications in
next-generation information technology [3–5]. The dis-
covery of 2D TMDs -based valleytronic systems has also
led to the proposal and observation of novel physics ef-
fects such as the valley Hall effect (VHE) [1, 6, 7], which
is electrically equivalent to the Hall effect observed in
the presence of an external perpendicular magnetic field.
One of the most interesting features of a free-standing
valleytronic material is that the electron energies are de-
generated around K and K ′ points in the electronic band
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structure [8–10]. However, the electronic spin orienta-
tions around these two valleys are just the opposite [11].
Thus, the electronic band structure exhibits Berry cur-
vature [1, 12], and the electrons with different spin ori-
entations can move along different directions under the
action of a driving electric field and/or a polarized elec-
tromagnetic (EM) field [13, 14]. Hence, the experimental
techniques for the measurement of the VHE are similar
to those used for the detection of the spin Hall effect in
spintronic systems in the absence of an external magnetic
field [15].

The VHE has been observed experimentally in 2D T-
MDs systems normally in the presence of driving EM
field. This enables the electrical and optical detections
and manipulation of the photo-induced valley current in
valleytronic systems [16]. However, at present the experi-
mental observation of the VHE by directly using the elec-
tric transport measurement has been unsuccessful. There
is also the lack of related theoretical investigation to ad-
dress this problem. From a viewpoint of condensed mat-
ter physics, in an inversion symmetric breaking 2D ML-
TMDs system with energy degeneracy around K- and
K ′-point, under the action of a driving electric field the
current densities induced by electron movement from two
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valleys are equal in magnitude but with opposite direc-
tions due to different signs of Berry curvatures. As a
result, the overall transverse or Hall voltage is canceled
out and the VHE cannot be observed by conventional
transport measurement. A way out of this situation is
by breaking or lifting the valley degeneracy. One of the
most efficient schemes to lift the valley degeneracy in a
2D TMDs material is to place the ML-TMDs film on a
dielectric or ferromagnetic substrate [17, 18]. In such a
case, the proximity effect induced by the presence of the
substrate can result in not only the Rashba spin-orbit
coupling (RSOC) [19–21] but also the exchange inter-
action with an effective Zeeman field (EZF) [22]. The
RSOC can induce the in-plane electronic spin and the
corresponding modification of spin splitting in the elec-
tronic band structure in a ML-TMDs. This can be uti-
lized for the access and manipulation of valleys and spins
in a 2D ML-TMDs/substrate system. Furthermore, the
proximity induced exchange interaction can lift the val-
ley degeneracy in the electronic energy spectra due to
the introduction of a magnetic momentum and/or van
der Waals force in a 2D ML-TMDs system. When the
energy degeneracy in different valleys is lifted, the valley
currents from different valleys with different orientations
can no longer be canceled out. Thus, the electric voltage
can be measured in transverse direction and, hence, the
VHE can be observed under the action of a dc electric
field. Consequently, in the presence of a particular sub-
strate the proximity induced interactions can be utilized
for directly observation of the VHE in 2D ML-TMDs sys-
tems using conventional transport measurement, namely
applying an electric current/voltage along the x-direction
and measuring the voltage/current along the y-direction.
When the resistance Rxy or conductance σxy is nonzero,
the electric VHE is observed.

Very recently, we have constructed an electron Hamil-
tonian in which the RSOC and the EZF induced by prox-
imity effects are considered for ML-TMDs under the stan-
dard k ·p approximation [23]. It has been demonstrated
that in the presence of RSOC and EZF, the electron-
ic band structure in ML-TMDs depends strongly on the
proximity-induced interactions and the optical Hall ef-
fect can be observed by applying the linearly polarized
EM radiation field on a ML-TMDs [23], where a non-
zero optical conductivity σxy(ω) can be measured and
the sign of the optical Hall current or polarization can be
tuned by varying the Rashba parameter. In this study,
we evaluate the longitudinal and transverse mobilities in
a ML-TMDs system by including the proximity-induced
RSOC and exchange interaction. We take the ML-MoS2
as an example to examine the dependence of the elec-
tronic screening and the longitudinal and transverse mo-
bilities upon the strengthes of the RSOC and the EZF.
The prime motivation of this study is to see under what
conditions the VHE can be observed by direct electric
transport measurement and whether this effect is exper-
imentally measurable. The paper is organized as follows.
The theoretical approaches developed in this study are

presented in Sec. II, where we derive the formulas for
the calculations of the electronic band structure, Berry
curvature, the inverse electronic screening length, and
the longitudinal and transverse or Hall mobilities. The
obtained results are presented and discussed in Sec. III
and the concluding remarks are summarized in Sec. IV.

II. THEORETICAL APPROACH

A. Electronic band structure and Berry curvature

In this study, we consider a ML-TMDs placed on a
substrate with which the proximity-induced interaction-
s can lead to the enhancements of the valley splitting
and to Rashba spin-orbit coupling (SOC). We take an
effective low- electron energy Hamiltonian that includes
the effect of RSOC and EZF induced by the proximity
interactions. The Hamiltonian for an electron in a ML-
TMDs/substrate heterostructure system consists of four
parts[21, 23, 24]:

H = H0 +HSOC +Hex +HR, (1)

where H0 originates from the electronic orbital interac-
tion, HSOC is the intrinsic SOC in the system, Hex is
attributable to the exchange interaction, and HR is the
contribution from the RSOC. As we know, ML-TMDs
is a 2D hexagonal crystal with uniaxial symmetry where
the RSOC always exists [25, 26]. When the ML-TMDs is
placed on a substrate, the presence of the heterostructure
can lead to the breaking of the inversion symmetry along
the direction normal to the 2D plane of the ML-TMDs
[21, 22]. This can further enhance the RSOC [27–29].
Furthermore, the presence of the dielectric and/or ferro-
magnetic substrate can result in an exchange interaction
between the ML-TMDs and the substrate. The exchange
interaction is due to the introduction of EZF by the van
der Waals force in the film/substrate heterostructure [22]
and adds the Hex term into Eq. (1). Meanwhile, the
above Hamiltonian can be written in the form of a 4× 4
matrix given as [23]

Hζ(k) =
1

2
×









∆+ dcζ 2Ak−ζ 0 i(1− ζ)λR
2Ak+ζ dvζ −∆ −i(1 + ζ)λR 0

0 i(1 + ζ)λR ∆− dcζ 2Ak−ζ
i(ζ − 1)λR 0 2Ak+ζ −(∆ + dvζ)









,

(2)

where ζ = ± refers to the K (K ′) valley, k = (kx, ky)
is the electron wave vector along the 2D-plane, k±ζ =
ζkx ± iky, ∆ is the direct band gap between the conduc-
tion and valence bands, and A = at, with a being the lat-
tice parameter and t the hopping parameter [1, 30, 31].

Furthermore, dβζ = ζλβ − Bβ , where β = (c, v) refers
to the conduction and valence band, respectively. The
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intrinsic SOC parameter 2λc is the spin splitting at the
bottom of the conduction band, and 2λv is that at the top
of the valence band in the absence of the RSOC [1, 32].
Bc and Bv are the EZF experienced by an electron in
the conduction and valence bands in the presence of ex-
change interaction. λR = αR∆/(2at) comes from the
RSOC, with αR being the Rashba parameter [33, 34].
The corresponding Schrödinger equation for a carrier in
a ML-TMDs system near the K (K ′) valley can be solved

analytically. The four eigenvalues, E = Eζ
β,s(k), with

s = ± being the spin index, are the solutions of the di-
agonalized equation of the matrix, which reads

E4 −A2E
2 +A1E +A0 = 0, (3)

with

A2 =∆2/2 + λ2R + 2A2k2 + (dvζ
2 + dcζ

2)/4,

A1 =∆(dvζ
2 − dcζ

2)/4− ζλ2R(d
v
ζ − dcζ)/2,

A0 =
(

∆2/4 +A2k2
)2

+ λ2R(∆ + ζdcζ)(∆ + ζddζ)/4

−∆2(dcζ
2 + dvζ

2)/16−A2k2dcζd
v
ζ/2 + (dcζd

v
ζ)

2/16.

The corresponding eigenfunctions for an electronic state
near the K and K ′ points are

|k;λ >= Aζ
β,s[c1, c2, c3, c4]e

ik·r, (4)

where r = (x, y), λ = (β, ζ, s),

c1 = iλR[h1 + 4A2(1 + ζ)(k−ζ )
2],

c2 = −4iAλRk
−
ζ h2,

c3 = 2Ak−ζ h3,

c4 = −[(∆− 2E)2 − (dcζ)
2)](∆ + 2E − dvζ)

− (1 + ζ)2λ2R(∆− 2E + dcζ)

− 4A2k2(∆− 2E − dcζ),

and Aζ
β,s(k) = (|c1|2 + |c2|2 + |c3|2 + |c4|2)−1/2 is the

normalization coefficient. Here, h1 = (1 − ζ)(∆ − 2E −
dcζ)(∆+2E−dvζ), h2 = ∆−2E+ζdcζ , and h3 = (∆−2E+

dcζ)(∆+2E−dvζ)+4A2k2. As we know, the Rashba term
HR can lead to the projection of the spin component
in the x-y plane and mixes the spin states. Therefore,
the spin index s is no longer a good quantum number
[21, 35], and thus we use s = ± for up/down for the
sake of distinguishing different electronic states induced
by RSOC.
As we known, the Berry curvature can significantly

modify the electron dynamics and generate new electrical
transport phenomena by introducing an effective magnet-
ic field. For a free-standing ML-TMDs, the electrons in
the two valleys experience effective magnetic fields pro-
portional to the Berry curvatures with equal magnitudes
but opposite signs due to the broken inversion symme-
try in its crystal structure [1, 13, 16]. However, the p-
resence of proximity-induced interactions such as RSOC

and exchange interaction would also modify the Berry
curvature behaviors. With eigenvalues and eigenfunc-
tions obtained from Eqs.(3) and (4), the Berry curvature
of ML-TMDs in the presence of the proximity-induced in-
teractions Ωλ(k) = ∇k× i〈k;λ|∇k|k;λ〉 · ẑ at each valley
can be calculated through [36]

Ω
ζ
β,s(k) =i

′
∑

β′,s′

[ 〈k;λ|∂H/∂kx|k;λ′〉〈k;λ′|∂H/∂ky|k;λ〉
[Eζ

β,s(k)− Eζ
β′,s′(k)]

2

−
(

∂

∂kx
↔ ∂

∂ky

)]

, (5)

where the prime symbol (′) above
∑

is introduced to
denote the exclusion of the case (β′, s′) = (β, s).

B. Electron-electron interaction and electronic

screening

With the electron wave-function and the energy spec-
trum, we can evaluate the electrostatic energy induced
by electron-electron (e-e) interaction and the dynami-
cal dielectric function under the usual random-phase ap-
proximation (RPA). From now on, we consider an n-type
ML-TMDs system in which the conducting carriers are
electrons in the conduction band. Taking only the spin
splitting conduction band (i.e., β = c only) into account,

we use the notations ψζ
sk(r) and Eζ

s (k) for the electron
wave function and the energy spectrum, respectively, at
a state |k; ζ, s〉 in the conduction band. As a result,
we are now dealing with a two-band situation around
the K or K ′ points. The electrostatic potential induced
by the bare e-e interaction via the Coulomb interaction
V (r) = e2/(κ|r|) can be calculated via

V ζ
s′s(k,q) =〈ψζ∗

s′k1+q(r1)ψ
ζ
sk1

(r1)|V (r1 − r2)

|ψζ∗
sk2

(r2)ψ
ζ
s′k2+q(r2)〉 = VqF

ζ
s′s(k,q). (6)

Here, the conservation law for momentum flowing into
and out of the interaction has been applied, κ is the di-
electric constant for a ML-TMDs material, q = (qx, qy)
is the change of the electron wavevector during an e-e
scattering event, Vq = 2πe2/(κq) is the 2D Fourier trans-
formation of the Coulomb potential induced by e-e inter-
action, and

F ζ
ss′(k,q) =[Aζ

s′(k+ q)Aζ
s(k)]

2
4

∑

i=1

cζ∗is (k)c
ζ
is′(k+ q)

×
4

∑

j=1

cζ∗js′(k+ q)cζjs(k), (7)

is the form factor for many-body interaction, where
Aζ

s(k) = Aζ
c,s(k) and the hybridization of the four elec-

tron wave functions, given by Eq. (4), at a state |k; ζ, s〉
has been included.
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With the electrostatic potential induced by bare e-e in-
teraction, the dynamical dielectric function for electrons
in spin split conduction band in valley ζ can be calculat-
ed by the RPA approach, which is given by a 2×2 matrix
as

εζ(Ω,q) =

[

1−A−− A−+

A+− 1−A++

]

, (8)

where Ass′ = Aζ
ss′(Ω,q) = Vq

∑

k F
ζ
ss′(k,q)Π

ζ
ss′(Ω;k,q)

is for scattering of an electron in a split state s to a split
state s′, Ω is the excitation frequency, and

Πζ
s′s(Ω;k,q) =

f [Eζ
s′(k+ q)]− f [Eζ

s (k)]

Eζ
s′(k+ q)− Eζ

s (k) + ~Ω+ iδ
, (9)

is the corresponding density-density (d-d) correlation
function (or pair bubble) with f(x) = [e(x−EF )/kBT+1]−1

being the Fermi-Dirac function and EF the Fermi energy
or chemical potential.

In a static case (Ω → 0) and long-wavelength limit
(q → 0), the real part of the d-d correlation function
becomes

Dζ
ss(k) = lim

q→0
ReΠζ

ss(0;k,q) ≃
∂f(x)

∂x

∣

∣

∣

x=Eζ
s (k)

, (10)

for intra-subband (s′ = s) transition, and

Dζ
s′s(k) = lim

q→0
ReΠζ

s′s(0;k,q) ≃
f [Eζ

s′(k)]− f [Eζ
s (k)]

Eζ
s′(k)− Eζ

s (k)
,

(11)
for inter-subband (s 6= s′) transition, respectively.
By definition, the effective e-e interaction potential in

the presence of electronic screening can be calculated
through a matrix:

[Vζ
ss′(k,q)] = [V ζ

ss′(k,q)][Re εζ(0,q)]
−1, (12)

which reads

[Vζ
ss′(k,q)] =

[

V−− V−+

V+− V++

]

=

[

V−− V−+

V+− V++

]

[

1−A
(1)
−− A

(1)
−+

A
(1)
+− 1−A

(1)
++

]−1

=
2πe2

κQ2

[

F ζ
−−(q +Kζ

++) + F ζ
−+(K

ζ
+−) F ζ

−+(q +Kζ
−−) + F ζ

−−(K
ζ
−+)

F ζ
+−(q +Kζ

++) + F ζ
++(K

ζ
+−) F ζ

++(q +Kζ
−−) + F ζ

+−(K
ζ
−+)

]

, (13)

where A
(1)
ss′ = ReAss′ = Vq

∑

k F
ζ
ss′(k,q)ReΠ

ζ
s′s(0;k,q)

and Q2 = (q+K−−)(q+K++)−K−+K+−. The inverse
static screening length is defined as

Kζ
ss′ = Kζ

ss′(q) = −qVq
∑

k

F ζ
ss′(k,q)ReΠ

ζ
ss′(0,k,q)

= −2πe2

κ

∑

k

F ζ
ss′(k,q)ReΠ

ζ
ss′(0,k,q), (14)

which implies that different electronic transition chan-
nels correspond to different screening lengths. Eq. (14)
reflects a fact that in the presence of electronic screen-
ing the effective electronic transition from s to s′ spin s-
tates should, in principle, be affected by other transition
events. In the long-wavelength limit (q → 0) we have
F ζ
ss(k,q) → 1 for s = s′ because of the normalization of

the wave function, and F ζ
ss′(k,q) → 0 and Kζ

ss′(q) → 0
for s 6= s′ because of the orthogonality of the electron
wave function. In such a case, Eq. (13) becomes
[

V−− V−+

V+− V++

]

=
2πe2

κ

[

(q +Kζ
−−)

−1 0

0 (q +Kζ
++)

−1

]

,

(15)
where

Kζ
ss = −(2πe2/κ)

∑

k

[∂f(x)/∂x]|x=Eζ
s (k)

, (16)

is the inverse screening length which is independent of k
and q. This result indicates that in the long-wavelength
limit the effective e-e interaction and the electronic
screening can only be caused via intra-subband electronic
transitions. The inter-subband transitions, correspond-
ing to spin-flip transitions, can only be achieved with
the change of electron momentum during the scattering
events.

C. Electronic transport coefficients

In this study, we employ a simple Boltzmann equation
(BE) approach to calculate the transport coefficient for a
ML-TMDs in the presence of proximity induced interac-
tions. In the present study, we neglect the electronic tran-
sitions between different valleys, because these transition
channels require a big change of electron momentum that
is less possible in the transport experiment under the ac-
tion of a relatively weak driving dc electric field. For an
n-type ML-TMDs with a spin splitting conduction band,
a two-band model is required to describe the electron-
ic properties in splitting bands. The time-independent
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semi-classical Boltzmann equation can be written as

− e

~
F · ∇kf

ζ
s (k) =

∑

k′,s′

[Fζ
s′,s(k

′,k)− F
ζ
s′,s(k,k

′)], (17)

where F is a force acting on the electron, fζs (k) is the
momentum distribution function (MDF) for an electron

in a state | k; ζ, s〉, F ζ
ss′(k,k

′) = fζs (k)W
ζ
ss′(k,k

′), and

W ζ
ss′(k,k

′) is the electronic transition rate for scattering
of an electron from a state | k; ζ, s〉 to a state | k′; ζ, s′〉
in the conduction band due to the presence of electronic
scattering centers such as impurities and phonons. When
an electric field is applied along the x-direction of the ML-
TMDs, F = F (1, 0, 0) is the strength of the dc electric
field and we obtain

F · ∇kf
ζ
s (k) = F

∂fζs (k)

∂kx
. (18)

For the first moment, the momentum-balance equation
can be derived by multiplying

∑

s,k(kx, ky) to both sides

of the Boltzmann equation given by Eq. (17), which
reads

enζ
e

~
(F, 0) =

∑

s′,s,k′,k

(k′x − kx, k
′
y − ky)F

ζ
ss′(k,k

′), (19)

where nζ
e =

∑

s,k f
ζ
s (k) is the electron density in val-

ley ζ. It should be noted that the main effect of driv-
ing electric field F is to cause the drift velocities of the
electrons in different bands v

ζ
s = (vζsx, v

ζ
sy). As a re-

sult, the electron wave vector in the MDF is shifted by
k → kζ

s = k − mζ
sv

ζ
s/~, with mζ

s being the transport
effective mass for an electron in the (s, ζ) band. As we
know, the electrons in a solid can be accelerated by a
driving electric field. Thus, the electrons in the bottom
of the conduction band would move to higher energy s-
tates with nonzero k. The electron effective mass under
such a condition would usually differ from the band mass
in a parabolic low- energy regime. This effective electron
mass is often called the transport effective mass. We
note here that in general, the transport effective mass
for an electron differs from the band effective mass m∗

obtained from taking 1/m∗ = (1/~2)d2E/d2k in an elec-
tronic system. m∗ = mζ

s normally holds for the case of
E(k) = ~

2k2/(2m∗). For the case of a relatively weak
driving electric field F , the drift velocity of electron is
relatively small so that

fζs (k
ζ
s) ≃ fζs (k)−

mζ
s

~

[

vζsx
∂fζs (k)

∂kx
+ vζsy

∂fζs (k)

∂ky

]

. (20)

Thus, we obtain from Eq. (19) that

(F, 0) = −
∑

s′,s

mζ
s

e
(vζsxS

ζx
ss′ + vζsyT

ζy
ss′ , v

ζ
sxT

ζx
ss′ + vζsyS

ζy
ss′),

(21)

where

[Sζα
ss′ , T

ζα
ss′ ] =

1

nζ
e

∑

k′,k

(k′α − kα)W
ζ
ss′(k,k

′)

×
[

∂fζs (k)

∂kα
,
∂fζs (k)

∂kα′

]

, (22)

with α = x or y and α′ 6= α, presents the scattering
probability for an electron moving along different direc-
tions in different spin and valley subbands . Assum-
ing that the electron MDF can be described by a sta-
tistical energy distribution function (EDF) such as the
Fermi-Dirac function, we have fζs (k) ≃ f [Eζ

s (k)] with
f(x) = [e(x−EF )/kBT + 1]−1. In an n-type ML-TMDs
at the steady state, the single Fermi level is across the
system. Thus, we obtain

[Sζα
ss′ , T

ζα
ss′ ] =

1

nζ
e

∑

k′,k

(k′α − kα)W
ζ
ss′(k,k

′)

×
[

∂Eζ
s (k)

∂kα
,
∂Eζ

s (k)

∂kα′

]

df(x)

dx

∣

∣

x=Eζ
s (k)

. (23)

From Eq. (3), we have

∂Eζ
s (k)

∂kα
= A2kαG

ζ
s(k), (24)

with

Gζ
s(k) =

4[Eζ
s (k)]

2 − 4A2k2 −∆2 − dcζd
v
ζ

4[Eζ
s (k)]3 − 2A2E

ζ
s (k) +A1

, (25)

and

[Sζα
ss′ , T

ζα
ss′ ] =

A2

nζ
e

∑

k′,k

(k′α − kα)[kα, kα′ ]Gζ
s(k)

×W ζ
ss′(k,k

′)
df(x)

dx

∣

∣

x=Eζ
s (k)

. (26)

By definition, the current density for electrons in band
(s, ζ) is jζsα = −e2nζ

sv
ζ
sα along the α direction, with nζ

s

being the electron density at (ζ, s) state. Using the On-
sager relation, Eq. (26) gives

[

ρζxx ρζxy
ρζyx ρζyy

]

=
∑

s

[

ρζsxx ρζsxy
ρζsyx ρζsyy

]

=
mζ

s

e2nζ
s

∑

s,s′

[

Sζx
ss′ T ζx

ss′

T ζy
ss′ Sζy

ss′

]

, (27)

where ρζsαα′ is the longitudinal (α = α′) or transverse
(α 6= α′) resistivity in the band (ζ, s). Noting that

ρζsαα′ = mζ
sλ

ζs
αα′/(e2nζ

s) with λζsαα′ being the electronic s-
cattering rate in the band (ζ, s) along different directions,
we obtain

[

λζsxx λζsxy
λζsyx λζsyy

]

=
∑

s′

[

Sζx
ss′ T ζx

ss′

T ζy
ss′ Sζy

ss′

]

. (28)
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The electron mobility is defined as µζs
αα′ = eτ ζsαα′/mζ

s,

with τ ζsαα′ = 1/λζsαα′ being the momentum relaxation time
or lifetime for an electron in band (ζ, s) along different di-
rections. Finally, the average longitudinal and transverse
or Hall mobilities are given by

µxx =
n+
+µ

++
xx + n−

+µ
−+
xx + n+

−µ
+−
xx + n−−µ

−−
xx

ne
, (29)

and

µxy =
n−
+µ

−+
xy + n−

−µ
−−
xy − n+

+µ
++
xy − n+−µ

+−
xy

ne
, (30)

respectively, where ne =
∑

ζ,s n
ζ
s is the total electron

density in the system. For average µxy the electric cur-
rents in different directions with different valley index-
es are considered. Here we take the standard defini-
tion of the elements in the mobility tensor as µαα′ =
vα′/Fα with the electron drift velocity (or current) mea-
sured along the α′-direction and the driving electric field
strength (or applied voltage) along the α-direction.

D. Electron-impurity scattering

At relatively low temperatures, the electron-impurity
(e-i) scattering is the principal channel for relaxation of
electrons in an electronic system in the presence of a driv-
ing electric field. For the case in which the e-i scattering
is achieved through the Coulomb potential induced by
charged impurities that are three-dimensional-like, the
e-i interaction Hamiltonian is given as:

He−i = e2/(κi|R−Ri|), (31)

where R = (r, 0) = (x, y, 0) is the coordinate of an
electron in ML-TMDs, the impurity is located at Ri =
(ri, zi) = (xi, yi, zi), and κi is the static dielectric con-
stant of the medium that contains the impurities. After
assuming that the system can be separated into the elec-
trons of interest |k;λ〉 and the rest of the impurities |I〉,
namely |k;λ, I〉 = |k;λ〉|I〉, the e-i interaction matrix el-
ement is obtained, in the absence of e-e screening, as [27]

U(q,Ri) =〈k′;λ′, I|He−i|k;λ, I〉

=
2πe2

κiq

√

ni(zi)e
iq·rie−q|zi|Hζ

ss′(k,k
′)δk′,k+q,

(32)

where 〈I|I〉 = [ni(zi)]
1/2, with ni(zi) being the im-

purity distribution along the z direction, q = (qx, qy)
is the change of the electron wave vector during an

e-i scattering event, and Hζ
ss′(k,k

′) = 〈k′;λ′|k;λ〉 =

Aζ
s′(k

′)Aζ
s(k)Σ

4
j=1c

ζ∗
js′(k

′)cζjs(k) is the form factor for e-i
scattering. Here we have assumed that the impurities are
distributed uniformly along the x-y plane. Using Fermi’s
Golden Rule, the electronic transition rate for scattering

of an electron from a state |k; ζ, s〉 to a state |k′; ζ, s′〉
due to e-i interaction is obtained, in the presence of e-e
screening, as [27]

W ζ
ss′(k,k

′) =
2π

~
Ni(q)|U ζ

ss′(q)|2|H
ζ
ss′(k,k

′)|2

× δk′,k+qδ[E
ζ
s (k)− Eζ

s′(k
′)], (33)

where

U ζ
ss′(q) =

2πe2

κi(q +Kζ
ss′)

,

is the screened e-i interaction potential and Ni(q) =
∫

dzini(zi)e
−2q|zi|. When a ML-TMDs sheet is placed on

a dielectric or magnetic substrate, the background impu-
rities in the ML-TMDs layer and the impurities in the
substrate can contribute to the e-i interaction. Normal-
ly, the concentrations of these impurities are very hard
to determine experimentally. To reduce the fitting pa-
rameters for the theoretical study, here we assume that
the impurities are effectively located at the interface be-
tween the ML-TMDs and the substrate with an effective
concentration Ni, i.e., ni = Niδ(z). Thus, Ni(q) = Ni is
the areal concentration of the impurities.
Now we consider the case of low temperatures with

T → 0. In such a case, we have df(x)/dx = −δ(EF − x)
and f(x) = Θ(x), with Θ(x) being the unit step-function.
The condition of electron number conservation leads to
nζ
s =

∑

k f [E
ζ
s (k)] so that the Fermi wavevector at the

(ζ, s) band is kζsF = [4πnζs]
1/2, which is the solution of k

from EF − Eζ
s (k) = 0. Introducing the electronic tran-

sition rate induced by e-i interaction, given by Eq. (33),
into Eq. (28), we obtained
[

Sζx
ss′ T ζx

ss′

T ζy
ss′ Sζy

ss′

]

=
Nin

ζ
s

2π2~nζ
eA2

sign[G(nζs)]

G(nζ
s′)

∫ 2π

0

dθ

∫ 2π

0

dφ

× |U ζ
ss′(q)|2|H

ζ
ss′(k

′,k)|2[R(φ, θ)], (34)

where sign(x) is the sign function,

G(nζ
s) =

4E2
F − 16πA2nζ

s −∆2 − dcζd
v
ζ

4E3
F − 2A2EF +A1

, (35)

and

[R(φ, θ)] =

[

p1cosφ p1sinφ
p2cosφ p2sinφ

]

, (36)

where p1 = γζss′cos(θ+φ)−cosφ, p2 = γζss′sin(θ+φ)−sinφ,

with γζss′ = (nζ
s′/n

ζ
s)

1/2. Here, k′ = (4πnζs′)
1/2[cos(θ +

φ), sin(θ + φ)], k = (4πnζs)
1/2[cosφ, sinφ], q = 2

√
π[nζ

s′ +

nζ
s − 2(nζ

s′n
ζ
s)

1/2cosθ]1/2 with θ being the angle between
k′ and k.

III. RESULTS AND DISCUSSIONS

In this study, we take n-type ML-MoS2 as an exam-
ple to look into the influence of the proximity effect on
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electronic and transport properties of the 2D TMDs sys-
tem. The material and theoretical parameters for ML-
MoS2 are taken as [1, 30–32]: A = at = 3.5123 eVÅ
where a = 3.193 Å and t = 1.1 eV, ∆ = 1.66 eV,
λc = −1.5 meV, and λv = 75 meV. We note that at
present, the experimental and theoretical results of the
transport effective electron masses for an electron at the
states (ζ, s), mζ

s, are unavailable. Because ML-MoS2 has
a roughly parabolic band structure around the K and K ′

points [23], here we assume that they are not different far
from the average density-of-state effective electron mass,
namely we assume mζ

s ≃ me = 0.52m0 for ML-MoS2
[37], with m0 being the rest electron mass. We consider
an air/ML-MoS2/EuO system where EuO is the magnet-
ic substrate, which can result in the effect of proximity-
induced exchange interaction. The dielectric constants
for air, a bare ML MoS2 sheet, and a bare EuO sub-
strate are taken to be, respectively, κair = 1, κTMD = 3.3
[38] and κSub = 23.9 [39]. Considering the mismatch
of the dielectric constants at the ML-MoS2/EuO inter-
face, we evaluate the effective dielectric constants for ML-
MoS2 and the substrate from the bare dielectric con-
stants using the mirror image method [40]. Thus, we
have κ = (κair + κTMD)/2 = 2.15 for ML-MoS2 and
κi = (κTMD + κSub)/2 = 13.6 for the substrate. Be-
cause the strength of the Rashba parameter, λR, and
the effective Zeeman fields for conduction and valence
bands, Bc and Bv, can be tuned experimentally, we take
them as variable input parameters in numerical calcula-
tions. It should be noted that the strengths of Bc and
Bv are usually different with different effective Landé g-
factors for Bloch states [17]. Because our attention in
this study is mainly given to the conduction band, we
take Bv = 5 meV in all calculations. Since the impu-
rity concentration in a ML-MoS2/substrate system, ni,
is normally unknown, we take it as a fitting parameter
that can be determined by, e.g., using the experimental
data of the sample mobility. Furthermore, for a given
total electron density in the sample system, ne, we can
determine the Fermi energy EF by using the condition
of electron number conservation,

ne =
∑

s,ζ,k

f [Eζ
s (k)]. (37)

With the obtained Fermi energy, the electron density at
a spin state s in valley ζ in the conduction band can then
be calculated via

nζs =
∑

k

f [Eζ
s (k)]. (38)

A. Electronic band structure and Berry curvature

Some of the basic features of the electronic band struc-
ture in ML-MoS2 have been discussed in our previous
research [23]. For convenience of understanding the in-
fluence of proximity-induced interactions on electronic

En
er

gy
 (m

eV
)

BC=0 meV

(a)

 

 

= 1

 

 

=+1

R=0 meV

(b)
BC=0 meV

 

 

R=18.75 meV

 

 

(c)
BC=3 meV

 

 

R=18.75 meV

 

 

(d)
BC=3 meV

k (Å 1)

 

 

k (Å 1)

R=40.75 meV

 

 

BC=3 meV
(e)

 

 

R=33.8 meV  

 

FIG. 1: The electronic band structure of ML-MoS2 in the p-
resence of proximity induced interactions for conduction sub-
bands in two valleys (ζ = ±1). The spin up/down states are
represented by red and black curves, respectively. The results
with different values of λR and Bc as indicated are shown in
panels (a)-(e).

and transport properties of ML-MoS2, to be presented
and discussed later, here we present some relevant re-
sults about how the Rashba parameter and the strength
of EZF would affect the electronic energy levels in the
conduction band in ML-MoS2. In Fig. 1 we show the
energy levels in a spin-split (s = ±) conduction band in
different valleys (ζ = ±1) for different Rashba param-
eters λR and EZF factors Bc. We notice the following
features. (i) When Bc = 0 the conduction bands in dif-
ferent valleys degenerate (see Figs. 1(a) and (b)). When
λR = 0 the splitting of the conduction band is induced
by intrinsic SOC λc (see Fig. 1(a)). (ii) When Bc 6= 0,
the degeneracy of the energy levels in different valleys is
lifted (see Figs. 1(c) and (d)). (iii) At a fixed Bc, the
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FIG. 2: The energies of the bottoms of four conduction sub-
bands, Eζ

s (0) with k = 0 and (ζ, s) = (±,±), as a function of
Bc at a fixed λR = 18.75 meV in (a) and as a function of λR

at a fixed Bc = 3 meV in (b).

energy spacing between two split levels in a certain valley
does not increase monotonously with λR and a different
spin effect can be observed in different valleys (see Figs.
1(c) and (d)). (iv) Interestingly, at a fixed Bc = 3 meV,
the minimum of the conduction band can be seen in the
ζ = −1 valley (see Fig. 1(c)) when λR = 18.75 meV,
whereas it can be seen in the ζ = +1 valley (see Fig.
1(d)) when λR = 40.75 meV. And (v) For λR = 33.8
meV in Fig. 1(e), the electronic structure is roughly de-
generate for both valleys. These findings indicate that in
the presence of proximity-induced interactions, the elec-
tronic band structure in ML-MoS2 depends strongly on
λR and Bc.
In Fig. 2(a) we plot the bottoms of four conduction

subbands, Eζ
s (0) with k = 0 and (ζ, s) = (±,±), as a

function of Bc at a fixed Rashba parameter λR = 18.75
meV. We can see that the effective Zeeman field Bc can
lead to different energy gaps between spin-split conduc-
tion subbands in different valleys. In particular, E±

±(0)
for four conduction subbands varies linearly with increas-
ing Bc. With increasing Bc, the spin splitting of the
conduction band at K ′ point ζ = −1 always increases,

(b)

R=18.75 meV

= 1

= 1

 

c,
s(k

) (
Å

2 )

Solid lines s=+1
Dashed lines s= 1

(a)

 R=7.5 meV
 18.75 meV
 40.75 meV
 45.75 meV

BC=3 meV

k (Å 1)

= 1

= 1

c,
s(k

) (
Å

2 )

 BC=0 meV
 0.4 meV
 1.1 meV
 3 meV

FIG. 3: The Berry curvatures as a function of wavevector
k for conduction bands (a) at fixed λR = 18.75 meV with
different EZF Bc, and (b) at fixed Bc = 3 meV with different
Rashba SOC λR near K and K′ points. The solid and dashed
lines refer to the results of spin up and spin down subbands
and the green circles are collected for different valleys.

whereas the spin splitting of the conduction subands at
K point ζ = +1 first decreases to zero and then increases.
Bc = 1.1 meV is a peculiar point at which the energy lev-
els of different spin subbands at the K point are flipped.
These results indicate that the effective Zeeman field fac-
tor Bc can effectively tune the electronic band structure
in the conduction subbands in different valleys; in partic-
ular, the energy difference E−

+ (0)−E+
+(0) can be flipped

via varying Bc.
In Fig. 2(b), Eζ

s (0) for four conduction subbands are
shown as a function of λR at a fixed Bc = 3 meV. We
find that E−

−(0) and E+
+(0) in different valleys depend

very weakly on λR, whereas E
+
−(0) and E−

+ (0) in differ-
ent valleys increase rather rapidly with λR. This implies
that the RSOC or λR affects mainly the spin-up levels in
different valleys. The presence of the proximity-induced
exchange interaction (i.e., Bc 6= 0) can lift the valley de-
generacy and modify the spin splitting. With increasing
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λR, the energy difference between E−
−(0) − E−

+ (0) first
decreases to zero and then increases, and the energy dif-
ference between E+

−(0)− E+
+(0) always increases. There

is also a peculiar point around λR = 33.8 meV at which
both E+

−(0) − E−
−(0) and E−

+ (0) − E+
+(0) approach ze-

ro and the lowest conduction subband is changed from
(ζ, s) = (−,+) to (ζ, s) = (+,−). This effect implies
that the lowest conduction subband can be changed from
valleyK ′ to valleyK via varying the value of λR. The re-
sults shown in Fig. 2 suggest that the proximity-induced
RSOC and Zeeman effect can modulate strongly the spin-
split conduction band in different valleys in ML-MoS2.

As we know, in the presence of an applied electric
field E along ML-MoS2 film, Berry curvature enters in-
to the semiclassical wavepacket dynamics, and the elec-
trons would gains an anomalous velocity [2, 13](vζsy ∼
E × Ωζ

c,s(k)) perpendicular to the applied electric field.
Thus, the Berry curvature would play an important role
in affecting the transverse or Hall currents. In Fig. 3, we
plot the Berry curvatureΩζ

c,s(k) as a function of wavevec-
tor k at valleys K and K ′ with different EZF and Rash-
ba SOC. As we can see, the EZF Bc and Rashba SOC
λR can significantly affect the values of Berry curvature.
However, the values of Berry curvature in valley K and
valley K ′ are always positive and negative with different
EZF and Rashba parameters. This results implies that
the directions of the transverse currents contributed by
different valleys remain unchanged. The total transverse
current is the summations of the contributions from two
valleys and the strength of the transverse current could
be tuned by varying the EZF and Rashba parameters.

B. Electronic screening length

As shown in Eq. (14), at T → 0 and q → 0 limits, the

RPA inverse screening length Kζ
ss′ is attributed mainly

to intra-subband electronic transitions (i.e., s′ = s). In
this study, we only evaluate the electronic screening in-
duced by intra-subband e-e interaction by using Eq. (16).

In Fig. 4, we plot the inverse screening lengthes Kζ
ss′

for four spin-split conduction subbands as a function of
electron density ne at the fixed valence EZF parameter
Bv = 5 meV and at the low-temperature limit T → 0 K.
Here, different values of Bc and λR are used to examine

the effect of Bc and λR on Kζ
ss′ . We can see that with

increasing electron density, the effect of electronic screen-
ing first increases and then depends relatively weakly on
ne, in agreement with the screening effect found in, e.g.,

graphene [27]. Kζ
ss′ differs in spin-split subbands in dif-

ferent valleys. Because (ζ, s) = (−,+), (+,+) and (−,+)
are the lowest electronic subbands (see Fig. 2) for cor-
responding parameters indicated in Fig. 4, which are
always occupied by electrons, K−

++ in Fig. 4(a), K+
++

in Fig. 4(b) and K−
++ in Fig. 4(c) are always non-zero

values. The non-zero values of other Kζ
ss can only be ob-

tained with increasing ne when the corresponding higher

K
ss
' (
10

8 c
m

1 )

( s)=

 

(a)

( )

( )

 

R=18.75 meV
BC=3 meV

 

 

(b)

 

R=40.75 meV
BC=3 meV

 

(c)

ne (cm 2)

 
R=18.75 meV
BC=1.1 meV

FIG. 4: The inverse screening lengthes Kζ

ss′
for intra-subband

transitions in four spin-split conduction subbands as a func-
tion of electron density ne at T → 0 for a fixed value of
Bv = 5 meV. Here, λR = 18.75 meV and Bc = 3 meV in (a),
λR = 40.75 meV and Bc = 3 meV in (b), and λR = 18.75
meV and Bc = 1.1 meV in (c).

subband becomes populated. At relatively large ne so
that four conduction subbands in bothK- andK ′-valleys
are occupied by electrons, the inverse screening lengths
Kζ

ss for four conduction subbands are approaching rough-
ly the same value with increasing electron density. We
note that because the electronic energy spectrum for ML-
TMDs is largely parabolic (see Fig. 1), the dependence
of Kζ

ss upon ne for ML-TMDs is similar to those ob-
tained for semiconductor-based 2D electron gas (2DEG)
systems [41]. For ML-MoS2, the inverse electronic screen-
ing length is in the order of 108 cm−1, which is in line
with the results obtained in semiconductor-based 2DEG
systems [41].
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FIG. 5: The longitudinal mobility µζs
xx in conduction subband

(ζ, s) = (±,±) in ML-MoS2 as a function of electron density
at a fixed Bc = 3 meV for different Rashba parameters λR as
indicated.

C. Longitudinal and transverse mobilities

In the theoretical approach developed in this study for
evaluating the mobilities, the only fitting parameter that
we need is the impurity concentration Ni in Eq. (33).
Here we take Ni = 3.98 × 1012 cm−2 for numerical cal-
culations (see the green dot in Fig. 7(a)). This value
corresponds to a longitudinal mobility obtained experi-
mentally for an n-type ML-MoS2 on a SiO2/Si substrate
[42], which is about 174 cm2V−1s−1 at T = 4 K and
ne = 1.35×1013 cm−2. The experimental results showed
[42] that similar to semiconductor based 2D systems,
the longitudinal mobility of ML-MoS2 depends weakly
on temperature when T < 10 K. Thus, the results ob-
tained theoretically for T → 0 from this study can be

  33.8 meV
  40.75 meV
  45.75 meV

 R=7.5 meV  
  18.75 meV

 

(a)

BC=3 meV 

 

(b)

 

 

(c)s xy
(c
m

2 /V
s)
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FIG. 6: The transverse or Hall mobility µζs
xy in conduction

subband (ζ, s) = (±,±) in ML-MoS2 as a function of electron
density at a fixed Bc = 3 meV for different Rashba parameters
λR as indicated.

applied to reproduce those obtained experimentally at
low temperatures T < 10 K for ML-MoS2. Furthermore,
we take the transverse mobility in K ′/K valley is pos-
itive/negative in Eq. (30) due to different directions of
the Hall-currents, akin to the application of the magnetic
fields along opposite directions.

In the presence of an external magnetic field, the Hall
effect can lead to the transverse (Hall) mobility or con-
ductivity [43]. In this study, the transverse mobility
comes from the valley Hall effect driven by the pseudo-
magnetic field induced by the Berry curvature. Namely
the transverse current along the y-direction can be mea-
sured in the presence of a driving electric field applied
along the x-direction owing to the lift of the valley de-
generacy and to the achievement of the spin polarization
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in the electronic system [23]. The Berry curvature in ML-
TMDs can introduce a pseudo-magnetic field in each spin
and valley subband. Thus, the nonzero total transverse
(Hall) current or mobility can be observed since the val-
ley Hall effects in two valleys can no longer be canceled
out with each other in the presence of proximity-induced
interactions . Furthermore, we note that in the presence
of proximity-induced interactions, the electron energy is
still symmetric along the xy-plane (see Eq. (3)), meaning
that it depends only on |k|. However, the electron wave-
function is asymmetric in the xy-plane (see Fig. (4)),
namely it depends on kx and ky. Therefore, the inte-
grations for off-diagonal elements in Eq. (34), which are
related to Hall mobility µζs

xy, can be nonzero.

In Fig. 5 and Fig. 6, we show respectively the longitu-
dinal µζs

xx and transverse or Hall mobility µζs
xy in conduc-

tion subband (ζ, s) = (±,±) in ML-MoS2 as a function
of electron density ne at a fixed EZF Bc = 3 meV for
different Rashba parameters λR. At Bc = 3 meV, i)
when λR < 33.8 meV, the conduction subbands from the
lowest to the highest energies are (−,+), (+,+), (+,−)
and (−,−) (see Fig. 2(b)). Thus, µ−+

xx and µ−+
xy are

always nonzero and µ++
xx and µ++

xy , µ+−
xx and µ+−

xy and

µ−−
xx and µ−−

xy can be observed with increasing ne when
they are occupied; ii) when 33.8 meV < λR < 59.9 meV,
the conduction subbands from the lowest to the high-
est energies are (+,+), (−,+), (−,−) and (+,−) (see
Fig. 2(b)). Therefore, µ++

xx and µ++
xy are always nonze-

ro and µ−+
xx and µ−+

xy , µ−−
xx and µ−−

xy and µ+−
xx and µ+−

xy

can be observed with increasing ne when they become
populated; and iii) when λR ≈ 33.8 meV, the conduc-
tion subbands from the lowest to the highest energies are
(+,+) ≈ (−,+) and (−,−) ≈ (+,−) (see Fig. 2(b)).
As a result, µ++

xx , µ++
xy , µ−+

xx and µ−+
xy are always nonze-

ro and µ−−
xx , µ−−

xy , µ+−
xx and µ+−

xy can be observed with
increasing ne when they are occupied. When a conduc-
tion subband (ζ, s) becomes occupied, both µζs

xx and µζs
xy

first increase rapidly then depend relatively weakly on ne

with increasing ne. Moreover, we notice that the longitu-
dinal and transverse mobilities show almost the identical
dependence upon the electron density. In the magneto-
transport measurements in the presence of an external
magnetic field, the longitudinal (drift) and transverse
(Hall) mobilities in a 2D electron gas have a relation-
ship [43]: µxy = rHµxx = σRH, where rH is the Hall
scattering factor which is a constant for a material or
device and RH is the Hall coefficient. In the present s-
tudy, the valley Hall effect occurs with the presence of
the pseudo-magnetic field induced by the Berry curva-
ture in each spin and valley split subband in a valley
nondegenerate ML-TMDs system. Therefore, the con-
tributions to the longitudinal and transverse mobilities
from each subband also have the similar features with a
proportional relationship. Furthermore, µζs

xx is about 20
times larger than µζs

xy when (ζ, s) is well occupied. These

results indicate that when Bc 6= 0, µζs
xx and µζs

xy in an
n-type ML-MoS2 depend strongly on Rashba parameter

xx
 (c

m
2 /V

s)
xy

 (c
m

2 /V
s)

  33.8 meV
 40.75 meV    
  45.75 meV

  

 

BC=3 meV

(a)

 R=7.5 meV
  18.75 meV

 

 

 

(b)

ne (cm 2)

FIG. 7: (a) The longitudinal, µxx, and (b) the transverse
or Hall mobility, µxy, of ML-MoS2 as a function of electron
density at a fixed Bc = 3 meV for different Rashba parameters
λR as indicated. The green dot at ne = 1.35 × 1013 cm−2 in
(a) is the mobility obtained experimentally [42], from which
we take the value of Ni = 3.98×1012 cm−2 in our calculations.
When λR ≈ 33.8 meV, µxy → 0 in (b). The dotted part of line
corresponds to the reverse direction of the transverse current.

and electron density.

In Fig. 7, we show the averaged longitudinal µxx and
transverse or Hall mobility µxy in n-type ML-MoS2 as
a function of electron density ne at a fixed EZF Bc = 3
meV for different Rashba parameters λR, obtained by us-
ing Eqs. (29)-(30). In low ne regime µxx increases with
ne. In high ne regime, µxx depends relatively weakly on
ne and µxx decreases with increasing λR. We find that
when Bc 6= 0, µxy 6= 0 can be observed and the features
of µxy differ significantly from those of µxx. (i) µxy is
about 20 times smaller than µxx; (ii) µxy first increas-
es then decreases with increasing ne. This is due to the
fact that at low ne only the lowest conduction subband
is occupied. With increasing ne and when the higher
subbands with different valleys index becomes populat-
ed, the valley-currents from different subbands are offset
partly and, thus, the overall µxy decreases with increasing
ne. With further increasing ne and when all four conduc-
tion subbands become occupied, the overall µxy further
decreases and approaches to zero gradually. These re-
sults suggest that µxy 6= 0 can be observed in relatively
low ne in n-type ML-MoS2. (iii) When λR ≈ 33.8 meV,
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FIG. 8: The longitudinal mobility µζs
xx in conduction subband

(ζ, s) = (±,±) in ML-MoS2 as a function of electron density
at a fixed Rashba parameters λR = 18.75 meV for different
EFZ Bc as indicated.

µxy → 0 because (−,+) ≈ (+,+) and (−,−) ≈ (+,−)
so that n+

+µ
++
xy −n−+µ−+

xy → 0 and n−
−µ

−−
xy −n+

−µ
+−
xy → 0;

And (iv) interestingly, the sign of µxy changes at about
λR = 33.8 meV and the sign of µxy would change again
after approached to zero with increasing carrier densi-
ty when λR = 40.75 meV and λR = 45.75 meV [see in
Fig. 7(b)], implying that the direction of the Hall cur-
rent/voltage can be varied through electrically tuning of
the Rashba parameter and carrier density through, e.g.,
the presence of a substrate and/or tuning the applied
gate voltage. The transverse mobility has often been in-
vestigated in 2D electron gas systems through the Hall
effect in magneto-transport measurement [44]. The ex-
perimental investigation of the transverse mobility can
be conducted in a field effect transistor or encapsulated
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FIG. 9: The transverse or Hall mobility µζs
xy in conduction

subband (ζ, s) = (±,±) in ML-MoS2 as a function of electron
density at a fixed Rashba parameters λR = 18.75 meV for
different EZF Bc as indicated.

ML-MoS2 multi-terminal devices [42, 45].
In Fig. 8 and Fig. 9, we show respectively the longi-

tudinal µζs
xx and transverse or Hall mobility µζs

xy in con-
duction subband (ζ, s) = (±,±) in ML-MoS2 as a func-
tion of electron density ne at a fixed Rashba parameter
λR = 18.75 meV for different EZF Bc. At λR = 18.75
meV (see Fig. 2(a)), i) the lowest conduction subband
is always (−,+) so that µ−+

xx and µ−+
xy are always nonze-

ro; ii) when Bc < 1.1 meV, the conduction subbands
from the lowest to the highest energies are (−,+), (+,−),
(+,+) and (−,−) (see Fig. 2(a)). Thus, µ−+

xx and µ−+
xy

are always nonzero and µ+−
xx and µ+−

xy , µ++
xx and µ++

xy and

µ−−
xx and µ−−

xy can be observed with increasing ne when
they are occupied; ii) when 1.1 meV < Bc < 4 meV, the
conduction subbands from the lowest to the highest ener-
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FIG. 10: (a) The transport longitudinal mobility µxx and (b)
the transport transverse or Hall mobility µxy of ML-MoS2 as
a function of electron density at a fixed Rashba parameter
λR = 18.75 meV for with different EZF Bc. In (b), µxy = 0
when Bc = 0.

gies are (−,+), (+,+), (+,−) and (−,−) (see Fig. 2(a)).
Therefore, µ−+

xx and µ−+
xy are always nonzero and µ++

xx and

µ++
xy , µ+−

xx and µ+−
xy and µ−−

xx and µ−−
xy can be observed

with increasing ne when they become populated; and iii)
when Bc ≈ 1.1 meV, the conduction subbands from the
lowest to the highest energies are (+,+) ≈ (+,−) (see
Fig. 2(a)). As a result, µ−+

xx and µ−+
xy are always nonzero

and µ++
xx , µ++

xy , µ+−
xx , µ+−

xy , µ−−
xx and µ−−

xy can be observed
with increasing ne when they are occupied. When a con-
duction subband (ζ, s) becomes occupied, both µζs

xx and
µζs
xy first increase rapidly then depend relatively weakly

on ne with increasing ne. Furthermore, µζs
xx is about 20

times larger than µζs
xy when (ζ, s) is well occupied. These

results indicate that when λR 6= 0, µζs
xx and µζs

xy in an n-
type ML-MoS2 depend strongly on EZF parameter and
electron density.

In Fig. 10, we show the averaged longitudinal µxx and
transverse or Hall mobility µxy in n-type ML-MoS2 as
a function of electron density ne at a fixed Rashba pa-
rameter λR = 18.75 meV for different EZF parameters
Bc, obtained by using Eqs. (29) and (30). In low ne

regime µxx increases with ne. In high ne regime, µxx

depends relatively weakly on ne and µxx decreases with
increasing Bc. We find that when Bc 6= 0, µxy 6= 0
can be observed and the features of µxy differ significant-

ly from those of µxx. (i) µxy is about 20 times small-
er than µxx; (ii) µxy first increases then decreases with
increasing ne. This is due to the fact that at low ne
only the lowest conduction subband is occupied. With
increasing ne and when the higher subbands with differ-
ent valleys index becomes populated, the valley-currents
from different subbands are offset partly and, thus, the
overall µxy decreases with increasing ne. With further
increasing ne and when all four conduction subbands be-
come occupied, the overall µxy further decreases and ap-
proaches to zero gradually. These results suggest that
µxy 6= 0 can be observed in relatively low ne in n-type
ML-MoS2. (iii) When Bc ≈ 0 meV, µxy → 0 because
the energies of the bands in different valley are degener-
ate where (+,−) = (−,+) and (−,−) = (+,+) so that
n+−µ

+−
xy − n−

+µ
−+
xy → 0 and n−

−µ
−−
xy − n+

+µ
++
xy → 0. These

results indicate that the longitudinal and transverse mo-
bilities can also been tuned by the EZF parameter and
carrier density. Comparing Fig. 7 with Fig. 10, we see
that both of the Rashba parameter and the EZF param-
eter Bc can effectively modulated the longitudinal and
transverse mobilities. The stronger effect by varying Bc

can be observed. However, a large Rashba SOC can re-
verse the direction of the transverse current with varying
electron density. With a relatively large ne, the effect of
the Rashba parameter and the EZF parameter on longi-
tudinal and transverse mobilities becomes weak due to
the weakening of the spin polarization in the sample sys-
tem [23]. When ne is large enough so that all spin and
valley subbands are occupied, µxy begins to vanish.

In Fig. 11, we plot the averaged longitudinal µxx and
transverse µxy mobility in n-type ML-MoS2 as a func-
tion of electron density ne at a fixed Rashba parameter
λR = 18.75 meV, and EZF parameters Bc and Bv for d-
ifferent impurity concentrations Ni. As we can see, both
µxx and µxy decrease with increasing Ni because a larger
Ni corresponds to a stronger electron-impurity scattering
rate. In our theoretical model developed in this study,
the transverse mobility is attributed to both the intrinsic
contribution by Berry curvature and the extrinsic contri-
bution by impurity scattering [13, 46]. With a relatively
large impurity concentration and at low temperatures,
the impurity scattering is the principal channel for elec-
tronic scattering rather than phonon scattering. The im-
purity scattering refers to the skew scattering mechanism,
which is proportional to the momentum relaxation time.
Since the impurity scattering rate can significantly affec-
t the electron lifetime, the extrinsic impurity scattering
would play an important role to affect both the longitu-
dinal and transverse mobilities, as shown in Fig. 11. As
far as we know, there is a lack of experimental work for
measuring the Hall mobility in ML-TMDs in the absence
of an external magnetic field when the valley degeneracy
is lifted by proximity-induced interactions, as we predict
here. The method of the measurement on such an effect
should be the same as that applied for conventional Hall
measurement in magneto-transport experiments by using
the Hall bar or van der Pauw electrodes.
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FIG. 11: (a) The transport longitudinal mobility µxx and (b)
the transport transverse or Hall mobility µxy of ML-MoS2 as
a function of electron density at a fixed Rashba parameter
λR = 18.75 meV and EZF parameters Bc=3 meV and Bv= 5
meV for different impurity concentrations Ni.

In this study, we considered an n-type ML-MoS2
laid on a ferromagnetic substrate where the proximity-
induced interactions are presented. The electronic
screening and transport mobility are contributed by the
electrons in the spin-splitting subbands. The electronic
structure of an n-type ML-MoS2/ferromagnetic substrate
heterostructure can be effectively tuned by varying the
Rashba SOC and EZF via the types of substrate or a per-
pendicular electrical field. As we know, the carrier densi-
ty in a 2D system can also be effectively tuned through,
e.g., applying a gate voltage. Thus, the electronic screen-
ing and transport mobility of a ML-MoS2 heterostructure
system can be tuned by varying these parameters through
the state-of-the -art fabrication method of devices and
experimental settings. More interestingly, there exists
transverse or Hall mobility due to the breaking of valley
degeneracy by the EZF. The longitudinal and transverse
or Hall mobility can be effectively tuned by the Rashba
parameter, EZF, and carrier density. With the unique
proximity-induced interactions, a ML-MoS2-based het-
erostructure can be a promising material for electronics
and valleytronics.

IV. CONCLUSIONS

In this paper, we theoretically investigate the electron-
ic and transport mobility properties of an n-type ML-
MoS2 at low temperature in the presence of proximity-
induced interactions such as Rashba SOC and exchange
interaction. The electric screening induced by electron-
electron interaction is studied under a standard RPA,
and the longitudinal and transverse or Hall mobilities
are evaluated by using a momentum-balance equation de-
rived from a semi-classical Boltzmann equation where the
electron-impurity interaction is considered as the princi-
pal scattering event at low temperature. We have exam-
ined the roles of Rashba SOC, EZF, and carrier densi-
ty on affecting the occupation of electrons in spin split-
ting subbands in different valleys, the inverse screening
length, and longitudinal and transverse or Hall mobility
of an n-type ML-MoS2. The main conclusions obtained
from this study are summarized as follows.

In a 2D ML-TMDs material such as ML-MoS2, the
Rashba SOC can result in an in-plane electronic spin
component. The presence of the proximity-induced ex-
change interaction can further modify the spin splitting
and lift the energy degeneracy for electrons in different
valleys. The opposite signs of Berry curvatures in the t-
wo valleys would introduce opposite directions of Lorentz
force on valley electrons. The inverse screening lengths
and transport longitudinal and transverse or Hall mobil-
ities are different in each spin splitting subbands due to
the electronic structure and the occupations of electron-
s in each spin splitting subbands. The total mobility is
contributed by each spin splitting subbands. Due to the
breaking of valley degeneracy by the EZF, the currents
from different valleys are no longer canceled out so that
the transverse current or Hall mobility can be observed in
the absence of an external magnetic field. The electronic
screening, longitudinal mobility, and transverse or Hall
mobility can be effectively tuned by the electron density
and proximity-induced interactions with the Rashba ef-
fect and exchange interaction with an effective Zeeman
field. We find that at a fixed effective Zeeman field, the
lowest spin-split conduction subband in ML-TMDs can
be tuned from one in the K ′-valley to one in the K-
valley by varying the Rashba parameter. Therefore, we
can change the magnitude and direction of the Hall cur-
rent by varying the Rashba parameter and/or the effec-
tive Zeeman field regarding the proximity effect induced
by, e.g., the presence of a ferromagnetic substrate and/or
applying a gate voltage. As the Hamiltonian for differ-
ent ML-TMDs is the same but with different material
parameters, the behaviors of the longitudinal and trans-
verse (Hall) mobilities should show similar features for
different ML-TMD systems in the presence of proximity-
induced interactions. The important and interesting the-
oretical findings in this paper can be beneficial to experi-
mental observation of the valleytronic effect and to gain-
ing an in-depth understanding of the ML-TMDs systems
in the presence of proximity-induced interactions. We
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hope that the theoretically predictions in this work can
be verified experimental in the near future.
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