|
Record |
Links |
|
Author |
Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M. |
|
|
Title |
Rippling, buckling, and melting of single- and multilayer MoS2 |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
Physical Review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
91 |
Issue |
91 |
Pages |
014101 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Large-scale atomistic simulations using the reactive empirical bond order force field approach is implemented to investigate thermal and mechanical properties of single-layer (SL) and multilayer (ML) molybdenum disulfide (MoS2). The amplitude of the intrinsic ripples of SL MoS2 are found to be smaller than those exhibited by graphene (GE). Furthermore, because of the van der Waals interaction between layers, the out-of-plane thermal fluctuations of ML MoS2 decreases rapidly with increasing number of layers. This trend is confirmed by the buckling transition due to uniaxial stress which occurs for a significantly larger applied tension as compared to graphene. For SL MoS2, the melting temperature is estimated to be 3700 K which occurs through dimerization followed by the formation of small molecules consisting of two to five atoms. When different types of vacancies are inserted in the SL MoS2 it results in a decrease of both the melting temperature as well as the stiffness. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Lancaster, Pa |
Editor |
|
|
|
Language |
|
Wos |
000347921300001 |
Publication Date |
2015-01-05 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1098-0121;1550-235X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
40 |
Open Access |
|
|
|
Notes |
; This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. We would like to thanks Prof. Douglas E. Spearot [26] for giving us the implemented parameters of Mo-S in LAMMPS. ; |
Approved |
Most recent IF: 3.836; 2015 IF: 3.736 |
|
|
Call Number |
c:irua:123834 |
Serial |
2909 |
|
Permanent link to this record |