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It was recently shown that a chiral topological phase emerges from the coupling of two twisted
monolayers of superconducting Bi2Sr2CaCu2O8+δ for certain twist angles. In this work, we reveal
the behavior of such twisted superconducting bilayers with dx2

−y2 pairing symmetry in presence of
applied magnetic field. Specifically, we show that the emergent vortex matter can serve as smoking
gun for detection of topological superconductivity in such bilayers. Moreover, we report two distinct
skyrmionic states that characterize the chiral topological phase, and provide full account of their
experimental signatures and their evolution with the twist angle.

I. INTRODUCTION

Chiral superconductivity [1] has been a topic of
tremendous interest in the recent literature due to its
rich phenomenology [2, 3], including appearance of non-
trivial surface currents [4] and half-quantum vortices [5–
9], to name a few examples. Being mostly characterized
by several Fermi surfaces, chiral superconductors often
present multiple superconducting gaps, and are thereby
prone to a plethora of interesting physics typical of mul-
ticomponent superconductivity [10–14]. Arguably, chiral
superconductors gained a special relevance due to the
increasing interest in topological superconductivity [15]
and its promise towards use in modern quantum tech-
nologies [16]. With its highly non-trivial topology, the
chiral state of superconductors is known to present the
uniquely associated phenomena, such as the gapless edge
states [17] and Majorana bound states localized in the
vortex cores [18], which obey the non-Abelian statistics
[19] fundamental to future applications in quantum com-
puting.
Recently, Can et al. [20] showed that a twisted bilayer

composed of two monolayers of the high-temperature su-
perconductor Bi2Sr2CaCu2O8+δ [21] (Bi-2212) can dis-
play a chiral topological phase which breaks time-reversal
symmetry for twist angles near 45◦. As they argued, at
a twist angle equal to 45◦, the dx2−y2 order parameter of
each layer, characteristic of Bi-2212, induces a significant
dxy component in the order parameter of the other layer.
This results in a superconducting state with d+ id′ pair-
ing symmetry. Note that, given the Josephson coupling
between the two monolayers of such a system, the state in
question bears physics related to ϕ-Josephson junctions
[22–24].
The above arguments were developed in Ref. 20 con-

sidering a homogeneous superconducting state. In the
present work we go beyond this premise and investigate

∗ Corresponding author: milorad.milosevic@uantwerpen.be

how such system responds to applied magnetic field, i.e.
how the vortex matter of such bilayers evolves with the
twist angle between the monolayers. As we will show,
the emergent typical vortex configurations can be used
as a smoking gun for the detection of the chiral topolog-
ical phase. Recently, it was proposed that edge currents
can be used as a probe of the topological phase [25, 26],
although the small magnitude of such currents renders
their detection experimentally challenging. In the case
of vortices, due to the broken time-reversal symmetry,
skyrmionic vortex states [9, 27–34] arise in the topologi-
cal phase, and exhibit a distinct magnetic signature that
can be detected in scanning imaging experiments. The
skyrmionic nature of these states is identified through
the topology of the pseudospin texture defined by the
local correlations between the superconducting order pa-
rameters in the two layers. Furthermore, we show that
the vortex matter changes even within the topological
phase itself. Namely, as one varies the twist angle in
the range where topological phase is stable, two differ-
ent skyrmionic states are found. In one of them, states
with unit topological charge are favored (presenting as
a lattice of vortex pairs), while in the other one states
with large topological charge become energetically favor-
able, causing formation of extended vortex chains with a
distinct appearance and magnetic signature.

The outline of this work is as follows. In Sec. II
we present our theoretical formalism and show how we
deal with the twisted bilayer system at hand within the
framework of the Ginzburg-Landau theory. In Sec. III
we present and discuss our main results. We start by
showing the existence of a topological phase for certain
values of the twist angle in a homogeneous system, to
subsequently reveal and characterize the vortical and
skyrmionic matter, as well as transitions between them,
inside the topological phase. Our concluding remarks are
given in Sec. IV.
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II. THE THEORETICAL MODEL

The free energy density of our system can be described
as a sum of three parts F = F1 + F2 + F12, with

F1 = −2αs|∆(s1)|
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being the free energy of the unrotated (non-twisted)
layer. Here, ∆(s1) and ∆(d1) are the order parameters
corresponding to the s and d-wave pairings, respectively
[35]. Hereafter, the subscript (1) indicates the order pa-
rameters of the unrotated layer, while the subscript (2)
denotes the rotated (twisted) one. In this work, we add
the s component of the order parameter in order to in-
duce the correct fourfold symmetry in the d component.
This is done through the mixed gradient terms in the
free-energy. The parameter αs determines the relative
strength between the s and d order parameters. Once
we are mainly interested in the condensate with d-wave
pairing, we use αs = 0.7 that leads to a weak modulus for
the s-wave order parameter (under 20% of the d-wave or-
der parameter). We also define the momentum operator
Π = i∇−A for compacter presentation of the formulae.
Here A stands for the magnetic vector potential due to
the applied magnetic field and the magnetic response of
the superconducting layers.

The second contribution to the free energy stems from
the rotated layer, and reads

F2 = −2αs|∆(s2)|
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Here, θ is the twist angle and the expression for the
mixed gradient terms presented in Eq. (2) is obtained af-
ter transformation on the momentum operator from the
rotated coordinates to the unrotated ones.
The final contribution to the free energy captures the

interaction between the two layers [20]

F12 =A|∆(d1)|
2|∆(d2)|

2 −B cos(2θ)(∆(d1)∆
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with A, B and C taken as phenomenological (free) pa-
rameters (see Ref. 20 for expressions of B and C derived
from microscopic principles). The term proportional to
B in Eq. (3) depends on cos(2θ) due to symmetry rea-
sons, as discussed in Ref. 20, and represents the tunneling
of Cooper pairs between the two layers. Following same

reasoning, one can interpret the term proportional to C
as the coherent tunnelling of two Cooper pairs between
the layers.

In the above equations, all lengths are expressed in
units of the coherence length ξ = (νF /2)

√

W/ ln(Td/T ),
with W = 7ξ(3)/(8π2T 2), the order parameters are in

units of ∆0 =
√

(4/3W ) ln(Td/T ), the magnetic field is
in units of Hc2 = Φ0/(2πξ

2), where Φ0 = hc/2e is the
magnetic flux quantum, the current density is presented
in units of j0 = eWN(0)EF /(2m)∆2

0/ξ and the free en-
ergy density is in units of E0 = (4/3W ) ln(Td/T ). For
details on the derivation of the free energy for a single
layer we refer to Refs. [35,36].

Minimizing the total energy F = F1 + F2 + F12 with
respect to the order parameters we arrive to the appro-
priate Ginzburg-Landau equations:
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FIG. 1. (Color online) Phase difference between the d-wave
components of the order parameters of two layers as a function
of the twist angle θ. Blue and red curves represent the phase
difference for C = B/8 and C = B/5, respectively, while
A = B = 0.1. Dashed line shows the phase difference given
by the analytical expression arccos(B cos(2θ)/4C) from Ref.
20, for C = B/8. The nontrivial values of the phase difference
( ̸= 0 or π) indicate existence of a topological phase for a
particular twist angle.
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FIG. 2. (Color online) Vortex configurations in the d-wave component of the order parameter of the unrotated layer (first
column) and the rotated layer (second column), for the s-wave component of the order parameter of the unrotated layer (third
column) and the rotated layer (fourth column), and the magnetic response of the system (fifth column), for three selected twist
angles between the layers. The applied magnetic field was H = 0.0368Hc2, corresponding to the magnetic flux of 24Φ0 through
the shown area of the sample.
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Eqs. (4)-(7) are then solved for different twist angles
θ, assuming periodic boundary conditions [37]. As the
Ginzburg-Landau parameter κ for Bi-2212 is typically
much greater than 1, we disregard the contribution of
the supercurrents to the total magnetic field and use a
vector potential solely due to the applied magnetic field
to solve the above set of equations.
For a given θ, we initialize the calculations from dozens

of different initial conditions for the order parameters,
which include the Meissner state, conventional vortex

lattices and skyrmionic states, while also varying the as-
pect ratio of the unit cell of the simulation in order to
identify the lowest-energy solutions for the vortex states.
From a given initial state, the system is relaxed through
the numerical solution of the time-dependent Ginzburg-
Landau equations, which by construction guarantees the
decrease of the system energy with time (see Refs. 38
and 39 for details on the numerical procedure). In what
follows, we display the ground-state found for an exter-
nal applied magnetic field that corresponds to the flux of
24Φ0 threading the shown unit cell, without loss of gen-
erality. Namely, for other values of the applied magnetic
field we obtained qualitatively equivalent results. When
plotting the magnetic field profile in different figures, we
will show only the contribution of the supercurrents, af-
ter subtracting the (strongly dominating) homogeneous
external field from the total calculated field. To obtain
the field correspondent to each vortex configuration, we
take the supercurrent Js calculated through the solution
of Eqs. (4)-(7) and numerically solve for the magnetic
vector potential ∇ × ∇ × A = Js/κ

2. In this solution,
the periodic boundary conditions for the vector potential
[37] are respected in our unit cell. The spatial distribu-
tion of the field shown in the figures is calculated at the
plane of the superconducting film, taking into account
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the displaced Meissner currents in two layers as well as
the Josephson current between them. We note, though,
that the resulting vector potential is not fed back into
the GL equations for the order parameters, since the sys-
tem at hand is an extreme type-II one and the effect of
the generated magnetic field on the superconducting con-
densate is negligible compared to the effect of the applied
magnetic field.

III. RESULTS AND DISCUSSION

As shown in Ref. [20] in the case of homogeneous su-
perconductivity, for a certain range of θ the competition
between the terms proportional to B and C in F12 yields
a non-trivial phase difference between the d-wave com-
ponents of the order parameters of the two layers. Let
us start by discussing the homogeneous solutions of our
free-energy model and show that it analogously allows
for the existence of a topological phase.
To do this, we minimize the free energy density F =

F1 + F2 + F12 with respect to the modulus and phase of
the s and d components of the order parameter in both
layers. Fig. 1 shows the phase difference between ∆(d1)

and ∆(d2) (∆ϕ = ϕ(d1) −ϕ(d2)) which minimizes the free
energy as a function of θ. As can be seen from the figure,
for small twist angles up to a critical angle θi, the free
energy is minimal when the order parameters have the
same phase. For twist angles larger than a critical value
θf , the phase difference that yields minimal energy equals
π.
On the other hand, for angles between θi and θf , one

obtains a non-trivial phase difference between the con-
densates of the two layers, which means a superconduct-
ing state that breaks time-reversal symmetry. In partic-
ular, for θ = π/4, the phase difference is equal to π/2, i.e.
a d+ id′ superconducting state is found [20]. The values
of θi and θf depend on the particular values chosen for
the parameters A, B and C, as can be seen from the two
examples shown in Fig. 1. Nevertheless, the features of
the superconducting state that we discuss below are al-
ways present in the range θi < θ < θf , for any choice of
the aforementioned parameters. Therefore, without loss
of generality of our results, in what follows we will use
the parameters correspondent to the blue curve in Fig. 1.
In that case, θi ≈ 34◦ and θf ≈ 56◦.

Let us now go beyond these results and show how the
twist angle affects the vortex matter of such bilayers. In
Fig. 2 we show the spatial distribution of the d-wave and
s-wave component of the order parameter for both lay-
ers, together with the magnetic field distribution in the
system, for θ = 0, 36◦ and 45◦. Once the value of αs

is fixed, we expect no qualitative changes for the s-wave
components when we change the twist angle. This is
promptly confirmed in the third and fourth columns of
Fig. 2. Moreover, as stated previously, the magnitudes of
the s-wave components are much smaller than the magni-
tudes for the d-wave components. Thus, the contribution

Aligned vortex
(composite state)

Split vortex
(skyrmionic state)

c)

g)

c)

e)

b)a)

f)

d)

Jj
-=5.9Jj

-=8.1

h)

FIG. 3. Zoom on the composite (phase shifted, ∆ϕ = π/2,
left column) and skyrmionic (minimum energy, right column)
vortex states for a bilayer twisted with θ = 45◦, in applied
magnetic field H = 0.12Hc2 (simulation region 36 × 36ξ2).
Panels a) and b) present the vortex positions in the first and
the second layer (blue and red circles, respectively). Panels
c) and d) show the sine of the phase difference between the
condensates. Panels e) and f) plot the Josephson current
profile, with the average Josephson current displayed in each
panel. Panels e) and f) show the Josephson current profile
along the black dashed lines in panels g) and h), respectively.
Red dashed line in panel h) show the sine of phase difference
between the layers along the same line as the current shown.

of the s-wave order-parameters to the supercurrents is
very small, having no effect in the field profiles presented
here. For θ = 0, as discussed above, the phase differ-
ence between the order parameters is locked at zero. It
is therefore energetically favorable for the vortices in two
layers to organize in a composite configuration, where
the vortex cores are vertically aligned between the unro-
tated and the rotated layer. In this case, the magnetic
field profile of the vortices exhibits well defined peaks at
vortex locations and one can clearly distinguish the four-
fold symmetry characteristic of dx2−y2 superconductors.
Note that, for a finite θ, the vortex lattice orientation
would not be the same in each layer if they were de-
coupled. For the coupled case studied here, though, we
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found that the Josephson coupling leads to the alignment
of the lattices and the vortex configurations remain qual-
itatively unchanged for the non-zero twist angles outside
the topological phase, i.e. for θ < θi or θ > θf .

Next we increase the twist angle to 36◦, larger than
θi, to enter the topological phase in the ground state of
the system (cf. Fig. 1). The composite vortex configura-
tion is no longer the most energetically favorable state,
as the vortex cores in two layers no longer coincide. As
a consequence, the field of the vortex is now distributed
over the two displaced cores in two layers (see Fig. 2),
reflecting a magnetic field profile of a dimer rather than
one clear peak. Notably, some vortices within the con-
figuration remain seemingly composite. The situation
radically changes as we increase the twist angle further,
to θ = 45◦ (bottom row of Fig. 2). Here one sees that
not only vortex cores displace between the layers, they
also organize into extended closed vortex chains. As will
be discussed in the following paragraphs, such a vortex
chain is formed along a domain wall separating sample re-
gions with different phase differences between the layers.
Moreover, such chains will exhibit skyrmionic topology,
with an integer topological charge equal to the total vor-
ticity of the chain. Last but not least, the overall shape
and the magnetic signature of these chains are uniquely
distinct which facilitates their experimental observation.

The vortex splitting in the topological phase occurs in
order to reduce the Josephson current between the lay-
ers and thereby minimize the energy. This is shown in
Fig. 3, where we compare the composite (left column)
and skyrmionic (right column) vortex state for a system
with twist angle θ = 45◦. In the composite state, the
phase difference between the d-wave component of the
order parameters in each layer is fixed at π/2, which is
an energetically favorable phase difference in absence of
vortices. Panels a) and b) present the vortex core po-
sition in layers 1 (blue circle) and 2 (red circle). The
sine of the phase difference between the d-wave compo-
nent of the order parameter in each layer is shown in
panels c) and d), to highlight the spatial phase changes.
Panels e) and f) present the profile of the Josephson cur-
rent, with its average value given in the top left corner of
each panel. Finally, panels g) and h) show the Joseph-
son current profile along the black dashed lines shown
in panels e) and f). As seen in panels e) and f), the
phase texture that emerges from the vortex splitting de-
creases the overall Josephson current between the layers,
consequently lowering the system energy and rendering
the skyrmionic state energetically favorable. From the
current profile presented in panels g) and h) one can bet-
ter relate the vortex splitting to the profiles of phase and
the Josephson currents around a vortex. While for the
composite vortex the Josephson current is always posi-
tive and vanishes only at the vortex core, the skyrmionic
state presents Josephson current with opposite polari-
ties in the domains of phase difference ±π/2, with zero
Josephson current at the phase domain wall (cf. dashed
red line in panel h) of Fig. 3. The line profiles along

the black dashed line in this panel help visualize the
correspondence between the zero Josephson current and
∆ϕ = 0). We note that during the numerical solution of
the Ginzburg-Landau equations, the aligned vortex state
transits to a split vortex state, reconfirming the latter
as the most stable and minimal energy solution for our
system.

These results demonstrate that the twist angle and the
onset of a topological phase strongly influence the vor-
tex matter of the system, with detectable consequences
in the magnetic profile at the onset of the topological
phase and within the topological phase itself. Due to the
very large effective penetration depth of this ultrathin su-
perconducting system, a detailed characterization of the
field profile is a difficult experimental task. Even so, we
note that the significant symmetry differences between
the magnetic profile of the composite vortex lattice and
the vortex chains can be experimentally detected, espe-
cially if the scanning probe can be brought in close prox-
imity to the surface of the crystalline 2D material. This
feature can therefore be used as a smoking gun for the
detection of topological superconductivity in such and
similar bilayers. In what follows, we further detail the
vortex configurations for θ = 36◦ and θ = 45◦, which
are the representative examples of two different types of
behavior we encountered in the vortex matter inside the
topological phase.

A. Vortex matter at the onset of the topological

phase

We start the description of the vortex matter for an
angle close to θi (equivalent results are obtained for an-
gles close to θf ). In Fig. 4 we show vortex configurations
found for θ = 36◦, each row displaying minimum energy
solutions for a different size of the unit cell. As discussed
previously, the vortex cores in two layers are displaced
from one another inside the topological phase, but each
vortex of a given layer remains connected to its coun-
terpart in the other layer. This is visible in the phase
difference profile, suggesting existence of a phase soliton
between the two vortex cores. Hereafter, we refer to this
pair of connected vortices as the interlayer vortex pair.
As can be seen in Fig. 4, inside the interlayer vortex pair
we find phase difference ∆ϕ = π between the condensates
in two layers, and ∆ϕ = 0 outside of the pair.

As one object, the interlayer vortex pair displays
skyrmionic properties, which can be described by first
defining the pseudo-spin [32]

n =
∆†

dσ∆d

∆†
d∆d

, (8)

with ∆d = (∆(d1),∆(d1)) and σ = (σ1, σ2, σ3), where
σi is the Pauli matrix. With such pseudo-spin profile,
one then calculates the topological charge of the system,
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(a1) (a2)

(b1) (b2)

(c1) (c2)

FIG. 4. (Color online) Vortex configurations for twist angle θ = 36◦ ≳ θi at three values of applied magnetic field. Each row
corresponds to a different system size (lateral sizes are shown), for same magnetic flux of 24Φ0. From left to right, the columns
respectively show the magnitude of the d-wave component of the order parameter for unrotated and rotated layers, the cosine
and sine of the phase difference between the order parameters in two layers, and the magnetic field distribution across the
system.

defined as

Q =
1

4π

∫

n ·

(

∂n

∂x
×

∂n

∂y

)

dxdy. (9)

If we calculate the total topological charge for the three
different configurations shown in Fig. 4, we obtainQ = 24
for each of them. As the same number of flux quanta (24)
are threading the shown unit cells, we conclude that each
interlayer vortex pair is actually a skyrmionic object with
a topological charge equal to 1 (for a truly composite
vortex, Q = 0). We confirmed this further by calculating
the topological charge not over the entire unit cell, but
only around isolated interlayer pairs.
Within the dashed rectangles shown in Fig. 4 we high-

light vortex configurations characteristic of the topolog-
ical phase for twist angles close to θi. As can be seen
from the cosine and sine of the phase difference between

the condensate of each layer, two adjacent interlayer vor-
tex pairs typically organize themselves into a larger cor-
related object. Inside the dashed rectangles in panels
(a1) − (a2) of Fig. 4, we can see that in one of the in-
terlayer vortex pair (the one near the top of the rect-
angle) the vortex of the unrotated layer is on the right
and the vortex of the rotated layer on the left. In the
interlayer pair near the bottom of the rectangle, the vor-
tex positions are interchanged. In other words, adjacent
pairs of vortices in two layers are twisted with respect
to each other. Same behavior can be easily verified in
panels (b1) − (b2) and (c1) − (c2). After such organi-
zation of interlayer vortex pairs, their interlayer phase
solitons become visibly connected, as seen in the dashed
rectangle of the cosine of the phase difference in Fig. 4.
Due to proximity and strong overlap between different
phase domains, a supercurrent emerges surrounding the
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(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

FIG. 5. (Color online) Vortex configurations for θ = 45◦, deep inside the topological phase, for three values of applied magnetic
field. Each row corresponds to a different system size (lateral sizes are shown), for same magnetic flux of 24Φ0. From left
to right, the columns respectively show the magnitude of the d-wave component of the order parameter for unrotated and
rotated layers, the cosine and sine of the phase difference between the order parameters in two layers, and the magnetic field
distribution across the system.

two interlayer vortex pairs, yields rather weak magnetic
field. As a consequence, while the field profile of each
pair is strong, and spatial correlation between them is
rather obvious, the consequence of the phase connection
between them is difficult to spot in the last column of
Fig. 4.

B. Vortex matter deep inside the topological phase

Finally we reveal the evolution of the vortex matter
when the twisted bilayer is deeply inside the topological
phase, i.e. for twist angle θ ≈ 45◦ in the present case. As
previously shown, for this θ the phase difference between
the d-wave components of the order parameters in two
layers is π/2 and we have a d+id′ superconducting state.
Despite this particularity, the encountered characteristics

of the vortex matter in this case can be related to the ones
exhibited for other twist angles within the topological
phase in the vicinity of θ = 45◦.

Fig. 5 shows the order parameters of both layers, the
cosine and the sine of the phase difference between the
layers and the magnetic field profile for θ = 45◦. In this
case, formation of interlayer vortex pairs with topological
charge Q = 1 is still favorable, as highlighted by dashed
rectangles in panels (c1) − (c5) of Fig. 5. However, as
highlighted by dashed rectangles in panels (a1)−(a5), the
organization of interlayer vortex pairs into larger objects
is preferable. As a consequence, a new vortex configura-
tion emerges - the skyrmionic chain. In this uniquely dis-
tinct state, instead of the small interlayer phase domains
within individual interlayer vortex pairs, much larger do-
mains are formed. Interlayer vortex pairs are intercon-
nected along the domain wall, with a vortex core from
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FIG. 6. (Color online) Energy of the homogeneous system
(without vortices) as a function of the phase difference be-
tween the d-wave components of the order parameter in two
twisted layers. The blue, yellow and red curves show the
energy for the twist angle θ = 36◦, θ = 42◦ and θ = 45◦,
respectively.

one layer being in between two vortex cores of the other
one, forming a closed chain of interlayer vortex pairs.
Dashed rectangles in panels (a1) − (a5) of Fig. 5 exem-
plify one such structure, containing 11 interlayer vortex
pairs in a single closed chain. In panel (a5), one can see
that such vortex chain is a very laterally extended object
(nearly 40ξ × 40ξ in this case), and leaves a very clear
and rather unusual signature in the magnetic field pro-
file of the system. Here, the peaks of the magnetic field
along the vortex chain are smaller in comparison with
the isolated interlayer vortex pairs due to the fact that
the distance between the vortex cores in two layers is
significantly larger in the former case.

Once again, and as can be seen from the third and
fourth columns in Fig. 5, the closed vortex chain sepa-
rates two regions with different phase differences between
the layers. Inside the vortex chain, the phase difference
between the condensates is ∆ϕ = −π/2, while outside
the chain ∆ϕ = π/2. The opposite is also possible: pan-
els (b1) − (b5) show such an example, where ∆ϕ = π/2
inside the chain, while ∆ϕ = −π/2 outside. We note
the difference from the case of the individual interlayer
vortex pairs, harboring phase difference π within them,
with zero phase difference away from the pair.

If we now calculate the total topological charge around
the vortex chains seen in panels (a1)−(a5) and (b1)−(b5),
we obtain Q = 11 and Q = 3, respectively, reflecting the
number of interlayer vortex pairs interconnected in the
chain. These large values for the topological charge of
such a novel object contrast the exclusively Q = 1 of the
individual interlayer vortex pairs found for θ = 36◦. This
very different behavior for different twist angles emerges
from the fact that, as discussed before, the domain wall

separates regions with a phase difference equal to 0 and
π for θ = 36◦ and −π/2 and π/2 for θ = 45◦.
To understand how the value of the phase difference

inside the domains affects the topological charge, Fig. 6
shows the energy of the homogeneous system as a func-
tion of the phase difference between the layers ∆ϕ for
different values of the twist angle θ. At the onset of
the topological phase (blue curve in Fig. 6), the energy
of the system is largest when the phase difference is π.
Therefore, larger splitting within each formed interlayer
vortex pair costs energy, and their interconnection into
larger objects is not energetically favorable. Notice that,
as discussed in Fig. 1, the phase difference equal to 0 does
not yield the free energy minimum in the homogeneous
state of the system for θ at which the topological state is
stable. In the presence of magnetic field, the formation
of interlayer vortex pairs re-stabilizes the zero phase dif-
ference in a large part of the superconductor for θ close
to θi and θf .
On the other hand, deep in the topological phase (for

θ = 45◦), a degenerate lowest energy homogeneous state
is found for phase difference equal to either −π/2 or π/2,
explaining the tendency to formation of coexisting do-
mains with such phase differences. The resulting long
domain walls would cost energy, but not in the pres-
ence of magnetic field when they are decorated by the
skyrmionic vortex chains.
For θ values in the vicinity of 45◦, represented in Fig. 6

by θ = 42◦, the free-energy minima no longer occur at
−π/2 and π/2 but shift to lower phase differences and
become shallower (cf. Fig. 6). Nevertheless, the system
still presents the vortex chains dividing the superconduc-
tor in regions with phase differences −π/2 and π/2, since
vortices require a total phase difference π across the do-
main wall on which they reside. Once both values of the
phase difference possess the same free energy, the long
domain walls described above are also present, with the
same size as the ones for θ = 45◦.

C. Transitions between the topological vortex

matter with the interlayer twist

Complementary, it seems relevant to discuss in which
manner the above-described characteristic skyrmionic
states in the topological phase evolve as one continuously
varies the twist angle. To capture this behavior, we fol-
low two distinct procedures. In the first, we start deep
in the topological phase, i.e. at a twist angle θ = 45◦

and a skyrmionic vortex chain as the initial state of the
simulation. We then “adiabatically” decrease the twist
angle down to 36◦, in decrements of 0.1◦, recording the
evolution of the stable solution (which is no longer nec-
essarily the lowest-energy state). In Fig. 7 we show the
selected vortex configurations obtained during this proce-
dure. Starting from the skyrmionic vortex chain (panels
(a1) − (a5)), we see that when the twist angle is de-
creased to θ = 42.1◦ (panels (b1) − (b5)), the contour of
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FIG. 7. (Color online) Evolution of the vortex configuration when adiabatically decreasing the twist angle from θ = 45◦ to 36◦.
From left to right, the columns respectively show the magnitude of the d-wave component of the order parameter for unrotated
and rotated layers, the cosine and sine of the phase difference between the order parameters in two layers, and the magnetic
field distribution across the system.

the chain can still be seen in the magnetic field profile
of the system. At the same time, the sine of the phase
difference shows that the vortex chain still splits the su-
perconducting landscape in regions with interlayer phase
difference equal to either π/2 and −π/2. However, vor-
tices in each layer start to group in pairs, as reflected in
double peaks appearing in the magnetic field profile along
the chain. This indicates the onset of the transition from
the skyrmionic vortex chain to the skyrmionic state with
separate interlayer vortex pairs. Such a transition is more
apparent for θ = 38.9◦ (panels (c1)−(c5)). Although the
magnetic field contour of the vortex chain can still be vi-
sualized in this case, the separation of the superconductor
into regions with different interlayer phase differences be-
comes less clear. Finally, at θ = 36◦ (panels (d1)− (d5))
the transition between the two skyrmionic states is com-
pleted and the system displays an arrangement of disso-
ciated individual interlayer vortex pairs, surrounded by
a landscape of near-zero interlayer phase difference.

Along the opposite route, we start with the lowest-
energy state with interlayer vortex pairs for θ = 36◦

(shown in panels (a1)− (a5) of Fig. 8) as the initial state
of our system and then gradually increase the twist an-
gle up to θ = 45◦. As can be conveniently seen from the
third and fourth columns of Fig. 8, the state gradually
changes from the topological phase with regions of inter-
layer phase difference either 0 or π to another one with
regions of interlayer phase differences either π/2 or −π/2.
As the twist angle is increased, the vortices forming an
interlayer vortex pair slowly separate from each other.
One sees this by comparing the magnetic profile in pan-
els (b5) and (c5), where the double peak characteristic of
a vortex pair becomes smeared. For twist angles in the
vicinity of θ = 45◦, this culminates in the formation of
the skyrmionic vortex chain state, as we display in panels
(d1)− (d5).

Both discussed transitions between the two different
topological skyrmionic vortex states occur through the
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FIG. 8. (Color online) Evolution of the vortex configuration when adiabatically increasing the twist angle from θ = 36◦ to 45◦.
From left to right, the columns respectively show the magnitude of the d-wave component of the order parameter for unrotated
and rotated layers, the cosine and sine of the phase difference between the order parameters in two layers, and the magnetic
field distribution across the system.

second-order relocation of vortex cores in each layer. This
is further evidenced in Fig. 9, where we show the energy
of the system as a function of the twist angle for the
cases where θ is decreased from 45◦ to 36◦ (blue line,
cf. Fig. 7), and increased from 36◦ to 45◦ (red line, cf.
Fig. 8). In other words, we evolve the two character-
istic skyrmionic vortex states found at two ends of the
θ-range of the topological phase of the system by gradu-
ally changing the twist angle across the topological phase.
As seen in Fig. 9, the energies of those states cross in en-
ergy at a twist angle θ∗ ≈ 38◦, i.e. the states dominated
by interlayer vortex pairs are energetically preferred for
interlayer twist below this angle, whereas the states con-
taining extended skyrmionic vortex chains become favor-
able for θ > θ∗. Obviously the exact value of θ∗ will
depend on the details of the simulation (size of the unit
cell, magnetic field), but we can safely generalize this re-
sult to conclude that skyrmionic vortex chains should be
observable in the larger portion of the twist range where

topological phase is expected.

IV. CONCLUSION

To summarize, we have analyzed the vortex configu-
rations emerging in a twisted bilayer composed of su-
perconducting monolayers with d-wave pairing - mo-
tivated by prospects of such realizations using e.g.
Bi2Sr2CaCu2O8+δ. In such a system, the phase differ-
ence between the superconducting order parameters in
two layers depends on the twist angle θ, with a topologi-
cal state with a non-trivial phase difference emerging for
a range of angles around θ = 45◦. In that topological
phase, the superconducting state exhibits broken time-
reversal symmetry, giving rise to skyrmionic vortex con-
figurations with topological charge not equal to zero. We
revealed and characterized those nontrivial vortex states,
and discussed their detectable differences when compared
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FIG. 9. (Color online) Energy as a function of the twist angle
θ. The blue and red lines show the energy curves for the twist
angle being decreased from θ = 45◦ to 36◦ and increased from
36◦ to 45◦, respectively.

to usual vortex lattice found for twist angles outside the
topological range. Based on those clearly discernible dif-
ferences, we argue that direct experimental observation
of skyrmionic vortex states can be used as a smoking gun
to detect topological superconductivity in such systems.
In addition, we showed that the skyrmionic vortex

matter also evolves with the twist angle inside the topo-
logical phase. Namely, we have identified two distinct
types of skyrmionic states. At the onset of the topo-
logical state, the system prefers to preserve same phase
of the order parameter in two layers, so the broken re-
versal symmetry reflects solely in formation of the inter-
layer vortex pairs. Each of this pairs carries a unit of
topological charge, and hosts phase difference π between
the coupled superconducting layers. As the twist angle
is varied towards 45◦ and one is deeper in the topologi-
cal state, the phase difference of ±π/2 becomes energet-
ically favorable. As a consequence, the interlayer vor-

tex pairs interconnect into extended closed chains, sep-
arating the regions of the sample with phase difference
either −π/2 or π/2. Such chains can easily exhibit lat-
eral extent on the micron scale, and carry topological
charge equal to the number of vortices interconnected in
the chain. Once again, we emphasize that each of the
two types of skyrmionic flux objects leaves a clear signa-
ture in the spatial profile of the magnetic field across the
system, but will also host uniquely related local density
of states and bound states detectable by e.g. Scanning
Tunneling Microscopy, as also suggested in Refs. 40 and
41 for the case of chiral d-wave superconductors. The
calculation of such states is left as a prospect for fur-
ther work, being beyond the capability of the present
Ginzburg-Landau analysis (with Bogolyubov-de Gennes
approach as a viable alternative [42, 43]. Another inter-
esting outlook is to adapt the here-presented Ginzburg-
Landau formalism to the cases of other pairing symme-
tries that may arise in the twisted bilayers of present
interest, so to classify the emergent vortex matter ac-
cording to the symmetries at hand - and thereby enable
conclusive identification of the pairing symmetry in ex-
perimental systems through visualization of the vortex
states - complementary to other existing efforts (see e.g.
[44]). Finally, we note that recent experimental break-
throughs [45, 46] readily realized high-quality Josephson
junctions of twisted Bi2Sr2CaCu2O8+δ flakes, promoting
such devices for further technological applications, ren-
dering the analysis of the vortex states in the present
work timely and relevant even from an applied point of
view.
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