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The recently discovered structural transition in polymerizeg &€ about 50 K results in a doubling of the
unit cell volume and accompanies the metal-insulator transition. Here we show thattieeb(a—c) super-
structure results from small orientational charge density waves along the polymer chains and concomitant
displacements of the surrounding”Kons. The effect is specific for the space grdamnn of KCg, and is
absent in Rbg, and CsG, (space group2/m). The mechanism is relevant for the metal-insulator transition.
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. INTRODUCTION quite different fromd,=1.47 A. The partial occupancy of
the first excited state in the solids is possible because of the
Among the alkali-metal-doped fulleride&,Cqy, Where large interstitial space available for the alkali-metals, this
A=K,Rb,Cs, thex=1 compoundshave attracted attention, relatively large space being a unique property of &@,
because they form plastic cubic crystalline phases with rockeompounds.
salt structure at high temperatur@>350 K) and stable Recently, a combined study of the electronic and struc-
polymeric phasésof reduced symmetry at lowdr. In addi-  tural properties of Kg, has been carried out by Coulon
tion, via rapid quenching, a metastable dimer phase waSt al:'! x-ray diffraction studies have revealed a structural
obtained® It was suggested that the dimer structure shouldPhase transition in polymerized Iggat 60 K<T,<65 K,
be a Peierls insulatdrin the following we will restrict our- While ESR measurements have shown the existence of a
selves to the polymer phases. There, thg Bolecules are metal-msulator transition af~50 K, which stresses once _
linked through g2+2] cycloaddition and form chains along 292N the c!ose connection _between stru_ctural and electronic
the former cubig¢ 110] direction. The orientation of the poly- properties in theACq, alkali-metal fullerides. Above the

mer chains is characterized by the anglef the planes of structural critical temperatur€;, the Bravais lattice of po-
cycloaddition with the former cubi¢001] direction. The lymerized KGgo is orthorhombic; affc, the crystal changes

structure of KG, is orthorhombi&® [space grougPmnn 108 @+c,b,a—c) superstructure, which can be viewed as a
Fig. 1(@]: the orthorhombic axis is parallel to the axis of doubling of the basis vectoms andc. Concerning the pos-

o - . sible nature of this structural phase transitiae., the dou-
polymerization and the axis parallel to the former cubic

directi h < ch od by al bling mechanism it was pointed out by Couloet al* (i)
[oo1] . |rect!on. T. ePmnnstructure is ara'cten'ze Y a that displacements of theggcenters of mass can be ruled
ternating orientationst ¢ of the polymer chains in succes-

A out and(ii) that a combination of a charge modulation on the
sive (a,b) planes and the same orientation of the chainsc,; monomers and large correlated K displacements is an
within one plane||~45°. On the other hand, the structure gappealing hypothesis.

of both polymerized Rbgy (Ref. 6 and CsG, (Ref. 7) is
monoclinic, space grouf®2/m [Fig. 1(b)]. Here the polymer
chains have the same orientatigmot only within the same

(a,b) plane but also in successiv@01) planes.
In addition to the structural differences, the electronic and

magnetic properties of K& on one hand and Rig, CsGy,
A%

a b

on the other hand, are differeffor a review, see Ref.)8
Neither the differences in structure nor those in electromag-
netic properties can be simply related to the relatively small
differences in the lattice constants among th€g, com-
pounds. We then conclude that more alkali-metal-specific
effects are relevant. To explain the structural differences of

the polymer phases of Kg(space grouf®mnn) and RbGg a Z
and Cs( (space groud?2/m), it has turned out that the

quadrupolar polarizability of the alkali-metal ions is the de- FIG. 1. Crystal structures projected onto the crystallographic
cisive alkali-metal-specific characteristit’ The quadrupo- (b,¢) plane: (8 Pmnn (b) 12/m. The thick bars represent the
lar polarizability of the alkali-metal io®\™ is related to the projection of the cycloaddition planes. Polymerization occurs along
average radiud, of its first valence electrod shell. Indeed, a. The alkali-metals located inb(c) planes and at-a/2 are de-
drp=1.82 A andd.s=1.87 A are close to each other but noted by full and empty circles.
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We note that such a combined structural and metalThe chain orientation angles have been redetermined re-
insulator phase transition has not yet been observed ioently by neutron scattering experimeHsn//K060=50°,
RbGCq,.'? Bearing in mind the structural differences of the

polymer dphtase.:, of IK@hand fb(?ao.i_ t?]z gresence/ atbsEnce of Due to the charge transfer of one electron from an alkali-
a second structural phase transitionilgy SEEMS 10 DE e~ o) atom to a & molecule, a charge distributiom with

lated to the precise orientations of the polymer chains iNotal charge— e exists on every g monomer. For a given

Pmnnandl2/m, respectively. - . . .
Here we propose a doubling mechanism that accounts fdrso Monomem, we introduce a Cartesian coordinate system

the observed structural phase transition ingk@ one hand, ~With basis vectorsg,ey ,e,) and the center of mass of the
and for the absence of such a transition in R the other Monomer as origin. The charge distribution can then be writ-
hand, both in agreement with the present experimentdEn as

knowledge of these compounds.

lﬁRbCGO: 46°.

p=p(T;(N)=p(x.y.Z;$(n), 2.4
II. DOUBLING MECHANISM wheref=x6x+yéy+zéz.
We consider rigid K@, and RbG, crystals in the poly- As a mechanism for the doubling of the lattice basis vec-

merized phase. For K, this phase has space graegmnn torsa andc, we suggest the following: while retaining the
while for RbG, the space group is2/m. The 12/m space  rigid structure for theC nuclei and the close@- and o-shell
group has a monoclinic Bravais lattice; we will treat it as anelectrons small orientational deviations of thelence elec-
orthorhombic lattice, however, since the “monoclinic” angle tron densityp on every Gy monomer from this structure are
a=90.316° of RbG, obtained by neutron scattering allowed to occur, in such a way that these deviaticarsd
measurements is extremely close to 90°. The centers of therefore equivalent lattice pointbave periodicities &, b,

mass of theN Cgo monomers are then located on the Iattlceand Z. A rotation of the electron density can occur because

points Of a Podx—cen}ered orEhorrlombm Iatnge Yv'trl baSI";‘there are orbital degrees of freedom for one valence electron
vectorsa=aey, b=bey, andc=ce;, where €x,ev,ez)  on the threefold degeneratg, lowest unoccupied molecular
are the basis vectors of the underlying Cartesian coordinatgepital (LUMO) level* The valence electron density de-
system. The axes of polymerization are paralleﬁtoA lat-  pends on the coefficients of expansion in terms of these three
tice point is labeled by indiceé:(nl,nz,na), which are orbitals and this leads to its effective rotation. We will limit
either all integer numbers or all integer numbers, corre-  ourselves to rotations of the charge distributions about the

sponding, respectively, to the corner and the center points gfolymer chain axes. To denote the angular deviation of the
the unit cells. The position vector of lattice poimtreads charge distribution fromy(n), we use the notatiod (n):

X(1)=nya-+n,b+ nsc. (2.1) p=p(;(N)+Ap(N)=p(x,y,Z; h(n) + Ag(n)). o

To each polymer chain, a rotation anglecan be assigned.
We let 4y=0 correspond to the situation where the polymer
chain is in the standard orientation, which is defined as the

orientation where the plane of cycloaddition is parallel to the Ag(ng,nynz)=Ay

(5,5) plane. The angles then measures a counterclockwise

rotation of the polymer chain aboat More generally, the
orientation angle can be seen as a property of a single C =

monomer; therefore we writ¢= z/x(ﬁ). However, since all
the G, monomers in the same polymer chain have the samwith n;,n,,nzeZ. In Eq. (2.6), Ay, represents the angle
orientation angle and since a polymer chain can be address#teasuring the deviation fron. The mechanism is illus-
by the indices ,,n3),  is independent of the indem;. trated schematically in Fig. 2. In Sec. IV we will comment
Furthermore, thémnn structure is characterized by an al- on the charge distribution model to be used.

ternation of the orientations of the polymer chains along the It is convenient to introduce spherical coordinates
¢ axis only; hence for Kg ¢ is also independent of the (I.¢.¢), related to the Cartesian coordinatesy(z) via

indexn,:

In order to have the desired periodicity changes, we take

1 1 1
n{+ E,n2+ E,n3+ 5

+ A hoif ny+n3 even,

— Ayif ny+ng50dd, 2.8

y=r sinfd cose¢,
Y(n)=y(ng)=(—1)"3¢c, (2.2
The structurd 2/m is characterized by an equal orientation of
all the polymer chains in the crystal. Therefore, one has for

RbGCso: since a counterclockwise rotation of the charge distribugion

N over an angleg+ Ay about thea axis is then simply
‘/’(n):'f/’RbCeo' 2.3 achieved by replacing by ¢— ¢— Ay

Z=r sin@sing¢, (2.7

X=r Cc0S#,
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We simplify the notation and write from now on:

p(r.0,¢)=p(r,0,4;0). (2.9
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lll. POTENTIAL ENERGY

In order to determine whether the above-described elec-
tronic density distortions can occur or not, it is necessary to
investigate the potential energy of the crystal. We consider
the contribution?/ to the potential energy arising from
Cso—Cso interactions, which can be written as a sum of pair
potentials:

-AY,

U=

NS
M

oie > u(n,n’). 3.1

n’

Since we are interested in how the potential energy of the
crystal is influenced by the above-described orientational de-

viationsA z,b(ﬁ) of the charge distributions on allggz mono-
b mers, only electronic interactions have to be taken into ac-
count(van der Waals—type interactions refer to the neutral C

FIG. 2. lllustration of the proposed doubling mechanism. Shown hich i del dt titut iqid
is a projection of the gz molecules, symbolized by circles, onto the COres, which In our model are assumed to consttute a rg

(5.6) crystallographic plandcompare with Fig. 1 The alkali- structure. The electrostatic energy of two;&& monomers at

metal atoms have been omitted for clarity. The solid and dashe#fittice pointsn andn’ is given by
lines in the circles represent the orientations of the charge distribu-

Sy

A
% %)
D

tions: () KCgqq, (b) RbCsy. The solid lines correspond to the origi- U(ﬁ ﬁ,) _ 1 f de dF,P(ria(n))P(r "Ta(n’))
nal (& Pmnn and (b) 12/m structures, the suggested doubling ' 4eq [F=r’"—X(n’—n)|
mechanism consists of angular deviations of the electronic density (3.23

distributions as indicated by the dashed lines. The proposed schemeh . .
. . . - . . where we have introduced the notation
results in a doubling of the lattice vector while the lattice vector
b remains the same. The origingrojection of thg unit cell is a(n)=y(n)+Ay(n). (3.2b
shown as a solid frame, tHprojection of the unit cell taking into R R
account the electronic deviations is shown as a dashed frame. Alonghe integration variables andr’ in Eq. (3.2a refer to the
the a axis, a doubling patteriangular deviations of the charge local coordinate systems associated with the respective lat-

distributions similar to the doubling along the axis occurs. tice sitesn and n’; hence the appearance of the relative
position vectorX(n’ —n)=X(n')—X(n). Using the previ-
p(r,0,&:p(n)+Ay(n))=p(r,0,¢— y(n)—Ay(n);0). ously introduced spherical coordinatés(n,n’) can be re-
(2.8 written as

> > 1 o m 27 © T
Iy — 2 H 12 ’ H ’ ’
Uu(n,n’) 47760f0r drfO smedefo d¢f0r dr fo sing’deo

2 p(r,0,6—y(n)—Ag(n)p(r',0',¢" —y(n')—Ag(n'))

X do’ ————— , (3.39
0 ¢ [r—r'—X(n"—n)]
r—r’'—X(n'—n)|={[r cosd—r’cosd’ —(n;—n;)a]?+[r sinfcos¢p—r'sin 6’ cos¢’ — (ny—n,)b]?
+[rsin@sing—r’sing’sin¢’ —(ny—nz)c]? 2 (3.3b

As will be discussed in more detail in Sec. IV, the charge distribufiortan be expanded in even multipolés
=0,2,4 ... . Thelowest-order term containing angular dependence will therefore be a monopole-quadrupole interaction. As
a consequence, the angular dependent part of the potential doiebging of the Coulomb-type, decreases fast enough with
the distance, and it is justified to consider a limited number of nearest-neighbor interactions. We w(Bel)Eap
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1 - drupolarlike electronic densities, we find that the enargy
U= 2 2 V(n), (3.4 depends very sensitively on the precise location of the point
" charges used in constructing the charge distribution and that
where here no conclusion can be drawn based upon quadrupolar
models. In our view, it is necessary to go beyond the qua-
drupolar contribution and to take into account higher multi-
poles. Indeed, if one examines the expansion of the angular
. partp,(6,¢) of the charge distribution in terms of spherical
The summation overw runs over the fourteen nearest- harmonics, calculated in Ref. 15, one sees the relevance of
neighbor sites with relative indiceg.=(=1,0,0), (0, the higher-order terms. In particular, the<(8, m=8) term
+1,0), (0,0;£1), (+%,+% +1). An analysis of the occur- seems to play an important role. The importance of
ing orientations of the charge distributions on the variougelatively-high-order multipoles is not surprising: for ex-
Cso mMonomers reveals that only two different types of lat-ample, orientational ordering in solidg&(fullerite) is de-
tice sites exist: if we leh;, n,, andn; be integers, then all scribed using molecular and site-symmetry-adapted func-
sites with indices m11n21n3) or (nl-}-%,nz-}-%,ns-{-%), sat- tions (SAFs belonging to the manifoldsl =6,10,12:.L6
isfying n,+n3 even, have an equivalent neighborhood. WeFurthermore, in expanding the van der Waals interactions
call these sites type | sites. The other sites{n; odd, between polymers iMCq in terms of SAFs, we have re-
which we label as type Il sites, have also an equivalent encently discovered a similar pattern: the term with=@, m

vironment, but one that is different from the type I neighbor- =8) is remarkably dominant. _ _
hood. We summarize this observation by writing These observations lead us to use the electronic density of

Ref. 15, which can be written as

V(n)=2 U(n,n+u). (3.5
Y23

1 1

1
V(nlvn21n3):V n1+§!n2+§1n3+§ p(r101¢)=_epr(r)pa(0!¢)! (413

where the charge of the electrere has been factored out in
(3.6 ord.er to ensure that the angular paytis dimensionless. The

radial partp, is not relevant for our purposes; we locate the
charge on a sphere with radi&=3.55 A, which is the ra-
dius of a G, molecule!’

V! if n;+ngeven
| V" if n;+ngodd,

with ny,n,,n3;e 7. Note that Eq(3.6) is consistent with the
imposed periodicity condition&.6). The potential energy of

the entire crystal due to all electrostatigoC—Cgy~ interac- S(r—R)
tions is obtained by carrying out the summation of E334), pi(r)= TR (4.1b
which runs over all lattice points: R

N If a more refined model fop, is used, the main effect is a
U=—(V'+V. (3.77  renormalization of the intersite interactions. On the other
4 hand, the angular part, is anisotropic and results in multi-

The functionsV' and V! depend only on the angla ¢, pole interactions of different sign and magnitude. It is given

introduced in Eq(2.6), which is a measure for the deviation by
from the undistorted structure. To emphasize this depen-

dence. we write pa(8,$)=[—0.706 9¥ (9, $)+0.306 556, $)

5,3 2
U=U(A o). (3.9 +0.6373¥57(6,¢)]". (4.10

In Eq. (4.10, p, is written as the modulus squared of the
wave functiongs( 6, ¢), which is one of the three degenerate
t,, functions of a Gy~ ion.*® The real functionsy[™3(6, ¢)

The key point in the proposed model is the expression foare the sine spherical harmonics defined in Ref. 19. Note that

the electronic density(r) of a Gs,~ unit in a polymer chain.  EQ. (4.10 is exact within the framework of the tight-binding
Polymerization leads to a reduction of the symmefiy approach. In Fig. 3, the angular electron dengityfor a
comparison with the icosahedral symmetry qf)Cand the Ceo i0n in the standard orientation is shown, projected onto
charge distribution can be expanded in multipoles with the (b,c) and (@,c) planes. The charge is mainly concen-
=0,2,4 ... . In earlier theoretical worR® a quadrupolar trated in the equatorial regionx€0 or, equivalently, 6
charge distribution model was used in explaining the struc=/2), in agreement with recent NMR resuffsAs can be
tural phase transition from the cubjonpolymerizegito the  seen clearly in Fig. @), the four absolute maxima of the
orthorhombic(polymerizedl phase of theACq, alkali-metal  charge distribution p, coincide with the centers of
fullerides. By using a simplified Slater-Koster tight-binding pentagons? which is very reasonable. Indeed, it is known
approach to determine(r), it has been showfthat such a that in the neutral molecule, the centers of pentagons are the
quadrupolar model is a reasonable first approximaiipue  electron-poor regions and any additional negative charge ex-
to the D,, symmetry of a polymer chain, only even multi- Periences minimal repulsion at these centers. A direct conse-
poles occui. However, by experimenting with various qua- quence of this fact is th®a3 phase of solid g,: here, an

IV. CHARGE DISTRIBUTION

165425-4
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FIG. 3. Angular parip,(6,¢) of the charge distribution of adg" monomer in the standard orientation, plotted as a contourplot on a
sphere with radiuR=3.55 A, together with the g cage.(a) Projection ofp, onto the @,c) plane.(b) Projection ofp, onto the p,c)
plane. The coordinatex(y,z) and (6, ¢) are related to each other via E@.7) and the constraintx’>+y?+z>=R. On both projections,
one can see clearly that the charge is mainly concentrated in the equatorial regiOh. (Note the local maxima in the charge density near
the C atoms participating in the cycloaddition bonds, and the four absolute maxima located at the centers of gefgaggonspoor regions
of the neutral G, moleculg.

electron-rich region of one molecul@ouble C-C bond U(ﬁ ﬁ,)
faces a pentagon of its neighiFor. ’

T 2 T 27
V. POTENTIAL ENERGY CALCULATIONS :Ffo sm&d&fo d‘ﬁJ’O sin¢"do fo de
The potential energy of two interacting g, monomers R . . R
can now be written down explicitly. Combining Ed8.3a, Xpa(9,¢— Pp(n)—Ag(n))pa(0',¢" —p(n") —Ay(n"))
(3.3b, (4.13, and(4.1b), one gets D(g’d)’g/’d)';ﬁ,ﬁ’) ’
80 (5.19
70 with
60 )
e 50 F=47T60=167 100 KA, (5.1b
2 40
vl - >
M 30 D(6,4,6",¢";n,n")
= 20
> — _ r_ r_ 2
L 10 {[Rcosf—Rcosd’ —(n;—n,)a]
> 0 +[Rsin#cos¢—Rsinf cos¢’—(ny—n,)b]?
-10
P S e +[Rsinésing¢—Rsing'sing’ - (ng—ng)c]?}*2
25 20 15 10 5 0 5 10 15 20 25 (5.19
Ay, (degrees) The dependence aly, of the quantityv'+ V", to whichi/

FIG. 4. Dependence of the potential eneiyt V" (units of is proportional, is shown in Fig. 4 for bOth. K- (Pmnn
kelvin), to which the total potential energy of the crystal due to Structgre and RbG, .(I 2/m struc':ture}.'The lattice constants'
Cei-Cgp interactions is proportional, on the deviation andig, used in the CaICUIaj“an are given I.n.TabIe . The_pote_ntlal
(units of degrees The energy scale has been shifted for all curvesCNeray for,KQO exhibits a dOUbl(? mlnlmum, which implies
so that the undistorted structuré ¢,=0°) corresponds to zero that & deviation of the charge distributions from fennn

structure as described by the doubling mechanism of Sec. Il

potential energy. The double minimum for Kgsolid line) shows _ 4 - . &
that an energetically more favorable configuration thanRinenn  LFig. 2@] is favored. The optimal configuration corresponds

structure exists, featuring rotated electronic densities, while fof0 @ deviation angle of ,~13°. On the other hand, for
RbC (dashed linpand CsG, (dotted ling deviations of the elec- RbCso, such a deviatioiFig. 2(b)] would never lead to an
tronic distributions on the & monomers from the origindl2/m  energetically more favorable structure since the energy mini-

structure do not lower the potential energy. mum lies atA ¢,=0°.
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TABLE |I. Lattice constants of Kg, and RbG,, taken from a b
Ref. 7 (T=6 K values for KGy and T=5 K values for RbGy),
and of CsG,, taken from Ref. 13T=20 K value$; units A.

a b [
KCso 9.1185 9.9010 14.3467
RbCso 9.0887 10.0843 14.1583
CsGo 9.0968 10.1895 14.1351

For completeness, the result for Gg@ also shown in
Fig. 4. Since thé2/m space group angle is the same for both
RbCqo and CsGo, #roc,,= osc,,=46°,"** the only differ-

ence between Rhgand CsG, arises from the different lat- € ¢
tice constantgTable |). Intuitively, one would therefore ex-

pect no qualitative difference between RgG@nd Cs(.

Indeed, Fig. 4 confirms the similarity between Rp@nd

CsGs- Hence our model implies the absence of a ( > 3 3

+c,b,a—c) superstructure(and a concomitant metal-
insulator transitiopfor CsGyg. FIG. 5. The full doubling mechanism in Kg: the charge dis-

At this point, we note that the essential dependence of theibutions are rotated- 13° away from their originaPmnn struc-
potential energy/ due to G, -Cgy  interactions on the dis- ture, and the equilibrium positions of the alkali-metal ions are
tortion angle Ay, is introduced in Eq.(2.6). There, the shifted, resulting in a £+c,b,a—c) superstructure. The charge
deviation angle,[x(ﬁ) at lattice siten is defined in such a way distributions are represented by their contourplot projections of Fig.
that the experimentally found doubling scheme is automati3: The radius of the " units has been reduced for clarity. The

- . ~>.  alkali-metal ions are represented by filled and empty cirdlas.
cally recovered. However, by assigning to each latticersite o -2 oo
> . . Projection onto the crystallographib,c) plane(compare with Fig.
an order parameted(n)= *+1, corresponding to a deviation

- _ " 2). (b) Projection onto the crystallographie,€) plane.
angle Ay(n)==*=Ay,, one can show rigorously that this
doubling scheme has the lowest potential energy. This analyn molecular crystaf$'?is the tool to examine the effect of
sis is carried out in detail in Appendix A. There it is shown molecular orientations on lattice displacements of counteri-

that the average order parame(tS(ﬁ)) is given by ons and can be applied here as well. The interactions to be
considered are the Coulomb attractions between the C
(S(n))=p(—1)"+"s, (5.2 monomers and the Kions. Full details are given in Appen-

. . ._dix B. The main result, EqB15), is that average displace-
where 7 is the order parameter amplitude. The condensation 4815 g P

scheme(5.2) is indeed equivalent to Eq2.6), expressing ments(LEA(ﬁA)) of the alkali-metal ions, labeled by lattice

periodicity doubling along andc and no change in period- indicesna=(Nai.Naz.Naz), are found to occur:

icity alongb. Us

(Ua(na))=| O |(=1)x. 6.
U3z

VI. DISPLACEMENTS OF THE ALKALI-METAL IONS

It is clear from Fig. 4 that the valence electronic density
deviationsA w(ﬁ) from the Pmnnstructure are already suf-
ficient to account for the periodicity doubling along the

andc axes in KGo observed by the x-ray scattering mea- 2
surements described in Ref. 11. In this section we investigatg . .
the role of the alkali-metal ions. quation(6.1) shows that there are no displacements gf the
The ability of the charge distributions on thg,C mono- K" ions (and therefore no periodicity doublinglong theb
mers to rotate creates a picture reminiscent of rotating molaxis, and that along tha and c axes displacements of the
ecules in molecular crystals. It is well known that orienta-K™ ions happen in such a way that the periodicity doubling
tional motion of molecular ions in molecular crystals scheme of the charge distributions on thggCmonomers is
influences the translational movements of neighboring counrespected. The average'Kdisplacements—a result of the
terions. Here, we have an analogous situation and igoKC rotational deviations of the charge distributions—constitute
one expects average center-of-mass displacements of'the Kherefore a secondary doubling mechanism and form a part
ions induced by the angular deviations of the charge on thef the structural change in polymerized K As mentioned
Ceo iONS. in the Introduction, displacements of the’ Kons were sug-
The theory of bilinear translation-rotatiaiTR) coupling  gested by Couloret al! to explain (partly) the structural

Herek, is the integer part ofip; + Nas:

Na1tNag=Ka+ (6.2
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phase transition. The total doubling mechanism, now includaxis via the mechanism described in Sec. Il will affect the
ing the K* displacements, is visualized in Fig. 5. electron transport properties along the polymer chains. We
In RbGsp and CsGy, the charge distributions of thes& point out that the suggested doubling scheme along the po-
monomers do not rotate away from the origihalm struc-  lymerization axis can be seen as a CDW, however, not in the
ture. The alkali-metal ions will therefore exhibit no averageusual sense of a charggiantity modulation, but a modula-

displacements, keeping thé/m structure intact. tion of the orientation of the charge distribution along the
polymer chain, which we call an orientational charge density
VII. DISCUSSION AND CONCLUSIONS wave (OCDW). The charge of every &g unit remains the

same. It is well known that a one-dimensional electron gas,

In the preceding sections, we have suggested and examoupled to the underlying crystal lattice through electron-
ined the possibility of having small rotations of the valencephonon interactions, is unstable. The Peierls instability leads
charge distributions on all g monomers in theACg;,  to a CDW accompanied by periodic lattice distortiGhsn
alkali-metal fullerides. In K, these electronic density dis- the case of a complete charge transfer of one electron to each
tortions lower the potential energy and result in averageanion, a half-filled band leads to an instability with wave
center-of-mass displacements of thé §ons. Both the ori-  vectorq=2kg=2(#/2a), which corresponds to a doubling
entational deviations of the charge distributions and thef the unit cell from lattice constard to 2a in real space.
translations of the alkali-metals occur in such a way that therhe insulating state results from the opening of an energy
“new” structure has a doubled periodicity along theandc gap that separates the filled lower electron band from the
directions in comparison with the “old” structure, while the empty conduction band. In the present case of an OCDW, the

periodicity along thed direction does not change. These two modulation of the orientations of the charge distributions

structural changes can therefore account for the experimeloNg the polymer chain and the concomitant displacements
tally observed €+6 5 5—5) superstructure in Kg. In of the K™ ions play the role of the lattice distortions, and the

. . o metal-insulator transition is a consequence of the structural
RbCo, the potential energy is not lowered by deviations Oftransformation It is not necessarily accompanied by dis-
the orientations of the charge densities. Hence, |t ' y P y

structure will be preservedSince the charge densities do not p!acements of the 5 monomers along the polymenzanon
) ) L X ; X direction. Another consequence of the rotations of the elec-
deviate from theid 2/m equilibrium orientations, there is no

driving force to displace the Rbions, which will therefore tron densities on the &g units is a decrease of the transfer

remain at their equilibrium positionsTo summarize, the integrals between neighboring molecules in a polymer chain,

. . .which also results in a reduction of the conductivity during
model we present forms a possible mechanism to expla|ﬂ1 o
e phase transition.

both the experimentally observed periodicity doubling in . 10 .
o : . Theoretical work~" on the unpolymerized- polymer-
KCgo and the absence of a similar doubling scheme in o a
. . . ) . Ized phase transition in th®Cgy, A=K, Rb, Cs, compounds

RbGCs,. It establishes a theoretical basis of “an appealing .

T . L has revealed that the structural difference of the polymer
hypothesis” discussed in Ref. 11, where a combination of a hases(space grougPmnn for KCep, 12/m for RbCy, and
charge density wavéCDW) with large correlated K dis- P pace g 60> 0

. CsG is due to the electronic quadrupolarizability of the
placements was suggested as a mechanism for the SUPEHE i . -
structure alkali-metals, and not due to some other alkali-metal-specific

We recall that our model allows rotations of the Chargeparameters such as lattice constants or interaction strengths.

N . ; ) In our view, the alkali-atom-specificity of the structural
distributions associated with the;Z monomers in the lat- hase transitiortwhich is present for Kg but absent for
tice, while the C cores remain at fixed positions, i.e., the? P

structure formed by the C cores does not deviate from thg b;?eé,?r;t:l:tilggsgefe'sczggmhn: L?#eiéﬁtlzttlgseco?c?ljar;tso’ft:rl{([a
original Pmnnor | 2/m structure. This immediately launches q b group

the question why the C core network and the electronic dis'EWO compounds studied. One can therefore say that it is

I . again the electronic uadrupolarizability —causing—
trlbutlon.around it would behave so mgiependently{ih ingdirectly—the structural d?fferenc?e of K& a)r/1d RbGq ’
KCg). First, we note that the angular deviation is relatlvelySince it is responsible for the different space groups. ,
fnrgfg' g;z ggﬁrg?/ ﬂqﬂ?rgnocgg\;isaﬁﬁfr@o' dl?#g[rt;irt' In conclusion, we have presented a model {hatxplains

' 9 y . . the occurrence of a second structural phase transition in
from zero already causes an energy lowering, and that it ma‘XCw and the absence of such a transition in ghCboth
even be, S0 tha'g the. cores of thg,Clusters dp follow” the ._observed experimentally, arfil) is a starting point for inves-
electronic density distortions, thereby causing some resmrmﬁgations concerning the electronic properties of the alkali-
forces thft prev ent Fhe structure from going as fa_r_a; th'f:het«sll fullerides in general and the experimentally observed
Ayy~13° configuration but rather causing an equilibrium

situation at a smaller deviation angle. A smaller equilibriummetal'mSUIator transition in Kgg in particular.
angle can also be the result of restoring forces that act
against the change in chemical bonding betweg @ono-

mers, since the chemical bonding is affected by rotations of

the electron distributions on thes§~ monomers. _ We acknowledge useful discussions with P. Launois, R.
Concerning the accompanying metal-insulator transitionyioret, and A. Paicaud. This work has been financially sup-
in KCgo,'* we note that the periodicity doubling along the ported by the Fonds voor Wetenschappelijk Onderzoek,
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APPENDIX A: CONDENSATION SCHEME
FOR THE STRUCTURAL PHASE TRANSITION

From Fig. 4, it follows that in K@y, simultaneous devia-
tions of the charge distributions on alkC monomers, de-

scribed by the doubling mechanism of Sec. Il, lead to an

=

r\)

> 2 u(n.n+p)=> 2 J()S(q)S(—q)+C.
' (A3)

Here we have split the summation overinto two parts:

3 3
energetically more favorable structure. In this appendlx werorner pomtsn e 7 and center pointa < (Z+7)*. The sum-
show rigorously that this scheme will indeed occur, withoutmation ovem in Eg. (A2b) is understood to be a summation

making thea priori assumption of alternating electronic de-
viations along thea andc axes and equal deviations along
the b axis, expressed mathematically by E2.6).

To each siten, we assign a quantitg(n), which takes on
the values+1 and —1, corresponding, respectively, to a
deviation angle of the electronic densﬁyb(ﬁ) =+ Ayyand
—Ay. Allowing only the two deviation angles resulting in
minima in the potential energy curvérig. 4), |Ay
=13.0208°, the interaction enerdy(n,n+ ) [Eq. (3.2a]
can be written as

= - 1+S(n .. . 1+S(h+u
u(n,n+u)= 2( )UH( +M)¥

1-S(n) . - . 1+S(n+p)

+ > U (”1“+M)T

1+S(n) .. . 1-S(n+p)

> Ui+ ————

1-S(n . . 1-S(n+ga

+ 2( )U"(n,n+u)—(2 M),

(A1)

where U**(n,n+ ) is the value ofU(n,n+x) when
S(n)= =1 andS(n+ ) =1. AnalogouslyU ™ ~(n,n+ &) is
the value ofU(n,n+x) when S(n)==+1 and S(n+ )

energiesU™ *(n,n+ ) and U™ ~(n,n+ u) have been cal-
culated using Eqs(5.19—(5.19 and are listed in Table II.
Since the corner pointsneZ3) and the center poinfn
e (Z+3)3] of the orthorhombic cells have a different chain
angle (+ e, and — Picyy respectively; see Eq2.2) and
Fig. 1), they have to be considered separately.

The total energy/ [Eq. (3.1)] is then obtained by sum-
ming U(n,n+ ) over the whole lattice. It is convenient to

over corner points—of which there arg=N/2—only. In
Eqg. (A3), C is an irrelevant constant and

J(q)=J,c04qxa) + J,cod gyb) + J.c0gqC)

a b c

+Jab008 Ox 5| €08 Oy 5|C08 Oz |, (Ada)

Ja=2(33 =32, (A4b)

Jp=3p =23, +3, 7, (Adc)

Je=33"=23+3; 7, (A4d)

Jabc: 4(2J;rbc abc abc) (A4e)
The coefficients]; , ... ,J1,. are related to the potential
energiedJ ", ... U~ asis indicated in Table Il. We now

determine the absolute minimum of the functidfy) in re-
ciprocal space. Taking into account the numerical values of
J.=6 K, Jp,=—14 K, J.=1 K, andJ,,.=12 K, one finds
that the absolute minimum lies ag=(qy,dy,d5)
=(m/a,0,m/c)=(qg. The dominance al(qg) leads to a con-
densation of5(q) atq=qg:

—1. Asin Sec. lll, we consider 14 nearest neighbors. The

(S(a))y= /N5, (A5)

Here 7 is the order parameter amplitude. The condensation
scheme in Fourier spadé5) corresponds to the following
real space condensation scheme:

(S(n))=ncoggg-X(M)]=n(—1)"*"s.  (A6)

write the result in Fourier space. Defining the discrete Fou-

rier transform ofS(n) by

S<ﬁ>=%v2 el X(05(g), (A2a)
q

.1 e
S(q):\/_wz e—ICI-X(n)S(n), (A2b)

APPENDIX B:

TRANSLATION-ROTATION COUPLING IN KC ¢

In this appendix, we examine the coupling between the
orientational deviations of the charge distributions on the
Ceo monomers—Ilowering the crystal’'s potential energy in
KCqo (see Fig. 4—and displacements of the *Kions. We
use concepts of the theory of bilinear translation-rotation

165425-8
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TABLE II. EnergiesU**, U™", U™~ andU ™, calculated for the 14 nearest neighbors whose relative
lattice indices& are listed in the first column. A distinction between the corner pdimper part of the tabje
and the center poiritower part of the tableof the orthorhombic cells has to be made. Because of symmetry
reasons, only a limited number of different numerical values occurs.

ne73

m U *(n,n+p) U~=*(n,n+p) Ut~ (n,n+u) U~"(n,n+p)
(1,0,0) JF=18203 K J; =18200 K Js 37
(0,1,0) JiT=16946 K J, =17 060 K Jy J, =17160 K
(—1,0,0) Jr J J; 37
(0,—1,0) NN Jy Jy Jy
(0,0,1) Jit=11708 K J;=11669 K Jo J. =11631K
(0,0-1) 3 Jo Jo o~
111 Jibe=16980 K Jope=16954 K J1pe=17003 K Jibe
(E‘E’E)

111 Jabe Jabe Jabe Jabe
(_E’E'E)

1 11 abe Jabe abe abe
(_E'_ﬁ)
1 11 Jabe Jabe Jabe Jabe
(E’_E'E)
11 1 Jabe Jabe Jabe Jabe
(E'E'_E)

11 1 Jabe Jabe Jabe Jabe
(_E'E'_E)

111 Jabe Jabe Jabe Jabe
(*E'*E'*é)
111 Jabe Jabe Jabe Jabe
223

R 1\3
ne Z+§

m Ut (n,n+p) U=*(n,n+p) Ut~ (n,n+u) U~"(n,n+p)
(1,0,0) Jr J J, 37
(0,1,0) Iy~ Jy Jo ™
(—1,0,0) Jr J Js 37
(0,—1,0) Iy~ Jy Jo ™
(0,0,1) Jo- J Jo N
(0,0-1) N J: Je T
11 1) Jabe Jabe Jabe Jabe
2 %% 1) Jabe Jabe Jabe Jabe

% 2 ?L 1) abe abe Jabe abe
1 z 1 12. 2 Jabe Jabe Jabe Jabe
% 1 2 % Jabe Jabe Jabe Jabe

21 1 2 1) abe Jabe Jabe abe

%2 1 2 1) Jabe abe Jabe Jabe
1 z 1 2 1 2 Jabe Jabe Jabe Jabe
E’_E'_E)
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(TR) coupling in molecular crystaf€;*® which is generally d(6, d:R.1n)
used to determine the influence of molecular orientations on A
lattice displacements of counterions. ={[Rc0SO— (Na;—Ny)a—Ups(Na) ]2
The starting point is the potential energy of gygCmono-
mer and a K ion: +[RsiNOcosp—(Npp—No)b—Ups(Ny) ]2

+[Rsin@sing— (Nag—N3)C—Upz(Na) 1212,
f f (T3 (N) +A(N))pa(Ta) (B5b)

I'_rA X(”A_n)—UA(nA)| .
(B1) where the constarf is given by Eq.(5.1b.
We consider small center-of-mass displacements of the
where the subscript refers to the alkali-metal ion. Similarly K" ions and expand(n,n,) in terms of the components of

refer to thelocal coordinate systems associated with the lat-

tice sitesn and nA, respectively, belng the reason for the un,n )
appearance of the relative lattice vecb()q'nA n) and the

U(n nA)—4WEo

alkali-metal lattice displacement vectuy\(nA). To be con- | 2 au(n, ﬂA) ()
sistent with the earlier convention UIRONE 1 aup(ny | - Uai(Na)-
Ai A Ll (nA) 0
r 1 (B6)
nle Z+ = o
ne’ 2 As in Appendix A, we introduce the quantit§(n)==*1,
1 corresponding ta\ y(n) = = |A |, with |A | =13.0208°.
ny,eZ 7+ — . . - > .
ZEZ or{ nze’? 2 & (B2) The interaction energy(n,n,) can then be written as
n3€ /
n3EZ+ - >
\ 2) .. 1+S8(n) .. 1-Sn) ..
U(nlnA)z 2 U+(n1nA)+ 2 U (nanA)a
one must have for the alkali-metal lattice indiaes: (B7)
where Ui(ﬁ,ﬁA) is the value ofU(ﬁ,ﬁA) when S(ﬁ)=
1 .
Nas e Na € Z+ 5 +1. The expansioliB6) becomes
nAQEZ
or 153, (B3) 1+sn 3
Nap e Z+ = . D R L.
nAgeZ-i-% 282 U(n,na)=—— [V*(n,nAHiZl vﬁ(n,nA)uAi(nA)]
nA3€Z

1—9(n) -
5 [V‘(n,nA)

We treat the K ion as a point charge and write for its

charge distribution: 3
+i§1 vi_(n!nA)uAi(nA)}: (B8a)
pa(Fp)=€8(F ). B4 ith
Working with the charge distribution(F: y(R)+ A g(n)) V(N2 = U (,00) 6,5, =6 (B8b)
=p(r,8,¢— (n)— Ay(n)) of Sec. IV for the G,~ mono-
mer and taking into account E¢B4), we get the following U
’ .o .- n,n
expression folJ (n,ny): vo(N,Na) = J (B80)
NG Gp(f) =0

N - 27 pa(6,— () —Ayg(n)) The contributioni/c__, of all electrostatic g, -K* interac-

U(n,na)=F | sinade do¢ — , . 60" . . .
0 0 d(0,é:n,n,) tions to the potential energy is obtained by summing

(B5a)  U(n,n,) over the whole crystal lattice:

165425-10
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U, na=US+UTR, (B9a)
where
1+S(n I
UR=2 2 [ ( )V+(n:n+MA)
n A
1-S(n) .. .
t— VvV (nntua)(, (B9b)
1+3(n) &
UTR:Z Z > Z i (N,N+ A Upi(N+pp)
N pp =1
1-S(n) &
+ =5 2 vi (N pa)Uai(n+ ) [ (B9

PHYSICAL REVIEW B 66, 165425 (2002

For a given @ monomer, we limit ourselves to the six
nearest alkali-metal neighbors. The values/sf(n,n+ )
and v;"(n,n+u,), i=1,2,3 are listed in Table Ill. As in
Appendix A, a distinction has to be made between the corner
points (e Z3) and the center poinfne (Z+3)%] of the
orthorhombic cells.

Introducing the discrete Fourier transforms of the alkali-
metal ion displacements,

1

Ua(Np) = > €4 Xy, (q),  (B10a
q

g

A

(@)= \ o2 e TXOWi,(f,  (B10D

wherem, is the mass of the K ion, and using in addition the discrete Fourier transfornS(G?), defined by Eqs(A2a) and

(A2b), we get for the TR term of the potential energy

1 oo e o s
U= WZ S(—a)v(d)-Ua(a), (B11a
A q
with
—2D14pSiN(qxa/2) cOY Gyb/2)[ 1 — ' (xa/2+ avbiz+azel2))
0(q)=i| —2D2apc0gaxa/2)sin(qyb/2)[ 1 — €' (xa2+aybi2taz¢/2)] 4+ D, sin(q,c/2)[ 1+ € (x@/2+ayblz+aze/2)]
2D3abC0$ar/2)Sir(qu/2)[1 + ei (axal2+qyb/2+ qZC/2)] _ Dscsir(qzclz)[ 1— ei (axal2+qyb/2+ qZC/Z)]
(B11b
|
and In the theory of bilinear TR coupling in orientationally

Diab=01ab~ V1ab: (B119
Daab="V2ap~ V2ab (B11d
Doc=U3c= Ve, (Bl1e
D3ab=V3ap— V3ab: (B11f)
D3c=V3.— Ve - (B11g

disordered crystal&?® it is shown that the minimal poten-

tialenergy for a given orientational configuratie@ﬁ(ﬁ)} is
obtained when

Ua()=—M"X(@)v(—a)S(q), (B12)
where M(ﬁ) is the dynamical matrix of the orthorhombic

crystal in absence of TR coupling. Using fﬁtﬁ) the mini-
mal potential energy condensation scheme of Appendix A,
Eq. (A5), we find for the displacements in reciprocal space:

- 4,Dlab

(Ua(@))=—M"Xq=qp)i| O
—2Ds

7 N’S&,aB-

(B13)
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TABLE lIl. EnergiesV= and derivatives of energiag , i=1,2,3, calculated for the six nearest alkali-metal neighbors with relative

lattice indicesﬁA. A distinction between the corner pointspper part of the tabjeand the center poinfower part of the tableof the
orthorhombic cells has to be made. Only a limited number of different numerical values occurs.

X
>

VE(n,n+u,)

ne7?

.
vy (N,N+wp)

PP
vy (N,N+ 1)

P
va (N,n+up)

[=)
o

NI =

Vi,=24665.3 K

—vp=—2481.7 KA1

—U,,p=—2606.9 KA1

+v4,,=85.8 KA1

1
2
11 0 Vab +01ap ~Uzap +03ap
22’
11 o Vab +01ap +02ap ~U3ap
22
11 0 Vap ~V1ap +024p ~U3ab
2 2’
1 V{=23685.6 K 0 KA™?! +v;,=58.3 KA™? —v3,=—3476.6 KA?
003
1 V;r 0KA™?! —U;C +v§c
0,0~ =
2
.)A Vf(ﬁ,ﬁ—{—le) UI(ﬁ,ﬁ+,le) U;(ﬁ‘ﬁ+le) v;(ﬁ1ﬁ+l&“A)
11 0 V,,=24821.3K — V1= —2531.4 KA? —Ugap=—2636.5 KA™! +03,=49.1 KA™?
2'2
11 o Vab +V1ap ~U2ab +U3ap
2'2
11 0 Vab +01ap +02ap ~Usap
2 2’
1 1 0 Vab ~U1ap +02ap ~Usap
2" 2
1 V;=23279.3 K 0 KA™? +v5,,=1483 KA™! —v3,=—3253.7 KA?
003
1 vV, 0 KA™? —U + 03
0,0-=
2
R 3
nel|Z+ E
n VALGHIERYN! vy (NN+pp) vy (NN+12p) v3 (NN+1a)
11 o Vab ~U1ab ~U2ab ~U3ab
2’2
11 0 Vab +01ap ~Usap ~Usap
2'2
1 1 0 Vab +01ap +02ap +03zap
2" 2
1 1 0 Vab ~U3ap +02ap +U3zap
2" 2
1 V. 0 KA™? —U5 —U3e
0,0,
2
1 Vo 0 KA™?! 0, +vg
0.0-3
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TABLE 1l (Continued).

R 13
ne Z+E
™ V(NN a) vy (NN Lp) vy (NN 12p) vy (NN+ 1p)
(}} 0) Vab ~Ulab ~Usap —U3ap
22’
11 Vab +0 140 —Uzab ~U3ap
(—5.5.0)
1 1 Vab +0 140 +0 240 +03ap
(—51—5,0)
(E 1 0) Vab ~U1ap +0 240 +03ap
22
1 A 0 KA™? —v,. —U3e
ooy
1 v 0 KA™?! v, +03
joo-3]

The numerical values ofD,,, and D, follow from  The alkali-metal ions are located on a sublattice obeying

Table lll: Dy,=—49.7 KA™! and Dy=222.9 KA1 1 .
Na1+Naz=Kka+5 with ky € Z [see Eq(B3)]. Therefore, one

Sinceqg=(m/a,0,7/c), the schem&B13) becomes in real 2
space hase™'"("a1tMa3)= —j(—1)*a, yielding
(Ua(ip)) 1 A
ua(n - - e
e (Ua(Mp))=——=M"Yq=dg)| O |5(—1)*
VA —2D.
. —4D1a 3
=— M*l(a:aB) 0 pie 1 T(NALTNAz) Up
VM _ k
2Dsc =| 0 | (=1)k. (B15)
(B14) Ug
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