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Systems which rapidly evolve through symmetry-breaking transitions on timescales comparable to the
fluctuation timescale of the single-particle excitations may behave very differently than under controlled
near-ergodic conditions. A real-time investigation with high temporal resolution may reveal insights into the
ordering through the transition that are not available in static experiments. We present an investigation of the
system trajectory through a normal-to-superconductor transition in a prototype high-temperature superconducting
cuprate in which such a situation occurs. Using a multiple pulse femtosecond spectroscopy technique we measure
the system trajectory and time evolution of the single-particle excitations through the transition in La1.9Sr0.1CuO4

and compare the data to a simulation based on the time-dependent Ginzburg-Landau theory, using the laser
excitation fluence as an adjustable parameter controlling the quench conditions in both experiment and theory.
The comparison reveals the presence of significant superconducting fluctuations which precede the transition on
short timescales. By including superconducting fluctuations as a seed for the growth of the superconducting order
we can obtain a satisfactory agreement of the theory with the experiment. Remarkably, the pseudogap excitations
apparently play no role in this process.
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I. INTRODUCTION

The study of the time evolution of complex systems through
symmetry breaking transitions (SBT) is of great fundamental
interest in different areas of physics [1–3]. An SBT of
particular general interest is the normal-to-superconducting
(N → S) state transition in which a Lorentz noninvariant
system breaks gauge invariance [4]. By studying the N → S

transition in time-evolving systems, rather than by slowly
varying the temperature through the transition, one can
in principle gain information on the dynamical behavior
of elementary excitations which lead to the formation of
a superconducting condensate and the collective ordering
behavior, leading to insights into nonergodic phenomena of
collectively ordered systems as well as the mechanism of
superconductivity. Particularly, ergodicity breaking in rapidly
evolving systems leads to the appearance of topological defects
(vortices).

A description of the dynamical behavior of the gauge non-
invariant systems is often discussed in terms of time-dependent
Ginzburg-Landau theory (TDGL theory). It has been initially
applied to the problem of nonequilibrium phase transitions
by Kibble and Zurek who considered the appearance of
topological defects accompanying the transition [5,6]. The
Kibble-Zurek description has been indirectly confirmed to be
appropriate by static experiments in which trapped vortices
were studied [7,8]. In this paper, beyond previous static
studies, we study real-time evolution of the superconducting
order in the nonequilibrium phase transition. We investigate
the applicability of the TDGL theory to the phase transition
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problem and provide a minimal formulation sufficient to
describe the data.

The paper is organized in the following way: We first
introduce the problem of a nonhomogeneous nonequilibrium
phase transition and overview previous ultrafast studies of
the condensate dynamics in cuprates. We then introduce the
three-pulse technique and describe the data. In the second half
of the paper we present numerical simulations of the S → N

and N → S transitions with the TDGL theory, with the aim of
reproducing the data as faithfully as possible with the minimal
set of adjustable parameters.

II. LASER INDUCED NONEQUILIBRIUM PHASE
TRANSITIONS IN SUPERCONDUCTORS

To achieve nonequilibrium conditions we require that the
inverse of the cooling rate, the quench time τq, be comparable
to the intrinsic collective system relaxation time τGL =
π�/8k(T − Tc) � 10−13–10−12 s [3,9–11]. In experiments
reported so far, the quench was physically limited to the ns

timescale either by heat diffusion processes or duration of the
optical pulse used for driving the transition [8].

With femtosecond optical spectroscopy, the nonequilibrium
regime of the phase transition, and particularly the critical
region on the timescale of τGL, become accessible in real time.
By properly adjusting the optical pulse energy, the limitations
on the quench time set by heat diffusion processes can be
overcome: For moderate fluences the electronic subsystem gets
highly perturbed [12–14] while the lattice remains only weakly
excited. In this case the cooling rate is defined by the energy
exchange between the electronic and lattice subsystems, which
typically occurs on the sub-ps timescale [15], which is much
faster than heat diffusion.
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The dynamics of the superconducting condensate has been
previously investigated by various ultrafast techniques, origi-
nally in the low-perturbation regime and more recently com-
pletely suppressing the condensate (See Ref. [16] for extensive
review). Optical investigations have shown that at low exci-
tation the dynamics of the condensate is characterized by the
Rothwarf-Taylor bottleneck processes [17]. In this regime the
relaxation timescale is given by either the high-energy phonon
escape or the anharmonic decay time. For this regime it is typ-
ical that the relaxation rate is proportional to the pump fluence
at low temperatures [18,19]. Because the recombination rate
depends on the density of quasiparticles, at low excitation den-
sities it might become smaller than inverse quasiparticle dif-
fusion time, so the latter process may become significant [20].

At higher pump fluences the photoinduced S → N tran-
sition is induced. For cuprates it was initially observed in
optics [12] and has been confirmed by THz studies [21,22].
The systematic fluence dependence studies of the recovery of
the S gap in the vicinity of S → N transition were performed
on BSCCO by ARPES [18] where it was found that the gap
recovery rate is momentum independent, indicating applicabil-
ity of the concept of a nonequilibrium order parameter. While
ARPES directly measures the gap evolution in BSCCO, the
characteristic timescale of the process is very close to that
of the electronic temperature evolution given by the three
temperature model [23], thus making it hard to determine the
mechanism responsible for the dynamics. The recovery of the
superconducting order in LSCO studied in this paper occurs
on the timescale which is an order of magnitude larger than
the electronic temperature equilibration processes time, which
allows us to monitor the nonequilibrium dynamics of the order
parameter.

Optical experiments are intrinsically inhomogeneous due
to a finite light penetration depth λp. This affects not only
the data analysis but also the physics of the transition. Due to
the exponential depth distribution of the absorbed energy, the
superconducting condensate is destroyed only up to a certain
depth. This results in a sharp boundary between the N and
S states. After the quench the boundary propagates towards
the surface and is expected to reach it on a timescale τψ ∼
λp/vψ ∼ λpτGL/ξ⊥ ∼ 103 τGL, where vψ is the velocity of the
S/N boundary [24] and ξ⊥ is the out-of-plane S coherence
length. Though the boundary propagation is relatively slow
compared to τGL, the physics of the transition depends on
how it relates to the propagation of the temperature front,
which is defined by the quench conditions. Two regimes are
possible: The temperature front propagation velocity vT can
be either larger (rapid quench) or smaller (slow quench) than
the characteristic critical value vcrit ≈ vψ

4
√

τGL/τq ∼ 105 cm/s
[5]. In the rapid quench limit when vT > vcrit, the normal
region between the temperature front and S/N boundary is
supercooled and the order parameter grows from fluctuations.
In this case one can expect vortex formation according to
the Kibble-Zurek (KZ) mechanism. In the slow quench limit
(vT < vcrit) the condensate forms instantaneously in the wake
of the temperature front so that the phase of the order parameter
is defined by the bulk value and vortex formation becomes
suppressed [5,25].

As we shall see, both cases are accessible in our experiments
by changing the laser fluence: At low fluences, only the

(a)

(b)

FIG. 1. (a) The system trajectory (depicted by the silver ball) in
a temporally evolving potential. In the rapid quench scenario (A),
the potential changes faster than the system can follow. The opposite
is true in the slow quench scenario (B). (b) A schematic diagram
of the pulse sequence. The time delays �tD−P,�tD−pr and �tP−pr

refer to delays between the D, P and pr pulses depicted in blue,
red and green respectively. The S/N phase boundary moves with
velocity vψ towards the surface. Vortices are created in the wake of
the temperature front whose position is given by T (r,t) = Tc.

electrons are heated above Tc. They cool rapidly through Tc,
so the quench rate γq = (dT /dt)/Tc is fast [15]. With large
fluences, the lattice is heated above Tc. Its cooling is defined
by the heat diffusion so the quench rate is much slower.

III. EXPERIMENTAL CONSIDERATIONS

To measure the trajectory of the system through the
N → S transition, we use a three pulse technique shown
schematically in Fig. 1(b). The first destruction (D) laser
pulse strongly perturbs the electronic subsystem initiating the
S → N transition on a timescale of ∼0.5–0.8 ps [12]. The
recovery of the S state in the ensuing N → S transition is
measured by means of pump-probe (P-pr) transient reflectivity
�R(�tP−pr)/R measurements. The pump-probe response is
recorded at a set of delays �tD−P between D and P pulses [26].
For each value of the �tD−P delay the amplitude of the response
AS = (�R/R)S(�t readout

P−pr ) is extracted, and, when plotted as a
function of �tD−P, is a measure of the trajectory of the system
(see Supplemental Material [27] for the details of the amplitude
extraction). It is then compared to the modeled behavior of the
order parameter ψ(t) using an appropriate response function.
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FIG. 2. (a) The transient reflectivity �R/R for La1.9Sr0.1CuO4 at 4 K as a function of �tP−pr, for different �tD−P. The D pulse fluence is
FD = 12 μJ/cm2, which is approximately three times above the destruction threshold (FT � 4.2 μJ/cm2) [12]. The red shaded curve indicates
the pseudogap signal measured above Tc. (b) Superconducting component extracted from data in (a) by subtracting �tD−P = 0.2 ps line.
This dataset is used to extract the evolution of the initial quasiparticle decay rate. (c) Black squares—the amplitude of the superconducting
component AS extracted from (a) after subtraction of the PG. The blue squares are 1/τQP as a function of �tD−P. The recovery of the system
is schematically divided into phase transition region (blue background) where order parameter is not thermal, and into the thermal diffusion
(orange background) where the transition is effectively over and order parameter is defined solely by the temperature.

The change of the reflectivity at optical frequencies may
contain various contributions, such as a Drude contribution
due to photoinduced changes of the plasma frequency and
scattering rate, contributions from interband transitions and a
superconducting contribution from the Mattis-Bardeen term
[16]. The dynamics in a two-pulse experiment is the sum of all
such contributions and can vary significantly with the probe
wavelength [28,29], and consequently the quasiparticle relax-
ation rate measured by two-pulse optical experiments might be
different from the order parameter dynamics [30,31]. Never-
theless, we can clearly distinguish between nonsuperconduct-
ing and superconducting contributions from the fluence and
temperature dependence of the data. Moreover, experimentally
it was determined that in the material investigated here the
amplitude of the superconducting component of the transient
optical reflectivity is proportional to the optical conductivity in
the THz regime [22]. The latter is dominated by the inductive
contribution of the condensate, so we can relate (�R/R)s to
the superfluid density. In the present paper we therefore use a
phenomenological approach to the response function, which
is based on the only assumption that the maximum value of
the transient reflectivity can be presented as a unique function
of the order parameter (�R/R)max

s = As(ψ). This is further
justified by the observation that the temperature dependence
of the response is identical for various excitation conditions
[12]. The actual shape of As(ψ) (Fig. S1) is established from
the temperature dependence of the pump-probe response. (See
Supplemental Material [27] for a rigorous discussion of the
response.)

The measurements were performed on a La1.9Sr0.1CuO4

(LSCO) single crystal as a prototype single-layer cuprate,
which is extensively studied by the pump-probe technique
[12,32]. Laser pulses from a 250 KHz Ti:Sapphire regenerative
amplifier with a central wavelength of 800 nm and pulse
lengths of 60 fs were used throughout. The probe polarization
was perpendicular to the pump and destruction pulses. The
pump and probe fluences were below 1.3 μJ/cm2 to ensure
linearity of the response [12]. The critical temperature of
LSCO (Tc = 28 K) is sufficiently high so that systematic
fluence dependences can be measured, yet low enough so

that the theoretical estimate of τGL = 3/(T − Tc)ps ≈ 100 fs
is longer than our temporal resolution. The laser fluence
required to destroy the superconducting state on the surface
(photodestruction threshold) has been previously determined
to beFT = 4.2±1.7 μJ/cm2 [12]. In the presented experiment
we vary the D-pulse fluence from 4 to 34 μJ/cm2.

IV. TRANSIENT REFLECTIVITY DATA THROUGH THE
SUPERCONDUCTING TRANSITION

A representative dataset obtained in a three-pulse experi-
ment is shown in Fig. 2(a). It depicts the normalized transient
reflectivity �R(�tP−pr)/R traces for different �tD−P delays
during the system recovery measured at 4 K with D pulse
fluence FD = 12 μJ/cm2. Two distinct and easily identifi-
able contributions are observed: a pseudogap (PG) response
(�R/R)PG which peaks around 0.2 ps, and the quasiparticle
(QP) recombination across the superconducting gap, i.e., the
superconducting response (�R/R)S which peaks near 2 ps,
extending to tens of ps [32,33]. This simultaneous appearance
of the pseudogap and superconducting contributions below Tc

is common for most of the cuprates [28,32,34,35]. The former
is characterized by a subpicosecond weakly temperature
dependent relaxation, while the dynamics of the latter can
strongly vary from a few ps to tens of picoseconds. These op-
tical dynamical features correspond to the dynamics observed
in the mid-IR and THz regime [31,36], although some details
can be different at optical response frequencies. The pseudogap
and superconducting contributions can be distinguished not
only by their temperature and dynamical signatures, but
more clearly in the multicolor experiments [28,37] and by
polarization selection rules [38]. Most importantly for our
experiments—the pseudogap response in LSCO is linear with
the photoexcitation fluence up to FPG ∼ 750 ± 200 μJ/cm2

[33], which is two orders of magnitude higher than the
superconducting FT. Thus it is completely unaffected by the
D pulse, which is confirmed by measurements above Tc.

In Fig. 2(a) we clearly observe that (�R/R)S gradually
increases with increasing delay �tD−P indicating the recovery
of the S state, while (�R/R)PG remains intact by the
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FIG. 3. Comparison of experimentally measured data [circles, values of fluence are 4 (black), 9 (red), 12 (green), 18 (blue), 24 (cyan), and
34 (magenta) μJ/cm2] and the calculated AS obtained within different formulations of the problem (solid lines): the TDGL solution with the
initial conditions described by (a) ψ(0,z) = √

1 − Tbath/Tc, (b) Eq. (3), (c) Eq. (4) (represented in Fig. 5), (d) ψfluc(0,z) = κz.

destruction pulse and does not show any change with �tD−P.
A distinct feature in Fig. 2(a) is an apparent convergence of
all curves after �tP−pr ∼ 20 ps, which appears as a hump for
small �tD−P delays. There are two contributions to the signal
at this delay: Firstly, the signal recovery is associated with the
gap recovery itself (see also Sec. II of Supplemental Material
[27]), and secondly, there is a contribution of the pump pulse
to the lattice heating. This part is dominant and relaxes on
the 100 ps time scale characteristic of the thermal diffusion
process.

(�R/R)PG is known to be independent of T at temperatures
below 100 K in this material [32]. We are interested in the
superconducting order, so for further analysis we subtract
the pseudogap contribution from the data [39] and plot the
extracted superconducting component in Fig. 2(b). We read
out the amplitude AS at the probe delay corresponding to the
maximum of the unperturbed response and plot it as a function
of �tD−P in Fig. 2(c) (shown in black circles).

From the exponential fits of the initial decay of (�R/R)S

(�tP−pr) we obtain the QP relaxation time τQP as a function
of �tD−P plotted in Fig. 2(c). We observe that 1/τQP shows
a similar time evolution to that of AS. If we assume that
1/τQP ∝ �S, where �S is the superconducting gap [34,40],
the observed dependence of τQP on �tD−P is consistent with
the growth of the S gap with �tD−P. The time evolution of AS

and τQP identifies the recovery of superconducting order on a
10 ps timescale. The measured dependence of the trajectory
AS(�tD−P) for different fluences F is shown in Fig. 3, where it
is compared to the simulated trajectories from different models
described below.

Qualitatively one can see that recovery of the order
parameter is slower at higher fluences, compared to low and
intermediate fluences. The effect has an obvious explanation
when one takes into account lattice heating and the fact that
the relaxation time increases when T → Tc. This effect is
expected on the basis of TDGL equations.

V. MODELING WITH TIME-DEPENDENT
GINZBURG-LANDAU THEORY

In the following section our aim is to formulate a minimal
TDGL model which captures the observed behavior using the

laser pulse fluence as the only externally controlled parameter.
We consider only the real part of TDGL equations, as the
optical response is insensitive to the phase of the order
parameter [41]. (In the Supplemental Material [27] we show
the solution of the full set of TDGL equations to qualitatively
account for dynamics of the phase and vortex dynamics.) The
basic TDGL equation describing the order parameter ψ(t,z)
dynamics is [42]:

∂ψ

∂t
= αr (t,z)ψ − ψ |ψ |2 + ∇2ψ, (1)

where we have omitted explicit dependence of ψ on t and z,
and the temporal and spatial coordinates are measured in units
of τGL (fitting variable) and coherence length (ξ = 0.2 nm
[43]) at T = 0 K, respectively. In the transient reflectivity
calculation the order parameter is weighted by the probe
penetration depth λ800 nm = 150 nm [12].

The system is driven by the electronic temperature Te,
which enters TDGL via αr(t,z) = (1 − Te(t,z)/Tc). The tem-
perature is time dependent and also depends on the depth in
the sample. To calculate Te(t,z), we assume that electrons are
preferentially coupled to a particular boson (phonon and/or
spin excitation), which in turn releases its energy to the
lattice. This three-temperature model (3TM) has been used
in the past to describe the normal state ultrafast response
in unconventional superconductors [23,44]. In principle, the
3TM describes the destruction of the condensate, defines
the recovery timescales, and should also describe the slow
diffusion processes which are clearly present in the data
[Fig. 2(c)]. To account for the latter we introduce the thermal
diffusivity κ as a fitting parameter, which does not affect short
timescales. The final set of equations from which we obtain
Te(t,z) is then:

γeTeṪe = −γep(Te − Tp) + P (t)

CpṪp = −γep(Tp − Te) − γpl(Tp − Tl)

ClṪl = −γpl(Tl − Tp) + κ
∂2Tl

∂z2
, (2)

where γe = 2.5 mJ/mol/K2 [45] is the electronic specific heat
coefficient, γij represents the coupling between the ith and
j th bath, Ti is the temperature of the corresponding system
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FIG. 4. Three surfaces showing the calculated time evolution of
the logarithm of Te (yellow), Tp (blue), and TL (green) as a function
of incident fluence. The initial temperature of the sample is 4 K.
Tp and TL are very close, but Te reaches in excess of 400 K. The
blue lines correspond to fluences used in the experiment. The red
lines indicate where Te, Tp, and TL cross Tc = 28 K. Te is used in
the modeling of the order parameter. Fast quench corresponds to
F < 5Fth � 23 μJ/cm2.

(indices e, p, and l are for electronic, hot boson, and lattice, re-
spectively), and P (t) = F

2πw
exp (−t2/2w2) exp (−z/λ800 nm)

is the optical excitation with the pulse width at half maximum
given by 2

√
2ln2w = 60 fs. We also assume that the total

phonon heat capacity C = Cp + Cl, where Cp = αC0 and
Cl = (1 − α)C0 is the heat capacity of the hot bosons and the
lattice bath, respectively, α = 0.2 is the fraction of phonon
modes which are strongly coupled to electrons [23]. The
coefficients of the 3TM model γep and γpl can be estimated
using the electronic and lattice thermal constants γe and C,
the measured electron-phonon relaxation rate γl = 340 K/ps
and the phonon-phonon relaxation time τph = 0.6 ps [15]:
γep = γeγl and γpl = Cp/τph. The temperature dependence of
the phonon heat capacity C is obtained from published thermal
data [46].

Solving Eq. (2) we obtain the time and depth dependence of
Te, Tp and Tl. In Fig. 4 we plot the values of the corresponding
temperatures on the sample surface for different fluences
used in the experiments. Initially, the pulse rapidly heats the
electronic system, but energy is quickly transferred to the
strongly coupled bosons and the lattice on a timescale ∼1 ps,
whereafter the three temperatures rapidly merge. Note that
this timescale is of the same order as the destruction of the
S state [47]. We see in Fig. 4 that for low excitation fluences
F/Fth, the quench rate γQ = (dTe/dt)Tc through Tc (red line)
is fast, of the order of 4 × 1014 K/s and Te � Tp � Tl already
after ∼1 ps. With higher fluences, > 5 Fth when Tp and Tl

both exceed the superconducting Tc, the cooling rate is mainly
determined by thermal diffusion on timescales well beyond
∼1 ps. We emphasize that this crossover from a rapid to slow
quench is quite general and does not rely on the specific details

of the 3TM. Having calculated Te(t,z), we are in a position to
calculate ψ(t,z), and AS(t).

First, we try to describe both the destruction and recovery
of the superconducting condensate within the above TDGL
model. The only adjustable parameter in the fitting procedure
is τGL since the initial conditions are given by the equilibrium
order parameter ψ(0,z) = √

1 − Tbath/Tc. A set of simulated
trajectories with the optimized τGL = 450 fs is shown in
Fig. 3(a). Despite optimization of τGL the model trajectories
are in poor agreement with the experimental data.

To better understand the poor agreement let us consider
first in detail the destruction stage, i.e., S → N transition.
The transition is driven by a temperature burst described by
the α term of Eq. (1) where the relation between τGL (the
only free parameter) and the duration of the temperature
burst is crucial. The condensate can follow an intense short
temperature perturbation only if τGL is shorter than the duration
of the perturbation ∼1 ps. Such a short τGL implies, however,
also a rapid recovery, significantly faster than experimentally
observed, as seen in Fig. 3(a). In the slow quench regime
(F � 18 μJ/cm2) the perturbation duration is longer and
the OP suppression is more effective. The OP follows the
temperature evolution adiabatically resulting in a recovery
on the timescale closer to the experimentally observed. On
the other hand, if τGL is much longer than the perturbation,
the condensate cannot follow the temperature dynamics
and the condensate remains undestroyed.

The TDGL equations therefore cannot provide a good
description of a complete destruction-recovery process. This
can be understood considering that during the destruction
the electron and phonon distribution functions are clearly
not thermal leading to effects beyond the TDGL and 3TM
description [48].

Nevertheless, the TDGL theory is expected to provide a bet-
ter description of the recovery of the condensate dynamics after
the S → N transition has occurred and the temperatures have
equilibrated. The state of the system after the photodestruction
is then represented by initial conditions, and the corresponding
solution of the TDGL equation describes the ensuing recovery
dynamics, i.e., the N → S transition.

Next, we skip the modeling of the destruction process,
focusing on the recovery. We begin by specifying the initial
depth distribution of the condensate density. We assume that
the order parameter is completely destroyed in the region of
the sample where F(z) > FT and partially suppressed deeper
in the sample according to:

ψ(0,z) =
{

0 ,F(z) > FT;

(1 − F
FT

e−z/λ)
√

1 − Tl(0,z)
Tc

,F(z) < FT.
(3)

This expression can be considered as the limiting case of the
fast quench without fluctuations.

The solution of the TDGL equations then corresponds to
the propagation of the S → N boundary towards the surface
in the form of a S/N soliton wall. The recovery of the
system is completely determined by the soliton propagation
with only one free fit parameter, τGL, defining the velocity
of the soliton vψ ∼ ξ⊥/τGL [24,49]. By setting τGL = 50 fs
we obtain the recovery on the experimentally observed
timescale. However, the obtained trajectories AS(�tD−P) are
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much sharper than experimentally observed [Fig. 3(b)]. For the
weakest excitation F(z = 0) = 4.2 μJ/cm2 the condensate is
destroyed only at the surface and the modeled recovery occurs
very rapidly within 50 fs. However, for the strongest excitation
F = 34 μJ/cm2 the slow quench condition is satisfied and the
S/N boundary adiabatically follows the temperature front. In
this case the simulated curve fits reasonably well to the data
[Fig. 3(b)]. Nevertheless, we see that this second approach still
fails to consistently describe the recovery at all destruction
fluences. The gradual growth of the S signal on the 10 ps
timescale for the intermediate fluences might be reproduced
if one assumes that the soliton propagation is slow enough
and the superconductivity emerges from a seed—being either
preformed pairs or superconducting fluctuations.

In a simple preformed pair scenario superconductivity
arises from the paired pseudogap-forming carriers. The density
of these carriers provides the initial conditions for solving the
TDGL equation. From previous experiments we know that
in LSCO the pseudogap response is linear with fluence up to
FPG ∼ 750 ± 200 μJ/cm2 [33]. At these fluences the material
undergoes a structural instability [50], which naturally affects
the response [33]. We can take FPG as the lower estimate
for the fluence at which all pseudogap forming carriers are
excited (or in the preformed pairs terms all pairs are depaired).
This implies that at excitation conditions considered in this
work F � 34 μJ/cm2 the pseudogap carrier density would be
suppressed at most by 5% (confirmed also by the robustness
of the PG response in the present three-pulse experiments).
The initial conditions for Eq. (3) would therefore vary with the
depth and fluence by less than 5%. Such fluence-independent
initial conditions are inconsistent with the fluence dependence
of the data, so the PG-forming carriers do not appear to seed
the S order parameter.

VI. THE ROLE OF FLUCTUATIONS

A more realistic scenario invokes the thermal fluctuations
of the superconducting order above Tc, which are responsible
for the order formation within the Kibble-Zurek scenario.
After the S order has been destroyed and the temperature
is still significantly above Tc (�tD−P ∼ 0.5 ps), weak short-
lived superconducting fluctuations exist in the system. As
the electronic subsystem rapidly cools the density of the
S fluctuations increases, and their lifetime and correlation
length diverge when T → Tc. During the initial cooling stage
(T 
 Tc) fluctuations are fast and adapt to variations of
temperature. However, after a certain moment in time given by
τZ = √

τGLτq, their lifetime becomes larger than the quench
time, meaning that the system crosses the transition in a
“frozen” inhomogeneous configuration. As the system escapes
the critical region T < Tc(1 − τZ

τq
) the fluctuation lifetime

decreases and the system starts to adapt to the new conditions,
i.e., the order parameter grows from fluctuations according
to TDGL theory. The appropriate expression for the density
of such fluctuations, which we can implement as the initial
condition have been given by Volovik [51,52]

ψfluc(0,z) ∼
(

τGL

τq(z)

)3/8
Tc

EF
ψeq(Tl). (4)

FIG. 5. The initial conditions that take into account fluctuations
of the order parameter according to Eq. (4) (blue surface) and the
partially suppressed (yellow surface) order parameter in the region
F(z) < FT in agreement with Eq. (3). The flat region near z = 0 at
F/FT > 4 corresponds to the slow quench conditions.

The factor Tc
EF

gives the correct order of magnitude ∼0.01
of the seed order parameter to fit the data, whereas τq and
ψeq(Tl) define the depth dependence. The spatial dependence
of the initial order parameter obtained using (4) is shown in
Fig. 5. We note that the initial temperature immediately after
the optical energy absorption is not important because the
properties of the seed OP are defined at TZ = Tc(1 + τZ

τq
). For

the simulations we supplemented Eq. (4) with a proportionality
factor C: ψini(F(z) > FT) = C · ψfluc(0,z) which, in addition
to τGL, was an adjustable parameter shared between all the
curves. The resulting trajectories are shown in Fig. 3(c) (the
parameter values are τGL = 1.25 ps and C = 4). Agreement
between simulations and the experimental data is now much
better.

Finally, we further improve the fit by solving the TDGL
equation with parametrized phenomenological initial condi-
tions which resemble the main feature of the Volovik’s theory,
i.e., growth of the fluctuations with depth. The goal here is
to provide the initial conditions where the depth dependence
is adjustable rather than defined by the quench rate deduced
from the 3TM, which may not be sufficiently accurate. Instead
of Eq. (4) we use a minimal model which produces a good fit:

ψfluc(0,z) = κz/λp, (5)

where κ is the fitting parameter independent for each fluence
value. The result of these simulations is presented in Fig. 3(d)
with κ values equal to 0.25, 0.23, 0.162, 0.13, 0.1, and 0.06 in
the order of increasing fluence, and τGL = 1.1 ps. Note that the
fluctuations amplitude is limited in depth by the N/S boundary
in this model and reaches at most 18% of the equilibrium order
parameter value. The good correspondence of the simulation
to the data justifies the initial conditions within the fluctuation
scenario and underlines the importance of the fluctuations
especially for low and intermediate fluences.
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There are a few physical reasons why the Volovik’s
description of fluctuations, i.e., our third approach is not
sufficient. Firstly, it relies on the quench rates extracted from
the 3TM, which by itself might not be sufficiently accurate.
Secondly, it has been widely discussed that the cuprates have
extremely strong fluctuations compared to the conventional
superconductors and their onset in certain families exceeds
the critical temperature by several tens of K [41,53–56].
Thus a more sophisticated treatment is required than the
simple Gaussian fluctuations assumed by Volovik. Stronger
fluctuations in BSCCO might also explain why the recovery
of the condensate occurs one order of magnitude faster [18]
than in LSCO. In turn we expect that Eq. (4) should work much
better in the case of conventional superconductors.

We should note that despite the main advantage of the LSCO
system—its long-lasting recovery of the condensate—which
allowed us to discriminate the trajectory from short living
excitations, there is a significant factor which cannot be
easily accounted in the TDGL equations: the short lifetime
fluctuations of the stripe order [57]. Recent studies have
shown that the stripe fluctuations lifetime is below 2 ps [58].
Thus their coherent dynamics will influence the emerging S
order parameter mainly through the initial conditions. One
might speculate that the stripe fluctuations make the fit worse
with the use of initial conditions suggested by Volovik (4) in
comparison to the phenomenological ones (5).

In the Supplemental Material [27] we show that the
remaining discrepancy between the fit and the data near ∼10 ps
for the two fastest quench rates can be accounted for by the
suppression of the order parameter due to vortex formation.
From the discussion above one can see that in the case of a
fast quench the ergodicity of the system is broken as soon
as the fluctuation timescale becomes longer than the quench
time. The system then cannot follow the time evolution of the
potential and evolves inhomogeneously through the transition
with the appearance of vortices, quite faithfully reproduced
by the model when the dynamics of the superconducting

phase is explicitly included in the calculations (Fig. 5 of the
Supplemental Material [27]).

VII. CONCLUSIONS

By analyzing systematic fluence dependent ultrafast laser
quench experiments in a prototype high-temperature supercon-
ductor, we conclude that the recovery of the superconducting
order after the nonequilibrium phase transition can be de-
scribed rather well within the framework of the time-dependent
Ginzburg Landau theory. The predicted recovery of the
superconducting order agrees quite well with the experiments
in a wide range of destruction fluences when fluctuations
seeding the growth of the order parameter are taken into
account. This emphasizes the crucial role of fluctuations for
the time evolution of the order parameter through the N → S

transition.
The processes leading to the fast, � 1 ps, initial destruction

of superconducting order are beyond the TDGL modeling.
This is not surprising considering that the destruction proceeds
under highly nonergodic conditions [12].

Remarkably, the experiments show that photoexcitation
does not affect the transient signatures of the PG state,
and the superconducting order appears to grow out of the
nearly unperturbed pseudogap state. The strong fluence de-
pendence of the superconducting order recovery, concurrent
with the fluence-independent PG signatures, implies that the
PG forming carriers do not seed the initial growth of the
superconducting order.

ACKNOWLEDGMENTS

We wish to acknowledge the useful discussion with T. W.
Kibble regarding the importance of a variable quench rate
in the experiment. The funding was provided by European
Research Council advanced grant TRAJECTORY.

[1] Y. M. Bunkov and H. Godfrin, in Topological Defects and
the Non-Equilibrium Dynamics of Symmetry Breaking Phase
Transitions, edited by Y. M. Bunkov and H. Godfrin (Springer
Netherlands, Dordrecht, 2000), p. 396.

[2] P. W. Higgs, Phys. Rev. 145, 1156 (1966).
[3] G. E. Volovik, The Universe in a Helium Droplet, International

Series of Monographs on Physics, Vol. 117 (Oxford University
Press, Oxford, 2009), p. 534.

[4] C. M. Varma, J. Low Temp. Phys. 126, 901 (2002).
[5] T. W. B. Kibble and G. E. Volovik, J. Exp. Theor. Phys. Lett.

65, 102 (1997).
[6] W. Zurek, Phys. Rep. 276, 177 (1996).
[7] R. Monaco, J. Mygind, M. Aaroe, R. J. Rivers, and V. P.

Koshelets, Phys. Rev. Lett. 96, 180604 (2006).
[8] D. Golubchik, E. Polturak, and G. Koren, Phys. Rev. Lett. 104,

247002 (2010).
[9] W. H. Zurek, Nature (London) 317, 505 (1985).

[10] A. Schmid and G. Schön, J. Low Temp. Phys. 20, 207 (1975).
[11] A. Schmid, Phys. Kondens. Mater. 5, 302 (1966).

[12] P. Kusar, V. V. Kabanov, S. Sugai, J. Demsar, T. Mertelj, and D.
Mihailovic, Phys. Rev. Lett. 101, 227001 (2008).

[13] C. Giannetti, G. Coslovich, F. Cilento, G. Ferrini, H. Eisaki, N.
Kaneko, M. Greven, and F. Parmigiani, Phys. Rev. B 79, 224502
(2009).

[14] G. Coslovich, C. Giannetti, F. Cilento, S. Dal Conte, G. Ferrini,
P. Galinetto, M. Greven, H. Eisaki, M. Raichle, R. Liang, A.
Damascelli, and F. Parmigiani, Phys. Rev. B 83, 064519 (2011).

[15] C. Gadermaier, A. S. Alexandrov, V. V. Kabanov, P. Kusar,
T. Mertelj, X. Yao, C. Manzoni, D. Brida, G. Cerullo, and D.
Mihailovic, Phys. Rev. Lett. 105, 257001 (2010).

[16] C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmigiani,
and D. Mihailovic, arXiv:1601.07204 [cond-mat.supr-con].

[17] V. V. Kabanov, J. Demsar, and D. Mihailovic, Phys. Rev. Lett.
95, 147002 (2005).

[18] C. L. Smallwood, W. Zhang, T. L. Miller, C. Jozwiak, H. Eisaki,
D.-H. Lee, and A. Lanzara, Phys. Rev. B 89, 115126 (2014).

[19] G. P. Segre, N. Gedik, J. Orenstein, D. A. Bonn, R. Liang, and
W. N. Hardy, Phys. Rev. Lett. 88, 137001 (2002).

224520-7

http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1023/A:1013890507658
http://dx.doi.org/10.1023/A:1013890507658
http://dx.doi.org/10.1023/A:1013890507658
http://dx.doi.org/10.1023/A:1013890507658
http://dx.doi.org/10.1134/1.567332
http://dx.doi.org/10.1134/1.567332
http://dx.doi.org/10.1134/1.567332
http://dx.doi.org/10.1134/1.567332
http://dx.doi.org/10.1016/S0370-1573(96)00009-9
http://dx.doi.org/10.1016/S0370-1573(96)00009-9
http://dx.doi.org/10.1016/S0370-1573(96)00009-9
http://dx.doi.org/10.1016/S0370-1573(96)00009-9
http://dx.doi.org/10.1103/PhysRevLett.96.180604
http://dx.doi.org/10.1103/PhysRevLett.96.180604
http://dx.doi.org/10.1103/PhysRevLett.96.180604
http://dx.doi.org/10.1103/PhysRevLett.96.180604
http://dx.doi.org/10.1103/PhysRevLett.104.247002
http://dx.doi.org/10.1103/PhysRevLett.104.247002
http://dx.doi.org/10.1103/PhysRevLett.104.247002
http://dx.doi.org/10.1103/PhysRevLett.104.247002
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1007/BF00115264
http://dx.doi.org/10.1007/BF00115264
http://dx.doi.org/10.1007/BF00115264
http://dx.doi.org/10.1007/BF00115264
http://dx.doi.org/10.1007/BF02422669
http://dx.doi.org/10.1007/BF02422669
http://dx.doi.org/10.1007/BF02422669
http://dx.doi.org/10.1007/BF02422669
http://dx.doi.org/10.1103/PhysRevLett.101.227001
http://dx.doi.org/10.1103/PhysRevLett.101.227001
http://dx.doi.org/10.1103/PhysRevLett.101.227001
http://dx.doi.org/10.1103/PhysRevLett.101.227001
http://dx.doi.org/10.1103/PhysRevB.79.224502
http://dx.doi.org/10.1103/PhysRevB.79.224502
http://dx.doi.org/10.1103/PhysRevB.79.224502
http://dx.doi.org/10.1103/PhysRevB.79.224502
http://dx.doi.org/10.1103/PhysRevB.83.064519
http://dx.doi.org/10.1103/PhysRevB.83.064519
http://dx.doi.org/10.1103/PhysRevB.83.064519
http://dx.doi.org/10.1103/PhysRevB.83.064519
http://dx.doi.org/10.1103/PhysRevLett.105.257001
http://dx.doi.org/10.1103/PhysRevLett.105.257001
http://dx.doi.org/10.1103/PhysRevLett.105.257001
http://dx.doi.org/10.1103/PhysRevLett.105.257001
http://arxiv.org/abs/arXiv:1601.07204
http://dx.doi.org/10.1103/PhysRevLett.95.147002
http://dx.doi.org/10.1103/PhysRevLett.95.147002
http://dx.doi.org/10.1103/PhysRevLett.95.147002
http://dx.doi.org/10.1103/PhysRevLett.95.147002
http://dx.doi.org/10.1103/PhysRevB.89.115126
http://dx.doi.org/10.1103/PhysRevB.89.115126
http://dx.doi.org/10.1103/PhysRevB.89.115126
http://dx.doi.org/10.1103/PhysRevB.89.115126
http://dx.doi.org/10.1103/PhysRevLett.88.137001
http://dx.doi.org/10.1103/PhysRevLett.88.137001
http://dx.doi.org/10.1103/PhysRevLett.88.137001
http://dx.doi.org/10.1103/PhysRevLett.88.137001


I. MADAN et al. PHYSICAL REVIEW B 93, 224520 (2016)

[20] N. Gedik, J. Orenstein, R. Liang, D. a. Bonn, and W. N. Hardy,
Science (New York, NY) 300, 1410 (2003).

[21] A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C.
Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar,
R. Huber, and A. Leitenstorfer, Phys. Rev. Lett. 105, 067001
(2010).
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