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Magnetic field dependence of energy levels in biased bilayer graphene quantum dots
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Using the tight-binding approach, we study the influence of a perpendicular magnetic field on the energy levels
of hexagonal, triangular, and circular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair
edges. We obtain the energy levels for AB (Bernal)-stacked BLG QDs in both the absence and the presence of
a perpendicular electric field (i.e., biased BLG QDs). We find different regions in the spectrum of biased QDs
with respect to the crossing point between the lowest-electron and -hole Landau levels of a biased BLG sheet.
Those different regions correspond to electron states that are localized at the center, edge, or corner of the BLG
QD. Quantum Hall corner states are found to be absent in circular BLG QDs. The spatial symmetry of the carrier
density distribution is related to the symmetry of the confinement potential, the position of zigzag edges, and the
presence or absence of interlayer inversion symmetry.
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I. INTRODUCTION

Recent progress in the fabrication and characterization of
graphene-based nanodevices [1–3] has made possible the study
of electronic, optical, and transport properties of different
graphene-based nanostructures [4,5]. In this context, graphene
quantum dots (QDs) have been identified as attractive candi-
dates for spin qubits and quantum information storage [6–8].
It has been known that lateral confinement of Dirac fermions
using an electrostatic gate potential is a challenging task
due to the Klein tunneling effect, which prevents electrical
confinement of carriers in graphene [9]. Instead, graphene
QDs can be realized by cutting small flakes from a graphene
sheet [10]. It was shown that the energy states of such QDs are
strongly dependent on the shape, size, and type of the boundary
edges [11–17]. On the other hand, it has been shown that bound
electron or hole states can be achieved for the special case of
zero-energy modes [18,19].

In contrast to monolayer graphene, an electrostatic potential
difference can be introduced in bilayer graphene (BLG) by
chemical doping [20] or by the application of a perpendicular
electric field [21–23]. This leads to an inversion asymmetry
between the layers and opens an energy gap in the energy
spectrum. Tailoring the gap, by using applied gate potentials,
leads to the creation of electrostatic confined QDs in BLG, as
has been experimentally [21,24,25] and theoretically [26–34]
reported in the literature. The energy spectra of such QDs are
not determined by the type of edges or the disorder present
at the edges. However, experimental works demonstrated the
realization of controllable gates to tune the electronic band
gap up to about 250 meV in BLG [35], which limits the
barrier height for electrostatic confinement in BLG quantum
dots. Therefore, to realize larger quantum confinement, one
must rely on finite-size systems, where the type of edge
crucially determines the character of the low-energy electronic
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states. For instance, graphene QDs with zigzag edges exhibit
a degenerate zero-energy state [11–17] not found in the
well-known semiconductor-based QDs.

In our recent paper [34], we showed that the edges of BLG
QDs also play an important role in their electronic properties,
as do the type of stacking of the graphene layers. Those
results were obtained in the absence of a magnetic field. It
has been shown that monolayer and bilayer graphene display
new properties in the presence of a perpendicular magnetic
field not found in typical semiconductors [15,27,28,30,36–40].
This motivated us to extend our previous study [34] and to
investigate the influence of a magnetic field on the energy
levels of BLG QDs with triangular, hexagonal, and circular
shapes (see Fig. 1), for different types of edges.

The present paper is organized as follows: In Sec. II,
the tight-binding concepts and the assumed settings used in
our numerical calculations are briefly discussed. In Secs. III
and IV, the energy spectra for the Bernal-stacked BLG QDs
with armchair and zigzag edges are discussed, respectively. In
Sec. V, we present our results for circular BLG QDs, in which
the QD boundary is a combination of both armchair and zigzag
edges. Our final remarks are given in Sec. VI.

II. NUMERICAL METHOD

Bilayer graphene consists of two coupled graphene layers
linked by the van der Waals interaction [41]. Carriers in BLG
are described by the following tight-binding Hamiltonian:

H =
∑

i �=j

(τij c
†
i cj + H.c.) +

∑

i

(εi + Mi + Vi)c
†
i ci , (1)

where ci (c†i ) annihilates (creates) an electron in site i

with on-site energy εi . τij is the nearest-neighbor hopping
parameter, which for intralayer hopping contributions are
τij = t = −2.7 eV, whereas the interlayer ones are τij = t⊥ =
−0.4 eV. In an AB-stacked BLG, the atoms in the A (B)
sublattice in the bottom layer are linked with B (A) atoms in the
top layer. Mi and Vi are the on-site mass potential term and the
on-site electrostatic potential, respectively, used to open a gap
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FIG. 1. Sketches of (a),(b) armchair and (c),(d) zigzag BLG
QDs with (a),(c) hexagonal, (b),(d) triangular, and (e),(f) circular
geometries considered in this work. The first four geometries are
characterized by the number of carbon hexagons N at their edges.
The circular dots (e) and (f) are characterized by their radius R. (a)–(e)
QDs are defined by cutting the BLG lattice and (f) is defined by a
size-dependent staggered potential Mi , where the atoms belonging to
sublattices Ab (Au) and Bb (Bu) have a mass-term potential given by
+M0 (−M0) and −M0 (+M0), respectively, and Mi = 0 in the region
inside the dot, represented in green. Bottom (top) atoms are given by
black open (blue closed) symbols.

in the energy spectrum of BLG and, consequently, to simulate
electronic confinement in BLG nanostructures [32,33]. The
staggered site-dependent potential is defined in such a way
that Mi = M0 (Mi = −M0) if i belongs to the lattice A (B)
in one layer and B (A) in the other one [33]. This breaks
the sublattice symmetry in BLG QDs. Similar to monolayer
graphene [42–44], depositing BLG on the appropriate sub-
strate, e.g., SiC and hexagonal boron nitride, may induce such
mass-term potential. For the case of biased BLG QDs, we
take Vi = V for the atoms in the upper layer and Vi = −V

for the atoms in the lower layer. The effect of an external
magnetic field is incorporated in the tight-binding model via
the Peierls substitution, as τij → τij exp [i e

�

∫ i

j
�A · d�l], where

�A = (0,Bx,0) is the vector potential in the Landau gauge,
giving �B = Bẑ as an external magnetic field perpendicular
to the BLG flakes. For the chosen gauge, one finds that
the Peierls phase is only nonzero in the y direction and is
given by exp [i 2πx

3a

φ

φ0
], where a = 0.142 nm is the lattice

parameter of graphene, φ0 = h/e is the magnetic quantum
flux, and φ = 3

√
3a2B/2 is the magnetic flux through a carbon

hexagon. In order to facilitate the comparison, our results for
the different geometries and boundaries are obtained for BLG
QDs with the same confinement area, S ≈ (16.7)2 nm2, such
that the considered hexagonal and triangular BLG QDs with

FIG. 2. Energy levels (a) in the absence (V = 0) and (b) in the
presence (V = 0.1 eV) of a bias potential as a function of the magnetic
flux (φ/φ0) through a hexagonal BLG QD with armchair edges and
side length L ≈ 10.366 nm (N = 25 carbon hexagons in each side),
as sketched in Fig. 1(a). The red dashed curves are the LLs of an
infinite BLG sheet.

armchair and zigzag edges have the side length LH ≈ 10 nm
and LT ≈ 25 nm, respectively.

III. ARMCHAIR EDGES

First, we consider BLG QDs with armchair edges, for
which it is known that edge states are absent. We will
discuss the similarities and differences between the energy
spectra obtained for hexagonal and triangular geometries in
the absence and presence of an electrostatic bias potential.

Figure 2 shows the energy levels of an armchair hexagonal
BLG QD with side length L ≈ 10 nm (which corresponds
to N = 25 carbon hexagons in each length) as a function of
magnetic flux threading one carbon hexagon φ, respectively,
for (a) V = 0 and (b) V = 0.1 eV. Just like in monolayer
graphene QDs [11,12], the BLG QD spectra are always
composed of a large set of energy states, so that Landau levels
(LLs) of an infinite BLG sheet, analytically calculated within
the continuum approximation, match the regions of the QD
spectrum with higher density of states. For lower magnetic
fields, the LLs of the bulk system are not meaningful due to the
important role played by the finite size of the system, especially
for higher-energy states, where in addition band warping
also perturbs the energy levels obtained by the continuum
approximation. However, as the magnetic field increases, the

085401-2



MAGNETIC FIELD DEPENDENCE OF ENERGY LEVELS IN . . . PHYSICAL REVIEW B 93, 085401 (2016)
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FIG. 3. The probability density for the bottom |�b|2 and top |�u|2
graphene layers is shown for states labeled in Fig. 2 by the points
1 (E ≈ 0.20182 eV), 2 (E ≈ 0.21093 eV), 3 (E ≈ 0.1 eV), 4 (E ≈
0.07421 eV), and 5 (E ≈ 0.01587 eV), respectively, for the unbiased
and biased cases and for φ/φ0 = 4.0 × 10−3. Red (blue) colors stand
for high (low) density.

magnetic length becomes smaller than the system size, so that
confinement effects are strongly reduced, and the magnetic
levels in the BLG QDs, i.e., the so-called Fock-Darwin levels,
converge to the analytical LLs of an infinite BLG sheet
(shown by the dashed red curves in both spectra). The LL
spectrum E(n) of a symmetrically biased BLG (with applied
bias potential V ) is determined by [27,28]

[(E(n) + V )2 − 2(n + 1)γ 2)][(E(n) − V )2 − 2nγ 2]

−(E(n)2 − V 2)t2
⊥ = 0, (2)

where n is an integer and γ = �vF /lB , with vF ≈ 106 m/s
the Fermi velocity and lB = √

�/eB the magnetic length. The
magnetic field is related to the magnetic flux through the
QDs by B = (4π�φ)/(3

√
3ea2φ0). Equation (2) gives eight

solutions for each n. The four lowest LLs start at E = ±V and
the four highest LLs start at E = ±t⊥ [27,28]. In the absence
of bias V = 0 [Fig. 2(a)] as the magnetic flux increases, the
energy levels approach the zeroth LL (i.e., E = 0) in pairs.
Notice that these pairs of states have very close energies but
are nondegenerate and are the so-called quantum Hall edge
states. The corresponding electron densities for two of these
states [see labels 1 and 2 in Fig. 2(a)] are shown in Fig. 3.
The electron density for the bottom |�b|2 and upper |�u|2
layers is shown separately. Due to the layer symmetry in BLG
QDs when V = 0, the wave functions in each layer can be
(nearly) transformed into each other by a π rotation and thus
the total probability density for states labeled by 1 and 2 has
the same kind of symmetry and shape. For the nonzero bias
case [Fig. 2(b)], an energy gap opens around E = 0 and the
zeroth unbiased LL is now broken into four levels. For n = 0,
the lowest four solutions of Eq. (2) are E(0) = ±V and [28]

E
(0)
± = ±V

(
t2
⊥ − 2β�

2v2
F

)
(
t2
⊥ + 2β�2v2

F

) , (3)

with β = (4πφ)/(3
√

3a2φ0). Equation (3) is obtained by
assuming E,V � t⊥. It is worthwhile to emphasize that one
by one, those pairs of states pass through E = ±V and, while
one of them approaches the zeroth biased LLs (E(0)

± ), the other
one approaches E = ±V . E

(0)
± cross each other at

φC = 3
√

3a2φ0

8π�2v2
F

(V 2 + t2
⊥). (4)

Similar to the unbiased case, given by Fig. 2(a), the
energy levels in the presence of a bias potential V = 0.1 eV
exhibit electron-hole symmetry Ee = −Eh and the twofold
degeneracy present at φ/φ0 = 0 is broken for φ/φ0 �= 0. The
energy levels in the spectrum of Fig. 2(b) can be separated into
the following four regions (which are indicated in the figure):

(i) V < |E| < E(1), which corresponds to pairs of quantum
Hall edge states that decrease in energy with increasing
magnetic flux in pairs. The corresponding wave functions
of those states are similar to those shown in panels 1 and
2 of Fig. 3. For energies E ≈ ±V , we expect to observe
centered-peak localized states corresponding to the zeroth-LL
wave function (see panel 3 of Fig. 3).

(ii) |E| < V and E > E
(0)
+ for φ < φC and E > E

(0)
− for

φ > φC : Due to the breaking of the layer symmetry in this
region, the symmetry of the paired quantum Hall edge states
in region (i) is broken and one of the paired states approaches
the biased potential V and the other enters into region (ii) and
approach the zeroth LLs E

(0)
± . The corresponding layer electron

densities |�u|2 and |�b|2 are shown in Fig. 3 for one of these
states, labeled by 4 in Fig. 2(b). The distribution of electrons
in each layer is different and there is no layer symmetry.

(iii) E < E
(0)
− and E > E

(0)
+ and φ > φC : We observe states

in this region which exhibit slightly different behaviors than
those quantum Hall edge states in regions (i) and (ii). These
states are confined at the corners of the QD (see panel 5 in
Fig. 3) and occur in the energy gap between the electron and
hole levels of biased infinite BLG. We will analyze and discuss
these remarkable corner states further in the paper.

(iv) E > E
(0)
− and E < E

(0)
+ and φ < φC : In this region, the

spectrum of armchair hexagonal BLG QDs displays an energy
gap between the electron and hole states. We will see later that
in the presence of zigzag edges, edge states due to the zigzag
boundaries will appear in this region.

The energy spectrum of Fig. 4 for the armchair triangular
QDs is similar to that of the armchair hexagonal QDs shown
in Fig. 2. The similarity comes from the fact that both
armchair triangular and hexagonal BLG QDs have similar edge
structures [see Figs. 1(a) and 1(b)]. In Fig. 4(a), the quantum
Hall edge states approaching the zeroth LLs are almost twofold
degenerate [see Fig. 4(c), which shows an enlargement for low
energies]. The states labeled by points 1 and 2 have very close
energies (E1 = 0.0345 and E2 = 0.0368 eV) and their wave
functions are almost layer symmetric [Fig. 4(d)], such that
the electron densities for the upper and lower layers can be
transformed into each other by a reflection with respect to the
black dashed line.

In order to understand the states in region E
(0)
+ < E < E

(0)
−

and φ > φC of the biased energy spectrum shown in Fig. 4(b),
we depict in Fig. 5(b) the contributions of the different layers
as well as the total electron density for the states labeled 1–7
in Fig. 5(a). Notice that at φ = φC , the spectrum exhibits an
anticrossing between the electron and hole states. At this
point, the electron densities exhibit a centered-peak state,
i.e., characterizing the zeroth-LL state [see panels 1 and 2
in Fig. 5(b)]. Notice that the corresponding layer densities
can be transformed into each other by |�e,h

b |2 = |�h,e
u |2 due

to the electron-hole symmetry of the energy spectrum. With
increasing magnetic field φ > φC , the electron distributions
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FIG. 4. (a),(b) The same as in Figs. 2(a) and 2(b), but now for
the armchair triangular BLG QD with lateral size L ≈ 25.418 nm
(equivalent to N = 60 carbon hexagons in each side), as sketched
in Fig. 1(b). The red dashed curves are the LLs of an infinite BLG
sheet. (c) An enlargement of the spectrum for low energies. (d) The
probability density for the bottom |�b|2 and top |�u|2 layers is shown
for states 1 and 2 denoted in (c) with energies E1 = 0.0345 and
E2 = 0.0368 eV. Red (blue) colors stand for high (low) density.

move to the corner of the triangular dot (see the electron
densities for the energy points 2–7). This feature is similar
to those we observed in panel 5 of Fig. 3 for the hexagonal
armchair QDs.

Figures 6(a) and 7(a) show a zoom of the energy spectrum
around |E| � V , respectively, for the hexagonal and triangular
BLG QDs with armchair edges. One can see that as the
magnetic flux increases, more states appear in the region
E

(0)
+ � En � E

(0)
− and φ > φC . Our results for the electron

densities demonstrate that the two lowest-energy states are
confined at the corners of the dot. The corresponding total
probability densities of these states are shown in panels 1 and
2 in Figs. 6(b) and 7(b). Due to electron-hole symmetry, they
can be transformed into each other by a phase rotation of π

for the hexagonal case and 2π/3 for the triangular QD due

+|
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|
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|

|
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FIG. 5. (a) An enlargement of the energy spectrum around the
crossing point φC for a biased triangular BLG QD [see Fig. 4(b)]. The
red dashed curves are the two lowest LLs of an infinite sheet of BLG.
(b) The probability density contribution from each layer (bottom |�b|2
and top |�u|2), as well as the total density (|�b|2 + |�u|2), are shown
for states labeled by 1 (E ≈ 1.7039 × 10−4 eV), 2 (E ≈ −1.7039 ×
10−4 eV), 3 (E ≈ 9.9892 × 10−4 eV), 4 (E ≈ 1.3996 × 10−3 eV),
5 (E ≈ 2.0607 × 10−3 eV), 6 (E ≈ 2.6142 × 10−3 eV), and 7 (E ≈
6.9856 × 10−3 eV) in the energy spectrum. Red (blue) colors stand
for high (low) density.

to the C3 rotation symmetry. We call these states quantum
Hall corner states. We will show in Sec. V that in the case of a
circular dot (with no corners), these states are absent. As we go
to higher-energy levels, the electrons (holes) distribute along
the edges of the QD [see panels 3–8 in Figs. 6(b) and 7(b)]. In
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FIG. 6. (a) A zoom of the magnetic energy spectrum for a
hexagonal armchair BLG QD [Fig. 2(b)] near the zero-energy level.
The red dashed curves are the lowest zeroth LLs of an infinite sheet of
BLG. (b) The total probability densities are shown for states labeled
by 1 to 8 at φ/φ0 = 10.0 × 10−3. Red (blue) colors stand for high
(low) density.
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FIG. 7. The same as Fig. 6, but now for the armchair triangular
BLG QD.

fact, these states approach the quantum Hall edge states in the
regions E

(0)
− < E < V and −V < E < E

(0)
+ .

IV. ZIGZAG EDGES

The energy spectra of hexagonal BLG QDs with zigzag
edges and side length L ≈ 10 nm, which corresponds to
N = 41 carbon hexagons at each side, are shown in Figs. 8(a)
and 8(b) as a function of magnetic flux, respectively, for zero
and nonzero bias voltage. Due to the zigzag edges, the energy
spectrum of the unbiased hexagonal BLG QD exhibits a highly
degenerate zero-energy level. These zero-energy levels are
edge states and therefore the corresponding spectrum exhibits
a very distinct behavior as compared to the armchair BLG QDs
discussed in Figs. 2 and 4. The spectrum in Fig. 8(a) is similar
to the spectrum of the hexagonal monolayer graphene QDs
with zigzag edges [14]. Notice that the zero-energy states of
the zigzag hexagonal QD without bias potential are not affected
by the magnetic field because they are strongly confined at the
edges of the dot. By applying the bias potential [Fig. 8(b)],
we observe that the zero-energy levels are broken into two
bunches of levels with E ≈ +V and E ≈ −V . This is indeed
due to the breaking of the layer symmetry, which opens an
energy gap in the spectrum. In contrast to armchair BLG
QDs, zigzag-edge states appear in the region |E| < V and
φ < φC (compare Fig. 8 with Figs. 2 and 4). These states
exhibit an oscillatory behavior as a function of the magnetic
flux, which is due to the interplay between the zigzag edges
of both layers and the bias potential. In order to provide a
better understanding of this oscillatory behavior of the states
inside the |E| < V region and for φ < φC , we show an
enlargement around the low-energy levels in Fig. 9(a). Due
to the interplay between the zigzag edges and the external
magnetic field, anticrossings appear in the energy spectrum.
An anticrossing point around φ/φ0 = 0.22 × 10−3 is enlarged
in the inset of Fig. 9(a). Figure 9(b) shows the corresponding
total electron densities for the points labeled by 1 to 6 around
the anticrossing between the ground states of the electron

FIG. 8. Energy levels (a) in the absence and (b) in the presence
of a bias potential as a function of the magnetic flux (φ/φ0) for a
hexagonal BLG QD with zigzag edges and L ≈ 10.084 nm (N = 41
carbon hexagons in each side), as sketched in Fig. 1(c). The red dashed
curves are the LLs of an infinite sheet of BLG. The bias potential is
V = 0.1 eV.
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FIG. 9. (a) A zoom of the hexagonal zigzag QD energy spectrum
[Fig. 8(b)] near the zero-energy level. The red dashed curves are
the lowest zeroth LLs of an infinite sheet of BLG. (b),(c) The total
probability densities are shown for states labeled by 1–2, 3–4, 5–
6, and 7–12 at φ/φ0 = 0.15 × 10−3, 0.22 × 10−3, 0.3 × 10−3, and
10.0 × 10−3, respectively. Larger red circles represent higher-density
amplitudes.
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FIG. 10. The same as in Fig. 8, but for the zigzag triangular BLG
QD with side length L ≈ 25.415 nm (N = 103 carbon hexagons
along each side), as sketched in Fig. 1(d).

and hole levels. Our results demonstrate that these states are
confined along the terminated-zigzag atoms with no interlayer
links [see the structure of the zigzag hexagonal BLG QD
in Fig. 1(c)]. Notice also that exactly at the anticrossing,
states 3 and 4 are predominantly located at the corners of the
hexagon that are composed of atoms from the top and bottom
layers, respectively [see sketch in Fig. 1(c)], so that their
energies must be slightly different, explaining the observed
gap around E = 0. The total probability densities show a
reflection symmetry for electron and hole states along the
black dashed lines in the panels of Figs. 9(b) and 9(c). Similar
to the spectra of QDs with armchair edges (Figs. 6 and 7),
we observe extra energy levels in the region E

(0)
+ < E < E

(0)
−

and φ > φC . These states are labeled 7–8 in Fig. 9(a). The
corresponding total densities are shown in Fig. 9(c). In contrast
to the edge states in the region φ < φC , now the carriers are
confined mostly around two corners of the dot, instead of the
four as in Fig. 9(b). As one can see in Fig. 9(c), the states 9–10
and 11–12 exhibit confinement at some of the corners of the
dot, whereas for the higher-energy states labeled 7–8, we see
confinement both at the edges and the corners, as they approach
the quantum Hall edge states, which are confined along the QD
edges. The lowest states are grouped in pairs, i.e., 9–11 and
10–12, that result from the symmetry of the wave functions
[see corresponding probability densities in Fig. 9(c)].

Figures 10(a) and 10(b) show the energy spectrum as a
function of the magnetic flux for a zigzag triangular BLG QD
in the (a) absence and (b) presence of an applied gate potential,
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FIG. 11. (a) A zoom of the triangular zigzag magnetic energy
spectrum [Fig. 10(b)] near the zero-energy level. The red dashed
curves are the lowest zeroth LLs of an infinite sheet of BLG.
(b) The total probability densities are shown for states labeled by
the points 1 to 6 at φ/φ0 = 0.2 × 10−3 and for points 7 to 12 at
φ/φ0 = 10.0 × 10−3. Red (blue) colors stand for high (low) density.

respectively. In contrast to hexagonal BLG QDs with zigzag
edges (Fig. 8), the unbiased energy spectrum in Fig. 10(a)
exhibits a 2(N − 1) degenerate zero-energy state, i.e., N − 1
zero states for each triangular layer, where N is the number
of hexagonal carbon rings along each side of the QD. As
shown in Fig. 1(d), an AB-stacked triangular BLG QD with
zigzag edges has a different edge structure in each layer, i.e.,
different number of edge atoms that are not linked to the other
layer via the interlayer hopping [bottom (top) layer has 3 (1)
nonlinked terminated edges]. This leads to the breaking of
the layer symmetry, resulting in the breaking of electron-hole
symmetry in the spectrum shown in Fig. 10(b) when V �= 0.
This corresponds to Fig. 7(b) of Ref. [34], where the spectrum
in the absence of a magnetic field was shown to exhibit a clear
electron-hole symmetry break.

The low-energy levels of a triangular BLG QD with zigzag
edges are shown in Fig. 11(a). We plot the total electron density
for the states labeled 1–6 at φ/φ0 = 0.2 × 10−3 and for those
states labeled 7–10 at φ/φ0 = 10.0 × 10−3. The bias potential
splits the 2(N − 1) degenerate states into N − 1 degenerate
states with energy E = −V that are confined at the edges of
the lower layer with potential −V , while the other N − 1 states
spread into the region E

(0)
− � E � V . As the magnetic field

increases, the twofold degeneracy of the levels is lifted, leading
to crossings of these states. The total probability density for

085401-6



MAGNETIC FIELD DEPENDENCE OF ENERGY LEVELS IN . . . PHYSICAL REVIEW B 93, 085401 (2016)

the N th state with energy E = −0.1 eV is shown in panel
1 of Fig. 11(b), which confirms the strong confinement of
the N − 1 states at the edges of the lower layer. For higher-
energy levels with |E| < V , the energy states (see panels 2–6)
display a nodal character along both edges and inside the
dot. This is reminiscent of quantum well states, where the
number of nodes increases as we go to higher-energy levels.
In contrast to the lowest states with φ < φC , the states in
the region φ > φC and E

(0)
+ < E < E

(0)
− exhibit confinement

mostly at one edge of the triangular dot [see panels 7–8 and 10–
12 in Fig. 11(b)] . The total probability density of these states
has a nodal character along that zigzag edge of the triangular
QD which is not linked to the other layer [see Fig. 1(d)]. The
state labeled 9 in Fig. 11(b) shows confinement at the corner
of the dot.

V. CIRCULAR BILAYER GRAPHENE QD: MIXTURE OF
ARMCHAIR AND ZIGZAG EDGES

It is interesting to investigate the energy spectrum of circular
BLG QDs since this geometry has a combination of both
zigzag and armchair edges at its boundary and is therefore
relevant to the experimental samples with no uniform edges.
We consider two kinds of circular BLG QDs: (i) a QD cut out
from a BLG sheet [see Fig. 1(e)] and (ii) a circular BLG QD
surrounded by a staggered potential media with M0 = 1.0 eV
[see Fig. 1(f)]. The staggered potential media can be realized
by using an appropriate nanostructured substrate for BLG.

The energy levels for a circular BLG QD as a function of
magnetic flux are shown in Fig. 12(a) in the absence of, and
in Fig. 12(b) in the presence of, a bias potential for the case
of a cutout circular QD with radius R = 10 nm. Without bias
potential, the energy spectrum is similar to that of a hexagonal
BLG QD with zigzag edges [Fig. 8(a)], exhibiting a bunch of
energy levels with E ≈ 0. The spectrum in the presence of bias
is, however, different from that of a zigzag hexagonal BLG
QD [Fig. 8(b)]. Now the corner states [that appeared in the
region φ > φC and E

(0)
+ < En < E

(0)
− in Fig. 8(b)] are absent,

which is due to the circular geometry having round boundaries
[see Fig. 12(b)]. The formation of a subband, including six
energy states, in the region φ < φC and E

(0)
− < En < E

(0)
+ is

related to the C6 symmetry brought by the position of the
zigzag edges in a circular BLG QD [see Fig. 1(e)]. This energy
subband exhibits periodic oscillations as the magnetic field
increases, which is reminiscent of the spectrum of hexagonal
monolayer graphene quantum rings with zigzag edges under
applied magnetic fields [45]. This is due to the fact that in
the absence of field, the edge states have energies inside the
gap generated by the bias. As the magnetic field increases,
these states are pushed towards the center of the dot, while
the gap prevents their wave functions from entering the dot,
which is effectively the same situation that leads to Aharonov-
Bohm oscillations of energy states in quantum rings. Indeed,
as one verifies in the inset of Fig. 12(b), the energy gap around
E = 0 is closed periodically as φR = (2n + 1)φ0, with n =
0,1,2, . . ., where φR = BπR2 is the magnetic flux threading
the circular dot, as expected for Aharonov-Bohm oscillations
in such a bilayer. Notice that, in fact, these oscillations are
also present in the low-energy spectrum at φ < φC for the

FIG. 12. Energy levels as a function of the magnetic flux (φ/φ0)
for a circular BLG QD with radius R = 10 nm (a) in the absence
and (b) in the presence of a bias potential, and (c) considering a
mass potential profile surrounding an unbiased region, as sketched in
Figs. 1(e) and 1(f), respectively. The red dashed curves are the LLs of
an infinite sheet of BLG. The bias potential is V = 0.1 eV. The inset
in (b) shows a zoom of the low-energy oscillations at low magnetic
fields. φR = BπR2 is the magnetic flux threading the circular dot.

biased hexagonal zigzag QD [see Figs. 8(b) and 9(a)], where
a similar situation of edge confinement is observed; but, in
contrast to the circular case, gaps separating all oscillating
energies are present that are a consequence the breaking of
(i) the circular symmetry of the wave function, due to the
hexagonal geometry, and (ii) the interlayer symmetry, due to
the applied bias. In Fig. 13, we show the probability density
corresponding to the energies labeled by points 1 and 2 in
Fig. 12(b), which exhibit an electron-hole symmetry. It can
be seen that the total density distribution for points 1 and 2 is
rotated by π/3. The densities are mostly confined at the six
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FIG. 13. The probability amplitude for the bottom (|�b|2) and
top (|�u|2) layers, as well as the total contribution (|�b|2 + |�u|2) are
shown for points 1 and 2 of the energy levels indicated in Fig. 12(b)
at the magnetic flux (φ/φ0 = 0.5 × 10−3). The maximum amplitudes
match with the six largest zigzag parts of the circular BLG QD with
R = 10 nm. Larger red circles represent higher-density amplitudes.

largest zigzag patches of the circular dot, and the total electron
(hole) density is mostly composed of the contribution from the
top (bottom) layer.

Let us now analyze the case of a circular BLG QD defined
by a mass-term potential of M0 = 1.0 eV. Our purpose of
considering such structure is to eliminate the influence of
edges. The energy spectrum in this case is shown in Fig. 12(c)
as a function of magnetic flux. It looks qualitatively similar
to the one shown in Fig. 2(a), for a hexagonal BLG QD
with armchair boundaries, where we have no zero-energy
states due to the zigzag edges. However, qualitatively, the
spectrum displays a smaller energy gap at low magnetic field
as compared to the hexagonal case.

VI. CONCLUSIONS

Using the tight-binding approach, we obtained the
magnetic-field-dependent electron and hole energy spectra for
hexagonal, triangular, and circular AB-stacked BLG QDs with
zigzag and armchair edges. We investigated the magnetic field
dependence of the energy levels both in the absence and in
the presence of an applied electric field. Our results showed
that the energy levels of BLG QDs depend strongly on the
confinement geometry and that the different edge types play
an important role. A comparison was made between the spectra
for the different geometries and edges, with the circular BLG

QD defined by a mass-staggered potential. The latter was
shown to be qualitatively similar to the results obtained for
the hexagonal BLG QD with armchair edges, whereas the
unbiased cutout circular QD spectrum looked qualitatively like
the one for hexagonal BLG QD with zigzag edges.

All of the studied spectra obtained in this paper for both
unbiased and biased BLG QDs preserve the electron(e)-
hole(h) symmetry, Ee = −Eh, except for the zigzag triangular
BLG QD in the presence of an external gate potential. The
asymmetry of this spectrum for V �= 0 is a consequence of
the different structure of the edge atoms in the upper and
lower layers of the triangular BLG QDs, having a different
number of interlayer nonconnected atoms. For unbiased BLG
QDs, we found that the quantum Hall edge states approach the
zeroth LL of an infinite BLG in pairs, which results from the
layer symmetry in BLG QDs when V = 0. We noticed that
the BLG QDs with zigzag edges exhibit the well-known edge
states, with a 2(N − 1)-fold-degenerate zero-energy level and
a bunch of zero-energy states for the triangular and hexagonal
QDs, respectively.

Due to the peculiar form of the LLs in biased BLG, our
results in the presence of a bias potential showed different types
of states that appear in different regions of the energy spectrum.
We found that biased QDs exhibit states which are confined at
the corners of the QD when the magnetic field is larger than φC ,
with φC being the crossing point of the electron-hole zeroth
LLs. These states, identified here as quantum Hall corner
states, are shown to be absent for a circular geometry.

The unconventional energy states found inside the gap in
biased BLG quantum dots can be probed, e.g., by attaching
leads to the dot and measuring its transport properties, such as
its magnetotransmission minima [46] and its chemical poten-
tial at the resonances in Coulomb diamond patterns [10,47].
In particular, quantum Hall corner states can also be probed
by observing their local density of states in scanning tunneling
microscopy (STM) experiments [48].
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