toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Skorikov, A.; Heyvaert, W.; Albecht, W.; Pelt, D.M.; Bals, S. pdf  url
doi  openurl
  Title Deep learning-based denoising for improved dose efficiency in EDX tomography of nanoparticles Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue Pages 12242-12249  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The combination of energy-dispersive X-ray spectroscopy (EDX) and electron tomography is a powerful approach to retrieve the 3D elemental distribution in nanomaterials, providing an unprecedented level of information for complex, multi-component systems, such as semiconductor devices, as well as catalytic and plasmonic nanoparticles. Unfortunately, the applicability of EDX tomography is severely limited because of extremely long acquisition times and high electron irradiation doses required to obtain 3D EDX reconstructions with an adequate signal-to-noise ratio. One possibility to address this limitation is intelligent denoising of experimental data using prior expectations about the objects of interest. Herein, this approach is followed using the deep learning methodology, which currently demonstrates state-of-the-art performance for an increasing number of data processing problems. Design choices for the denoising approach and training data are discussed with a focus on nanoparticle-like objects and extremely noisy signals typical for EDX experiments. Quantitative analysis of the proposed method demonstrates its significantly enhanced performance in comparison to classical denoising approaches. This allows for improving the tradeoff between the reconstruction quality, acquisition time and radiation dose for EDX tomography. The proposed method is therefore especially beneficial for the 3D EDX investigation of electron beam-sensitive materials and studies of nanoparticle transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000671395800001 Publication Date 2021-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access OpenAccess  
  Notes (down) Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 016.Veni.192.235 ; H2020 European Research Council, 815128 ; H2020 Marie Skłodowska-Curie Actions, 797153 ; H2020 Research Infrastructures, 731019; realnano; sygmaSB Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:179756 Serial 6799  
Permanent link to this record
 

 
Author Van Oijstaeijen, W.; Van Passel, S.; Cools, J. pdf  url
doi  openurl
  Title Urban green infrastructure: A review on valuation toolkits from an urban planning perspective Type A1 Journal Article
  Year 2020 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 267 Issue Pages 110603  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract As a response to increasing urbanization and changing weather and climatic patterns, urban green infrastructure (UGI) emerged as a concept to increase resilience within the urban boundaries. Given that implementing these (semi-) natural solutions in practice requires a clear overview of the costs and benefits, valuation becomes ever important. A range of decision-support tools for green infrastructure and ecosystem services exist, developed for various purposes. This paper reviews the potential of 10 shortlisted and existing valuation tools to support investment decisions of urban green infrastructure. In the assessment, the functionality is regarded specifically from the urban planning and decision-making viewpoint. The toolkits were evaluated on 12 different criteria. After analyzing the toolkits on these criteria, the findings are evaluated on the (mis)match with specific requirements in the urban planning and management context. Secondly, recommendations and guidelines are formulated to support the design of simple valuation tools, tailored to support the development of green infrastructure in urban areas. Approaching the valuation toolkits biophysically and (socio-)economically provides an integral overview of the challenges and opportunities of the capacities of each framework. It was found that most tools are not designed for the peculiarities of the urban context. Several elements contribute to the hampering uptake of GI valuation tools. Firstly, the limited effort in the economic case for green infrastructure remains a burden to use toolkits to compare grey and green alternatives. Secondly, tools are currently seldom designed for the peculiarities of cities: urban ecosystem (dis)services, multi-scalability, life-span assessments of co-benefits and the importance of social benefits. Thirdly, toolkits should be the result of co-development between the scientific community and local authorities in order to create toolkits that are tailor made to the specific needs in the urban planning process. It can be concluded that current tools, are not readily applicable to support decision making as such. However, if applied cautiously, they can have an indicative role to pinpoint further targeted and in-depth analyses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000533525100040 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.7 Times cited Open Access  
  Notes (down) Nature Smart Cities across the 2 Seas is an Interreg 2 Seas co-funded project to the value of €6,380,472. It consists of a total of 11 Partners from 4 EU Member States, who will work together to develop a business model that local authorities can use to justify the use of ‘city finance’ to fund their urban greening programmes. This project has received funding from the Interreg 2 Seas programme 2014-2020 co-funded by the European Regional Development Fund under subsidy contract No 2S05-048. Approved Most recent IF: 8.7; 2020 IF: 4.01  
  Call Number ENM @ enm @c:irua:169448 Serial 6384  
Permanent link to this record
 

 
Author Bissonnette-Dulude, J.; Heirman, P.; Coulombe, S.; Bogaerts, A.; Gervais, T.; Reuter, S. url  doi
openurl 
  Title Coupling the COST reference plasma jet to a microfluidic device: a computational study Type A1 Journal article
  Year 2024 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume 33 Issue 1 Pages 015001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The use of microfluidic devices in the field of plasma-liquid interaction can unlock unique possibilities to investigate the effects of plasma-generated reactive species for environmental and biomedical applications. So far, very little simulation work has been performed on microfluidic devices in contact with a plasma source. We report on the modelling and computational simulation of physical and chemical processes taking place in a novel plasma-microfluidic platform. The main production and transport pathways of reactive species both in plasma and liquid are modelled by a novel modelling approach that combines 0D chemical kinetics and 2D transport mechanisms. This combined approach, applicable to systems where the transport of chemical species occurs in unidirectional flows at high Péclet numbers, decreases calculation times considerably compared to regular 2D simulations. It takes advantage of the low computational time of the 0D reaction models while providing spatial information through multiple plug-flow simulations to yield a quasi-2D model. The gas and liquid flow profiles are simulated entirely in 2D, together with the chemical reactions and transport of key chemical species. The model correctly predicts increased transport of hydrogen peroxide into the liquid when the microfluidic opening is placed inside the plasma effluent region, as opposed to inside the plasma region itself. Furthermore, the modelled hydrogen peroxide production and transport in the microfluidic liquid differs by less than 50% compared with experimental results. To explain this discrepancy, the limits of the 0D–2D combined approach are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001136607100001 Publication Date 2024-01-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes (down) Natural Sciences and Engineering Research Council of Canada, RGPIN-06820 ; FWO, 1100421N ; McGill University, the TransMedTech Institute; Approved Most recent IF: 3.8; 2024 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:202783 Serial 8990  
Permanent link to this record
 

 
Author Petrović, A. p.; Raju, M.; Tee, X. y.; Louat, A.; Maggio-Aprile, I.; Menezes, R. m.; Wyszyński, M. j.; Duong, N. k.; Reznikov, M.; Renner, C.; Milošević, M.V.; Panagopoulos, C. url  doi
openurl 
  Title Skyrmion-(Anti)Vortex Coupling in a Chiral Magnet-Superconductor Heterostructure Type A1 Journal article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 126 Issue 11 Pages 117205  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ~50nm is sufficient to nucleate antivortices in a 25nm Nb film, with unique signatures in the magnetization, critical current and flux dynamics, corroborated via simulations. We also detect a thermally-tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase. This realization of a strongly interacting skyrmion-(anti)vortex system opens a path towards controllable topological hybrid materials, unattainable to date.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652825200011 Publication Date 2021-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 20 Open Access OpenAccess  
  Notes (down) National Research Foundation Singapore, NRFNRFI2015-04 ; Ministry of Education – Singapore, MOE2018-T3-1-002 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 182652 ; Fonds Wetenschappelijk Onderzoek; Universiteit Antwerpen; Flemish Government; European Cooperation in Science and Technology, CA16218 ; CalcUA Flemish Supercomputer Center; Approved Most recent IF: 8.462  
  Call Number CMT @ cmt @c:irua:177505 Serial 6754  
Permanent link to this record
 

 
Author Han, I.; Song, I.S.; Choi, S.A.; Lee, T.; Yusupov, M.; Shaw, P.; Bogaerts, A.; Choi, E.H.; Ryu, J.J. pdf  url
doi  openurl
  Title Bioactive Nonthermal Biocompatible Plasma Enhances Migration on Human Gingival Fibroblasts Type A1 Journal article
  Year 2023 Publication Advanced healthcare materials Abbreviated Journal  
  Volume 12 Issue 4 Pages 2200527  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study hypothesizes that the application of low-dose nonthermal biocompatible dielectric barrier discharge plasma (DBD-NBP) to human gingival fibroblasts (HGFs) will inhibit colony formation but not cell death and induce matrix metalloproteinase (MMP) expression, extracellular matrix (ECM) degradation, and subsequent cell migration, which can result in enhanced wound healing. HGFs treated with plasma for 3 min migrate to each other across the gap faster than those in the control and 5-min treatment groups on days 1 and 3. The plasma-treated HGFs show significantly high expression levels of the cell cycle arrest-related p21 gene and enhanced MMP activity. Focal adhesion kinase (FAK) mediated attenuation of wound healing or actin cytoskeleton rearrangement, and plasma-mediated reversal of this attenuation support the migratory effect of DBD-NBP. Further, this work performs computer simulations to investigate the effect of oxidation on the stability and conformation of the catalytic kinase domain (KD) of FAK. It is found that the oxidation of highly reactive amino acids (AAs) Cys427, Met442, Cys559, Met571, Met617, and Met643 changes the conformation and increases the structural flexibility of the FAK protein and thus modulates its function and activity. Low-dose DBD-NBP-induces host cell cycle arrest, ECM breakdown, and subsequent migration, thus contributing to the enhanced wound healing process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000897762100001 Publication Date 2022-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2192-2640 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10 Times cited Open Access OpenAccess  
  Notes (down) National Research Foundation of Korea; Kementerian Pendidikan, 2020R1I1A1A01073071 2021R1A6A1A03038785 ; Approved Most recent IF: 10; 2023 IF: 5.11  
  Call Number PLASMANT @ plasmant @c:irua:192804 Serial 7242  
Permanent link to this record
 

 
Author Ghimire, B.; Szili, E.J.; Lamichhane, P.; Short, R.D.; Lim, J.S.; Attri, P.; Masur, K.; Weltmann, K.-D.; Hong, S.-H.; Choi, E.H. pdf  url
doi  openurl
  Title The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 9 Pages 093701  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasma jets (plasma) operated in ambient air provide a rich source of reactive oxygen and nitrogen species (RONS), which are known to influence biological processes important in disease. In the plasma treatment of diseased tissue such as subcutaneous cancer tumors, plasma RONS need to first traverse an interface between the plasma-skin surface and second be transported to millimeter depths in order to reach deep-seated diseased cells. However, the mechanisms in the plasma generation of RONS within soft tissues are not understood. In this study, we track the plasma jet delivery of RONS into a tissue model target and we delineate two processes: through target delivery of RONS generated (primarily) in the plasma jet and in situ RONS generation by UV photolysis within the target. We demonstrate that UV photolysis promotes the rapid generation of RONS in the tissue model target’s surface after which the RONS are transported to millimeter depths via a slower molecular process. Our results imply that the flux of UV photons from plasma jets is important for delivering RONS through seemingly impenetrable barriers such as skin. The findings have implications not only in treatments of living tissues but also in the functionalization of soft hydrated biomaterials such as hydrogels and extracellular matrix derived tissue scaffolds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460820600048 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access Not_Open_Access  
  Notes (down) National Research Foundation of Korea, NRF-2016K1A4A3914113 ; Australian Research Council, DP16010498 ; This work was supported by the National Research Foundation of Korea (NRF) Grant No. NRF-2016K1A4A3914113 and in part by Kwangwoon University 2018, Korea. E.J.S., S.-H.H., and R.D.S. wish to thank the Australian Research Council for partially supporting this research through Discovery Project No. DP16010498 and UniSA through the Vice Chancellor Development Fund. Approved Most recent IF: 3.411  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158111 Serial 5159  
Permanent link to this record
 

 
Author Song, C.-H.; Attri, P.; Ku, S.-K.; Han, I.; Bogaerts, A.; Choi, E.H. pdf  url
doi  openurl
  Title Cocktail of reactive species generated by cold atmospheric plasma: oral administration induces non-small cell lung cancer cell death Type A1 Journal article
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue 18 Pages 185202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with 85% of all lung cancer reported as NSCLC. Moreover, there are no effective treatments in advanced NSCLC. This study shows for the first time that oral administration of plasma-treated water (PTW) can cure advanced NSCLC. The cold plasma in water generates a cocktail of reactive species, and oral administration of this cocktail to mice showed no toxicities even at the highest dose of PTW, after a single dose and repeated doses for 28 d in mice. In vivo studies reveal that PTW showed favorable anticancer effects on chemo-resistant lung cancer, similarly to gefitinib treatment as a reference drug in a chemo-resistant NSCLC model. The anticancer activities of PTW seem to be involved in inhibiting proliferation and angiogenesis and enhancing apoptosis in the cancer cells. Interestingly, the PTW contributes to enhanced immune response and improved cachexia in the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621503200001 Publication Date 2021-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes (down) National Research Foundation (NRF) of Korea, NRF-2016K1A4A3914113 ; We gratefully acknowledge financial support from the Leading Foreign Research Institute Recruitment program (Grant # NRF-2016K1A4A3914113) through the Basic Science Research Program of the National Research Foundation (NRF) of Korea and in part by Kwangwoon University. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:176649 Serial 6747  
Permanent link to this record
 

 
Author Cui, Z.; Hao, Y.; Jafarzadeh, A.; Li, S.; Bogaerts, A.; Li, L. pdf  url
doi  openurl
  Title The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces: A DFT study Type A1 Journal article
  Year 2023 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 36 Issue Pages 102602  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma degradation is one of the most effective methods for the abatement of greenhouse gas sulfur hexafluoride

(SF6). To evaluate the potential of MgO as a catalyst in plasma degradation, we investigate the catalytic properties

of MgO on SF6 adsorption and activation by density functional theory (DFT) where the O-defective and

hydroxylated surfaces are considered as two typical plasma-generated surfaces. Our results show that perfect

MgO (001) and (111) surfaces cannot interact with SF6 and only physical adsorption happens. In case of Odefective

MgO surfaces, the O vacancy is the most stable adsorption site. SF6 undergoes a decomposition to SF5

and F over the O-defective MgO (001) surface and undergoes an elongation of the bottom S-F bond over the Odefective

(111) surface. Besides, SF6 shows a physically adsorption at the stepsite of the MgO (001) surface,

accompanied by small changes in its bond angle and length. Furthermore, SF6 is found to be physically and

chemically adsorbed over 0.5 and 1.0 ML (monolayer) H-covered O-terminated MgO (111) surfaces, respectively.

The SF6 molecule undergoes a self-decomposition on the 1.0 ML hydroxylated surface via a surface bonding

process. This study shows that defective and hydroxylated MgO surfaces have the surface capacities for SF6

activation, which shows that MgO has potential as packing material in SF6 waste treatment in packed-bed

plasmas.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000916285000001 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes (down) National Natural Science Foundation of China, 52207155 ; Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Vlaamse regering; Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:194364 Serial 7244  
Permanent link to this record
 

 
Author Duan, J.; Ma, M.; Yusupov, M.; Cordeiro, R.M.; Lu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title The penetration of reactive oxygen and nitrogen species across the stratum corneum Type A1 Journal article
  Year 2020 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The penetration of reactive oxygen and nitrogen species (RONS) across the stratum corneum (SC) is a necessary and crucial process in many skin‐related plasma medical applications. To gain more insights into this penetration behavior, we combined experimental measurements of the permeability of dry and moist SC layers with computer simulations of model lipid membranes. We measured the permeation of relatively stable molecules, which are typically generated by plasma, namely H2O2, NO3−, and NO2−. Furthermore, we calculated the permeation free energy profiles of the major plasma‐generated RONS and their derivatives (i.e., H2O2, OH, HO2, O2, O3, NO, NO2, N2O4, HNO2, HNO3, NO2−, and NO3−) across native and oxidized SC lipid bilayers, to understand the mechanisms of RONS permeation across the SC. Our results indicate that hydrophobic RONS (i.e., NO, NO2, O2, O3, and N2O4) can translocate more easily across the SC lipid bilayer than hydrophilic RONS (i.e., H2O2, OH, HO2, HNO2, and HNO3) and ions (i.e., NO2− and NO3−) that experience much higher permeation barriers. The permeability of RONS through the SC skin lipids is enhanced when the skin is moist and the lipids are oxidized. These findings may help to understand the underlying mechanisms of plasma interaction with a biomaterial and to optimize the environmental parameters in practice in plasma medical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536892900001 Publication Date 2020-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access  
  Notes (down) National Natural Science Foundation of China, 51625701 51977096 ; Fonds Wetenschappelijk Onderzoek, 1200219N ; China Scholarship Council, 201806160128 ; M. Y. acknowledges the Research Foundation Flanders (FWO) for financial support (Grant No. 1200219N). This study was partially supported by the National Natural Science Foundation of China (Grant No: 51625701 and 51977096) and the China Scholarship Council (Grant No: 201806160128). All computational work was performed using the Turing HPC infrastructure at the CalcUA Core Facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 3.5; 2020 IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:169709 Serial 6372  
Permanent link to this record
 

 
Author Yang, M.; Chen, H.; Orekhov, A.; Lu, Q.; Lan, X.; Li, K.; Zhang, S.; Song, M.; Kong, Y.; Schryvers, D.; Du, Y. pdf  url
doi  openurl
  Title Quantified contribution of β″ and β′ precipitates to the strengthening of an aged Al–Mg–Si alloy Type A1 Journal article
  Year 2020 Publication Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 774 Issue Pages 138776  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract It is generally believed that β00 precipitates, rather than β0 precipitates, are the major strengthening precipitates in

aged Al–Mg–Si alloys. The reason for this difference is not well understood. To clarify this, two samples of the

same Al–Mg–Si alloy but with different aging states were prepared. The under-aged sample only contains nanoprecipitates

of the β00 type, while the peak-aged one contains nearly equal volumes of β00 and β0 precipitates. We

have, for the first time, separated the strengthening effect of the contribution from βʺ and βʹ precipitates,

respectively, by an indirect approach based on high-precision measurements of volume fractions, number densities,

sizes, proportions of the precipitates, their lattice strains, the composition and grain size of the matrix. The

β0 precipitates, which take 45.6% of the total precipitate volume in the peak-aged sample, contribute to the entire

precipitation strengthening by only 31.6%. The main reason why they are less useful compared to β00 precipitates

has been found to be associated with their smaller lattice strains relative to the matrix, which is 0.99% versus

2.10% (for β00 ).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000514747200001 Publication Date 2019-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access OpenAccess  
  Notes (down) National Natural Science Foundation of China, 51531009 51711530713 51501230 ; Central South University, 2018gczd033 ; Flemish Science Foundation, VS.026.18N ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams, 2016ZT06G025 ; Guangdong Natural Science Foundation, 2017B030306014 ; Approved Most recent IF: 6.4; 2020 IF: 3.094  
  Call Number EMAT @ emat @c:irua:165290 Serial 5440  
Permanent link to this record
 

 
Author Han, F.W.; Xu, W.; Li, L.L.; Zhang, C.; Dong, H.M.; Peeters, F.M. url  doi
openurl 
  Title Electronic and transport properties of n-type monolayer black phosphorus at low temperatures Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 115436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of the electronic and transport properties of monolayer black phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic systems as advanced electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399140700012 Publication Date 2017-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes (down) National Natural Science Foundation of China, 11574319 11304316 11304317 11604380 ; Ministry of Science and Technology of the People's Republic of China, 2011YQ130018 ; Chinese Academy of Sciences; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:142431 Serial 4564  
Permanent link to this record
 

 
Author Grzelczak, M.; Sánchez-Iglesias, A.; Heidari Mezerji, H.; Bals, S.; Pérez-Juste, J.; Liz-Marzán, L.M. pdf  doi
openurl 
  Title Steric hindrance induces crosslike self-assembly of gold nanodumbbells Type A1 Journal article
  Year 2012 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 12 Issue 8 Pages 4380-4384  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the formation of colloidal molecules, directional interactions are crucial for controlling the spatial distribution of the building blocks. Anisotropic nanoparticles facilitate directional clustering via steric constraints imposed by each specific shape, thereby restricting assembly along certain directions. We show in this Letter that the combination of patchiness (attraction) and shape (steric hindrance) allows assembling gold nanodumbbell building blocks into crosslike dimers with well-controlled interparticle distance and relative orientation. Steric hindrance between interacting dumbbell-like particles opens up a new synthetic approach toward low-symmetry plasmonic clusters, which may significantly contribute to understand complex plasmonic phenomena.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000307211000081 Publication Date 2012-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 85 Open Access  
  Notes (down) Nanodirect 213948-2; 262348 Esmi Approved Most recent IF: 12.712; 2012 IF: 13.025  
  Call Number UA @ lucian @ c:irua:101900 Serial 3161  
Permanent link to this record
 

 
Author Bogaerts, A. pdf  url
doi  openurl
  Title Special Issue on “Dielectric Barrier Discharges and their Applications” in Commemoration of the 20th Anniversary of Dr. Ulrich Kogelschatz’s Work Type A1 Journal Article
  Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process  
  Volume 43 Issue 6 Pages 1281-1285  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract n/a  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110371000001 Publication Date 2023-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.6 Times cited Open Access Not_Open_Access  
  Notes (down) n/a Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:201387 Serial 8969  
Permanent link to this record
 

 
Author Lebedev, N.; Huang, Y.; Rana, A.; Jannis, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J. url  doi
openurl 
  Title Resistance minimum in LaAlO3/Eu1-xLaxTiO3/SrTiO3 heterostructures Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal  
  Volume 6 Issue 7 Pages 075003-75010  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we study LaAlO3/Eu1-xLaxTiO3/SrTiO3 structures with nominally x = 0, 0.1 and different thicknesses of the Eu1-xLaxTiO3 layer. We observe that both systems have many properties similar to previously studied LaAlO3/EuTiO3/SrTiO3 and other oxide interfaces, such as the formation of a two-dimensional electron liquid for two unit cells of Eu1-xLaxTiO3; a metal-insulator transition driven by the increase in thickness of the Eu1-xLaxTiO3 layer; the presence of an anomalous Hall effect when driving the systems above the Lifshitz point with a back-gate voltage; and a minimum in the temperature dependence of the sheet resistance below the Lifshitz point in the one-band regime, which becomes more pronounced with increasing negative gate voltage. However, and notwithstanding the likely presence of magnetism in the system, we do not attribute that minimum to the Kondo effect, but rather to the properties of the SrTiO3 crystal and the inevitable effects of charge trapping when using back gates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834035300001 Publication Date 2022-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes (down) N.L. and J.A. gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union’s horizon 2020 research and innovation programme under grant agreement №823717 – ESTEEM3. The QuAnt-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. The authors want to thank M. Stehno, G. Koster, and F.J.G. Roesthuis for useful discussions.; esteem3reported; esteem3TA Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:189674 Serial 7094  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue Pages 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes (down) N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 316 Issue 316 Pages 850-856  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398985200089 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 30 Open Access OpenAccess  
  Notes (down) N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481  
Permanent link to this record
 

 
Author Arisnabarreta, N.; Hao, Y.; Jin, E.; Salame, A.; Muellen, K.; Robert, M.; Lazzaroni, R.; Van Aert, S.; Mali, K.S.; De Feyter, S. url  doi
openurl 
  Title Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO₂ reduction Type A1 Journal article
  Year 2024 Publication Advanced energy materials Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The reduction of carbon dioxide (CO2) using porphyrin-containing 2D covalent organic frameworks (2D-COFs) catalysts is widely explored nowadays. While these framework materials are normally fabricated as powders followed by their uncontrolled surface heterogenization or directly grown as thin films (thickness >200 nm), very little is known about the performance of substrate-supported single-layered (approximate to 0.5 nm thickness) 2D-COFs films (s2D-COFs) due to its highly challenging synthesis and characterization protocols. In this work, a fast and straightforward fabrication method of porphyrin-containing s2D-COFs is demonstrated, which allows their extensive high-resolution visualization via scanning tunneling microscopy (STM) in liquid conditions with the support of STM simulations. The as-prepared single-layered film is then employed as a cathode for the electrochemical reduction of CO2. Fe porphyrin-containing s2D-COF@graphite used as a single-layered heterogeneous catalyst provided moderate-to-high carbon monoxide selectivity (82%) and partial CO current density (5.1 mA cm(-2)). This work establishes the value of using single-layered films as heterogene ous catalysts and demonstrates the possibility of achieving high performance in CO2 reduction even with extremely low catalyst loadings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001177577200001 Publication Date 2024-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 27.8 Times cited Open Access  
  Notes (down) N.A. acknowledges a postdoctoral fellowship from the Research Foundation- Flanders (FWO) via grant 12ZS623N. S.D.F. acknowledges support from FWO (G0A4120N, G0H2122N, G0A5U24N), KU Leuven Internal Funds (grants C14/18/06, C14/19/079, C14/23/090), European Union under the Horizon Europe grant 101046231 (FantastiCOF), and M-ERA.NET via FWO (G0K9822N). S.D.F., K.M., Y.H., R.L., and S.V.A. were thankful to the FWO and FNRS for the financial support through the EOS program (grant 30489208, 40007495). Research in Mons was also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif- CÉCI, and by the Walloon Region (ZENOBE and LUCIA Tier-1 supercomputers). E.J. appreciated the support from the Alexander von Humboldt Foundation, the Max Planck Society, the FLAG-ERA Grant OPERA by DFG 437130745, the National Natural Science Foundation of China (22288101), and the 111 Project (B17020). Partial financial support to M.R. from the Institut Universitaire de France (IUF) was warmly thanked. Approved Most recent IF: 27.8; 2024 IF: 16.721  
  Call Number UA @ admin @ c:irua:204856 Serial 9172  
Permanent link to this record
 

 
Author Ning, S.; Xu, W.; Ma, Y.; Loh, L.; Pennycook, T.J.; Zhou, W.; Zhang, F.; Bosman, M.; Pennycook, S.J.; He, Q.; Loh, N.D. pdf  url
doi  openurl
  Title Accurate and Robust Calibration of the Uniform Affine Transformation Between Scan-Camera Coordinates for Atom-Resolved In-Focus 4D-STEM Datasets Type A1 Journal article
  Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Accurate geometrical calibration between the scan coordinates and the camera coordinates is critical in four-dimensional scanning transmission electron microscopy (4D-STEM) for both quantitative imaging and ptychographic reconstructions. For atomic-resolved, in-focus 4D-STEM datasets, we propose a hybrid method incorporating two sub-routines, namely a J-matrix method and a Fourier method, which can calibrate the uniform affine transformation between the scan-camera coordinates using raw data, without a priori knowledge about the crystal structure of the specimen. The hybrid method is found robust against scan distortions and residual probe aberrations. It is also effective even when defects are present in the specimen, or the specimen becomes relatively thick. We will demonstrate that a successful geometrical calibration with the hybrid method will lead to a more reliable recovery of both the specimen and the electron probe in a ptychographic reconstruction. We will also show that, although the elimination of local scan position errors still requires an iterative approach, the rate of convergence can be improved, and the residual errors can be further reduced if the hybrid method can be firstly applied for initial calibration. The code is made available as a simple-to-use tool to correct affine transformations of the scan-camera coordinates in 4D-STEM experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000767045700001 Publication Date 2022-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited Open Access OpenAccess  
  Notes (down) N. D. Loh kindly acknowledges support from NUS Early Career Research Award (R-154-000-B35-133), MOE’s AcRF Tier 1 grant nr. R-284-000-172-114 and NRF CRP grant number NRF-CRP16-2015-05. Q. He would also like to acknowledge the support of the National Research Foundation (NRF) Singapore, under its NRF Fellowship (NRF-NRFF11-2019-0002). W. Zhou acknowledges the support from Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). F. Zhang acknowledges the support of the National Natural Science Foundation of China (11775105, 12074167). T. J. Pennycook acknowledges funding under the European Union’s Horizon 2020 research and innovation programme from the European Research Council (ERC) Grant agreement No. 802123-HDEM. Approved Most recent IF: 2.8  
  Call Number EMAT @ emat @c:irua:186958 Serial 6957  
Permanent link to this record
 

 
Author Claes, N.; Asapu, R.; Blommaerts, N.; Verbruggen, S.W.; Lenaerts, S.; Bals, S. pdf  url
doi  openurl
  Title Characterization of silver-polymer core–shell nanoparticles using electron microscopy Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 10 Pages 9186-9191  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Silver-polymer core–shell nanoparticles show interesting optical properties, making them widely applicable in the field of plasmonics. The uniformity, thickness and homogeneity of the polymer shell will affect the properties of the system which makes a thorough structural characterization of these core–shell silver-polymer nanoparticles of great importance. However, visualizing the shell and the particle simultaneously is far from straightforward due to the sensitivity of the polymer shell towards the electron beam. In this study, we use different 2D and 3D electron microscopy techniques to investigate different structural aspects of the polymer coating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437007700028 Publication Date 2018-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access OpenAccess  
  Notes (down) N. C. and S. B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the FWO through project funding (G038116N). R. A. and S. L. acknowledge the Research Foundation Flanders (FWO) for financial support. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:151290UA @ admin @ c:irua:151290 Serial 4959  
Permanent link to this record
 

 
Author Yusupov, M.; Yan, D.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic scale simulation of H2O2permeation through aquaporin: toward the understanding of plasma cancer treatment Type A1 Journal article
  Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 12 Pages 125401  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H 2 O 2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H 2 O 2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H 2 O 2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H 2 O 2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426378100001 Publication Date 2018-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 7 Open Access OpenAccess  
  Notes (down) MY gratefully acknowledges financial support from the Research Foundation—Flanders (FWO) via Grant No. 1200216N and a travel grant to George Washington University (GWU). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Super- computer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Work at GWU was supported by the National Science Foundation, grant 1465061. RMC thanks FAPESP and CNPq for finan- cial support (Grant Nos. 2012/50680-5 and 459270/2014-1, respectively). Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:149382 Serial 4811  
Permanent link to this record
 

 
Author Delville, R.; Schryvers, D. pdf  doi
openurl 
  Title Transmission electron microscopy study of combined precipitation of Ti2Ni(Pd) and Ti2Pd(Ni) in a Ti50Ni30Pd20 alloy Type A1 Journal article
  Year 2010 Publication Intermetallics Abbreviated Journal Intermetallics  
  Volume 18 Issue 12 Pages 2353-2360  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a new mode of precipitation in a B19 martensitic Ti50Ni30Pd20 shape memory alloy consisting of a central Ti2Ni(Pd) precipitate surrounded by an austenite area containing Ti2Pd(Ni) precipitates. The morphology and crystallography of the precipitation area is investigated using conventional and high resolution electron microscopy. In particular, the orientation relationship and the coherency strain between the Ti2Pd(Ni) precipitate and the surrounding retained B2 matrix are discussed. A study of local composition in relation with a ternary phase diagram using X-ray energy dispersive spectroscopy with a nanoprobe gives evidences of the formation mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos 000284447500014 Publication Date 2010-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.14 Times cited 9 Open Access  
  Notes (down) Multimat; Iap Approved Most recent IF: 3.14; 2010 IF: 2.335  
  Call Number UA @ lucian @ c:irua:84473 Serial 3714  
Permanent link to this record
 

 
Author Cao, S.; Tirry, W.; van den Broek, W.; Schryvers, D. pdf  doi
openurl 
  Title 3D reconstruction of Ni4Ti3 precipitates in a Ni51Ti49 alloy in a FIB/SEM dual-beam system Type A1 Journal article
  Year 2008 Publication Materials science forum Abbreviated Journal  
  Volume 583 Issue Pages 277-284  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Ni4Ti3 precipitates play an important role in the shape memory and superelastic behaviour of thermo-mechanically treated Ni-Ti material. The 3D morphology and distribution of such precipitates with lenticular shape and rhombohedral atomic structure in the austenitic B2 matrix of a binary Ni-rich Ni-Ti alloy has been elucidated via a slice view procedure in a Dual-Beam FIB/SEM system. With the sequence of cross-section SE images obtained from the SEM, a 3D reconstruction has been achieved after proper alignment and image processing, from which both qualitative and quantitative analysis can be performed. Careful imaging is needed to ensure that all variants of the precipitates are observed with equal probability, regardless sample orientation. Moreover, due to the weak contrast of the precipitates, proper imaging conditions need to be selected to allow for semi-automated image treatment. Finally, a volume ratio of 10.2% for the Ni4Ti3 precipitates could be calculated, summed over all variants, which yields a net composition of Ni50.36Ti49.64 for the matrix, leading to an increase of 113 degrees for the martensitic start temperature Ms. Also, the expected relative orientation of the different variants of the precipitates could be confirmed. In the near future, other quantitative measures on the distribution of the precipitates can be expected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos Publication Date 2009-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-9752; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (down) Multimat; Fwo Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:77454 Serial 16  
Permanent link to this record
 

 
Author Delville, R.; Kasinathan, S.; Zhang, Z.; van Humbeeck, J.; James, R.D.; Schryvers, D. pdf  doi
openurl 
  Title Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys Type A1 Journal article
  Year 2010 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 90 Issue 1/4 Pages 177-195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recent findings have linked low hysteresis in shape memory alloys with phase compatibility between austenite and martensite. To investigate the evolution of microstructure as phase compatibility increases and hysteresis is reduced, transmission electron microscopy was used to study the alloy system Ti50Ni50xPdx, where the composition is systemically tuned to approach perfect compatibility. Changes in morphology, twinning density and twinning modes are reported, along with special microstructures occurring when compatibility is achieved. In addition, the interface between austenite and a single variant of martensite was studied by high-resolution and conventional electron microscopy. The low energy configuration of the interface detailed in this article suggests that it plays an important role in the lowering of hysteresis compared to classical habit plane interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274576500013 Publication Date 2010-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 70 Open Access  
  Notes (down) Multimat; FWO Approved Most recent IF: 1.505; 2010 IF: 1.304  
  Call Number UA @ lucian @ c:irua:79859 Serial 3718  
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Schryvers, D. pdf  doi
openurl 
  Title Microstructure changes during non-conventional heat treatment of thin NiTi wires by pulsed electric current studied by transmission electron microscopy Type A1 Journal article
  Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 58 Issue 13 Pages 4503-4515  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy, electrical resistivity measurements and mechanical testing were employed to investigate the evolution of microstructure and functional superelastic properties of 0.1 mm diameter as-drawn NiTi wires subjected to a non-conventional heat treatment by controlled electric pulse currents. This method enables a better control of the recovery and recrystallization processes taking place during the heat treatment and accordingly a better control on the final microstructure. Using a stepwise approach of millisecond pulse annealing, it is shown how the microstructure evolves from a severely deformed state with no functional properties to an optimal nanograined microstructure (2050 nm) that is partially recovered through polygonization and partially recrystallized and that has the best functional properties. Such a microstructure is highly resistant against dislocation slip upon cycling, while microstructures annealed for longer times and showing mostly recrystallized grains were prone to dislocation slip, particularly as the grain size exceeds 200 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000279787100020 Publication Date 2010-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 110 Open Access  
  Notes (down) Multimat; FWO IAA Approved Most recent IF: 5.301; 2010 IF: 3.791  
  Call Number UA @ lucian @ c:irua:83279 Serial 2062  
Permanent link to this record
 

 
Author Cao, S.; Tirry, W.; van den Broek, W.; Schryvers, D. pdf  doi
openurl 
  Title Optimization of a FIB/SEM slice-and-view study of the 3D distribution of Ni4Ti3 precipitates in NiTi Type A1 Journal article
  Year 2009 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 233 Issue 1 Pages 61-68  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The 3D morphology and distribution of lenticular Ni4Ti3 precipitates in the austenitic B2 matrix of a binary Ni51Ti49 alloy has been investigated by a slice-and-view procedure in a dual-beam focused ion beam/scanning electron microscope system. Due to the weak contrast of the precipitates, proper imaging conditions need to be selected first to allow for semi-automated image treatment. Knowledgeable imaging is further needed to ensure that all variants of the precipitates are observed with equal probability, regardless of sample orientation. Finally, a volume ratio of 10.2% for the Ni4Ti3 precipitates could be calculated, summed over all variants, which yields a net composition of Ni50.27Ti49.73 for the matrix, leading to an increase of 125 degrees for the martensitic start temperature. Also, the expected relative orientation of the different variants of the precipitates could be confirmed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000262511900008 Publication Date 2009-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720;1365-2818; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 22 Open Access  
  Notes (down) Multimat Fwo; G0465.05 Approved Most recent IF: 1.692; 2009 IF: 1.612  
  Call Number UA @ lucian @ c:irua:76026 Serial 2486  
Permanent link to this record
 

 
Author Zhang, H.; Salje, E.K.H.; Schryvers, D.; Bartova, B. pdf  doi
openurl 
  Title The martensitic phase transition in Ni-Al: experimental observation of excess entropy and heterogeneous spontaneous strain Type A1 Journal article
  Year 2008 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 20 Issue 5 Pages 055220,1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000252923400023 Publication Date 2008-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 7 Open Access  
  Notes (down) Multimat (MRTN-CT-2004-505226) Approved Most recent IF: 2.649; 2008 IF: 1.900  
  Call Number UA @ lucian @ c:irua:67710 Serial 1948  
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D. pdf  doi
openurl 
  Title Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain Type A1 Journal article
  Year 2009 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 8 Issue 9 Pages 752-757  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract NiTi is one of the most popular shape-memory alloys, a phenomenon resulting from a martensitic transformation. Commercial NiTi-based alloys are often thermally treated to contain Ni4Ti3 precipitates. The presence of these precipitates can introduce an extra transformation step related to the so-called R-phase. It is believed that the strain field surrounding the precipitates, caused by the matrixprecipitate lattice mismatch, lies at the origin of this intermediate transformation step. Atomic-resolution transmission electron microscopy in combination with geometrical phase analysis is used to measure the elastic strain field surrounding these precipitates. By combining measurements from two different crystallographic directions, the three-dimensional strain matrix is determined from two-dimensional measurements. Comparison of the measured strain matrix to the eigenstrain of the R-phase shows that both are very similar and that the introduction of the R-phase might indeed compensate the elastic strain introduced by the precipitate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000269215500022 Publication Date 2009-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 53 Open Access  
  Notes (down) Multimat Approved Most recent IF: 39.737; 2009 IF: 29.504  
  Call Number UA @ lucian @ c:irua:77657 Serial 1822  
Permanent link to this record
 

 
Author Salje, E.K.H.; Zhang, H.; Idrissi, H.; Schryvers, D.; Carpenter, M.A.; Moya, X.; Planes, A. url  doi
openurl 
  Title Mechanical resonance of the austenite/martensite interface and the pinning of the martensitic microstructures by dislocations in Cu74.08Al23.13Be2.79 Type A1 Journal article
  Year 2009 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 80 Issue 13 Pages 134114,1-1134114,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A single crystal of Cu74.08Al23.13Be2.79 undergoes a martensitic phase transition at 246 and 232 K under heating and cooling, respectively. The phase fronts between the austenite and martensite regions of the sample are weakly mobile with a power-law resonance under external stress fields. Surprisingly, the martensite phase is elastically much harder than the austenite phase showing that interfaces between various crystallographic variants are strongly pinned and cannot be moved by external stress while the phase boundary between the austenite and martensite regions in the sample remains mobile. This unusual behavior was studied by dynamical mechanical analysis (DMA) and resonant ultrasound spectroscopy. The remnant strain, storage modulus, and internal friction were recorded simultaneously for different applied forces in DMA. With increasing forces, the remnant strain increases monotonously while the internal friction peak height shows a minimum at 300 mN. Transmission electron microscopy shows that the pinning is generated by dislocations which are inherited from the austenite phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000271351300033 Publication Date 2009-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes (down) Multimat Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:78542 Serial 1975  
Permanent link to this record
 

 
Author Malard, B.; Pilch, J.; Sittner, P.; Gartnerova, V.; Delville, R.; Schryvers, D.; Curfs, C. pdf  doi
openurl 
  Title Microstructure and functional property changes in thin Ni-Ti wires heat teated by electric current: high energy X-ray and TEM investigations Type A1 Journal article
  Year 2009 Publication Functional materials letters Abbreviated Journal Funct Mater Lett  
  Volume 2 Issue 2 Pages 45-54  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High energy synchrotron X-ray diffraction, transmission electron microscopy and mechanical testing were employed to investigate the evolution of microstructure, texture and functional superelastic properties of 0.1 mm thin as drawn NiTi wires subjected to a nonconventional heat treatment by controlled electric current (FTMT-EC method). As drawn NiTi wires were prestrained in tension and exposed to a sequence of short DC power pulses in the millisecond range. The annealing time in the FTMT-EC processing can be very short but the temperature and force could be very high compared to the conventional heat treatment of SMAs. It is shown that the heavily strained, partially amorphous microstructure of the as drawn NiTi wire transforms under the effect of the DC pulse and tensile stress into a wide range of annealed nanosized microstructures depending on the pulse time. The functional superelastic properties and microstructures of the FTMT-EC treated NiTi wire are comparable to those observed in straight annealed wires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000271077000001 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1793-6047;1793-7213; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.234 Times cited 21 Open Access  
  Notes (down) Multimat Approved Most recent IF: 1.234; 2009 IF: 2.561  
  Call Number UA @ lucian @ c:irua:77656 Serial 2052  
Permanent link to this record
 

 
Author Bartova, B.; Wiese, N.; Schryvers, D.; Chapman, J.N.; Ignacova, S. pdf  doi
openurl 
  Title Microstructure of precipitates and magnetic domain structure in an annealed Co38Ni33Al29 shape memory alloy Type A1 Journal article
  Year 2008 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 56 Issue 16 Pages 4470-4476  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microstructure of a Co38Ni33Al29 ferromagnetic shape memory alloy was determined by conventional transmission electron microscopy (TEM), electron diffraction studies together with advanced microscopy techniques and in situ Lorentz microscopy. Rod-like precipitates, 1060 nm long, of hexagonal close-packed -Co were confirmed to be present by high-resolution TEM. The orientation relationship between the precipitates and B2 matrix is described by the Burgers orientation relationship. The crystal structure of the martensite obtained after cooling is tetragonal L10 with a (111) twinning plane. The magnetic domain structure was determined during an in situ cooling experiment using the Fresnel mode of Lorentz microscopy. While transformation proceeds from B2 austenite to L10 martensite, new domains are nucleated, leading to a decrease in domain width, with the magnetization lying predominantly along a single direction. It was possible to completely describe the relationship between magnetic domains and crystallographic directions in the austenite phase though complications existed for the martensite phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000259931300033 Publication Date 2008-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 23 Open Access  
  Notes (down) Multimat Approved Most recent IF: 5.301; 2008 IF: 3.729  
  Call Number UA @ lucian @ c:irua:72321 Serial 2072  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: