|
Record |
Links |
|
Author |
Lebedev, N.; Huang, Y.; Rana, A.; Jannis, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J. |
|
|
Title |
Resistance minimum in LaAlO3/Eu1-xLaxTiO3/SrTiO3 heterostructures |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Physical review materials |
Abbreviated Journal |
|
|
|
Volume |
6 |
Issue |
7 |
Pages |
075003-75010 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
In this paper we study LaAlO3/Eu1-xLaxTiO3/SrTiO3 structures with nominally x = 0, 0.1 and different thicknesses of the Eu1-xLaxTiO3 layer. We observe that both systems have many properties similar to previously studied LaAlO3/EuTiO3/SrTiO3 and other oxide interfaces, such as the formation of a two-dimensional electron liquid for two unit cells of Eu1-xLaxTiO3; a metal-insulator transition driven by the increase in thickness of the Eu1-xLaxTiO3 layer; the presence of an anomalous Hall effect when driving the systems above the Lifshitz point with a back-gate voltage; and a minimum in the temperature dependence of the sheet resistance below the Lifshitz point in the one-band regime, which becomes more pronounced with increasing negative gate voltage. However, and notwithstanding the likely presence of magnetism in the system, we do not attribute that minimum to the Kondo effect, but rather to the properties of the SrTiO3 crystal and the inevitable effects of charge trapping when using back gates. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000834035300001 |
Publication Date |
2022-07-12 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2475-9953 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
3.4 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
N.L. and J.A. gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union’s horizon 2020 research and innovation programme under grant agreement №823717 – ESTEEM3. The QuAnt-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. The authors want to thank M. Stehno, G. Koster, and F.J.G. Roesthuis for useful discussions.; esteem3reported; esteem3TA |
Approved |
Most recent IF: 3.4 |
|
|
Call Number |
UA @ admin @ c:irua:189674 |
Serial |
7094 |
|
Permanent link to this record |