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Abstract: Accurate geometrical calibration between the scan coordinates and the camera coordinates is 

critical in four-dimensional scanning transmission electron microscopy (4D-STEM) for both quantitative 

imaging and ptychographic reconstructions. For atomic-resolved, in-focus 4D-STEM datasets, we propose 

a hybrid method incorporating two sub-routines, namely a J-matrix method and a Fourier method, which 

can calibrate the uniform affine transformation between the scan-camera coordinates using raw data, 

without a priori knowledge about the crystal structure of the specimen. The hybrid method is found robust 

against scan distortions and residual probe aberrations. It is also effective even when defects are present in 

the specimen, or the specimen becomes relatively thick. We will demonstrate that a successful geometrical 

calibration with the hybrid method will lead to a more reliable recovery of both the specimen and the 

electron probe in a ptychographic reconstruction. We will also show that, although the elimination of local 

scan position errors still requires an iterative approach, the rate of convergence can be improved, and the 

residual errors can be further reduced if the hybrid method can be firstly applied for initial calibration. The 

code is made available as a simple-to-use tool to correct affine transformations of the scan-camera 

coordinates in 4D-STEM experiments. 
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1. Introduction:  
Aberration-corrected scanning transmission electron microscopy (STEM) (Pennycook, 2017) has been 

indispensable for understanding structural and chemical information of materials at the atomic scale. Recent 

developments of pixelated single-electron detectors have enabled full diffraction patterns to be recorded at 

each scanning position with high fidelity and high speeds (Ballabriga et al., 2011; Plackett et al., 2013; 

Yang et al., 2015; Jiang et al., 2018; Tinti et al., 2018; Ciston et al., 2019; Ercius et al., 2020; ). Most 

recently dwell times have been pushed from the hundreds of microseconds to the 10s of microseconds 

(O’Leary et al., 2020; Nord et al., 2020) and even to the sub microsecond level (Jannis et al., 2021). This 

so-called four-dimensional STEM (4D-STEM)(Ophus, 2019; Ophus et al., 2014; Yang et al., 2015) 

technique has significantly extended STEM’s capability by allowing more information to be extracted from 

the specimen. For instance, 4D-STEM can reveal local electromagnetic fields and directly correlate the 

functionality of materials with their atomic structures(Gao et al., 2019). Another example is that the 

development of electron ptychography opens opportunities for obtaining high-spatial-resolution 

information within a larger field of view than previously possible(Chen et al., 2020). Furthermore, 4D-

STEM can be more dose-efficient than conventional STEM methods, and therefore can be used to study 

beam-sensitive targets (e.g., biological samples) (Pennycook et al., 2015; Yang et al., 2015; Yang et al., 

2016; Peltz et al., 2018; Pennycook et al., 2019; Zhou et al., 2020). Among various 4D-STEM techniques, 

atom-resolved in-focus 4D-STEM (Müller-Caspary et al., 2019; Nguyen et al., 2016; Heimes et al., 2020) 

has been particularly popular, since having a Z-contrast STEM signal simultaneously available usually 

helps to effectively extract information from the 4D-STEM dataset (Yang et al., 2016; Wen et al., 2019). 

Successful implementation of a 4D-STEM experiment requires establishing an accurate geometrical 

relationship (e.g., scaling, rotation, shearing) between the scanning positions on the sample plane and the 

diffraction patterns collected on the camera. Such calibration of the scan-camera coordinates is, however, 

not a trivial task since (i) 4D-STEM is more sensitive to the vortical nature of electron trajectories caused 

by the electromagnetic lenses compared to other STEM imaging modes that use detectors with circular 

symmetries; (ii) Most 4D-STEM experiments still need relatively long dwell time (e.g., > 100μs per pixel) 

making them highly susceptible to instrumental instabilities and environmental disturbances.  

 

We argue that existing calibration methods are not satisfactory to address these challenges. For instance, a 

pre-experimental calibration, even if it is done perfectly, cannot address the possible variations between 

different data acquisition sessions due to instrumental instabilities and environmental disturbances. Many 

post-experimental methods do exist, and they may be classified into two types. On the one hand, the Type 

I methods directly utilize the ADF-STEM signal or the computed electric field. For instance, imaging 

registration methods (e.g., Berkels et al.(Berkels & Liebscher, 2019; Berkels et al., 2014) and Jones et 
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al.(Jones & Nellist, 2013; Jones et al., 2017)) have recently been applied to 4D-STEM experiments 

(O’Leary et al., 2021; Jannis et al., 2021). One drawback of this method is the need for multiple ADF-

STEM frames from sequential 4D-STEM data, the acquisition of which is still practically challenging for 

most cameras. This method also did not consider the possible rotations between the scan-camera 

coordinates. Another popular method was developed based on electric fields by J. Hatchel et al. (Hachtel 

et al., 2018), which was also implemented in the py4DSTEM package by B. Savitzky et al. (Savitzky et al., 

2021). However, this method did not address possible shearing and scaling of the scanning positions (Jones, 

2014; Ning et al., 2018). On the other hand, the Type II methods involve processing the 4D-STEM dataset 

in Fourier space. For instance, the calibration can be achieved during the iterative ptychography 

reconstruction via the serial cross-correlation method (Zhang et al., 2013), annealing algorithm(Maiden et 

al., 2012), nonlinear optimization(Guizar-Sicairos & Fienup, 2008), evolutionary refinement(Shenfield & 

Rodenburg, 2011), or direct gradient of intensity patterns(Dwivedi et al., 2018). Xu et al. (Xu et al., 2020) 

recently proposed a method that is capable of reconstructing both the scan positions and objects without a 

priori knowledge of the initial scanning positions. Unfortunately, these methods may not work if the initial 

scan-position error is large. Their robustness against factors such as residual aberrations is also not well 

understood. 

 

To overcome the problems mentioned above and establish a more robust and reliable method that can 

hopefully be universally applied to atom-resolved in-focus 4D-STEM datasets, we hereby introduce a 

hybrid method combining Type I and Type II approaches. In this method, the atom-resolved in-focus 4D-

STEM data will be firstly processed via a so-called J-matrix method, which calibrates the uniform rotation 

using the local electric field information. This method is inspired by the method developed by J. Hachtel et 

al. (Hachtel et al., 2018), and it is so named as the Jacobian matrices of electric fields are used. Next, a so-

called Fourier method will be applied to fully calibrate the affine transformation between the scan-camera 

coordinates. We will show that this new post-experimental method can effectively calibrate the 4D-STEM 

dataset without a priori knowledge of the crystal structure of the specimen. The synergistic benefits of using 

the hybrid method will be discussed. For instance, the information obtained from the J-matrix method can 

help eliminate the Fourier method's ambiguity. Compared to existing methods, we will show that the hybrid 

method is more robust against initial calibration errors and residual probe aberrations, and it is still effective 

even when defects are present, or when the specimen becomes relatively thick. With experimental and 

simulated datasets, we will also show that a successful geometrical calibration will lead to a more reliable 

recovery of information of both the specimen and the electron probe. Although the refinement of local scan 

distortions still requires an iterative approach, their rate of convergence can be improved, and the residual 

errors can be reduced if this hybrid method can be firstly applied for initial calibration.  



5 
 

 

The paper is organized as follows: Firstly, the basic theory of the J-matrix method and the Fourier method 

will be introduced and their limitations, when used alone, will be discussed. The workflow of the hybrid 

method will then be discussed. The effectiveness of the hybrid method will be demonstrated using both 

simulated and experimental atom-resolved in-focus 4D datasets.  

 

2. Methods 
2.1 The J-matrix method. 

The scan-camera coordinates used in 4D-STEM data analysis are introduced in Figure 1(a). On the sample 

plane, the unit vectors for the fast-scanning direction (h) and the slow scanning direction (v) of the electron 

probe form the scan coordinates. Similarly, the camera coordinates, usually Cartesian, are defined on the 

camera plane in the far-field consisting of unit vectors in the horizontal (x) and vertical direction (y). The 

uniform scanning intervals (scaling, 𝛥𝛥) and the uniform rotations (𝜃𝜃) of scanning positions relative to the 

camera can also be defined. It has been previously shown that, under the weak-phase object approximation 

(WPOA), the local electric field can be approximated from the integrated Center of Mass (iCoM) of the 

diffraction patterns (Haas et al., 2020; Lazić et al., 2016; Müller et al., 2014). This approximation was 

previously tested for samples with thickness up to tens of nanometers(Gao et al., 2019; Addiego et al., 

2020). The J-matrix method is able to identify the uniform rotation using the computed electric field, which 

will be altered by the rotations and scaling between the scan-camera coordinates. We can define a Jacobian 

matrix (Jscan) for each scanning position as follows: 

 𝐽𝐽!"#$ = %%&!%' 	 %&"%'%&!%( %&"%( 	' = (𝐽𝐽) 𝐽𝐽*𝐽𝐽+ 𝐽𝐽,	)	EQ1 

where 𝐸𝐸- and 𝐸𝐸. are the horizontal (x) and vertical (y) components of the electric field obtained from the 

iCoM in the camera coordinate. For a given atom-resolved in-focus 4D-STEM dataset, the gradient terms 

in 𝐽𝐽!"#$ are numerically computed by using the electric field from adjacent scanning positions. After the 

coordinate transformation (Supporting Materials S1), the Jacobian matrix of the electric field in the 

camera coordinates 𝐽𝐽/01 can be expressed as: 

𝐽𝐽/01 = %%&!%- 	 %&"%-%&!%. %&"%. 	' = ∆ ,𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃	 −𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 	3 𝐽𝐽!"#$ EQ2 
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Figure 1. (a) The scan-camera coordinates involved in 4D-STEM experiments include the scan coordinates 

(h, v), and the camera coordinates (x, y). The (x, y) is chosen as the columns and rows of the pixelated 

camera in the far-field. The raster scan positions on the sample are marked with red dots and the fast-scan 

and slow-scan directions are labeled as h and v, respectively. The scan positions on the sample uniquely 

correspond to each convergent beam diffraction pattern of the 4D-STEM dataset I (h, v, x, y). The uniform 

scanning interval is defined as 𝛥𝛥. The uniform rotation angle of (h, v) with respect to (x, y) is defined as 𝜃𝜃. 

(b-e) The computed charge density from a simulated 4D-STEM dataset of a single-layered MoS2 with 

different uniform rotation angles (𝜃𝜃 equals to 0, π/4, π/2, and π). (f) The value of different target functions 

derived from 𝐽𝐽!"#$ as a function of the uniform rotation angle 𝜃𝜃. The scale bar in (b) represents 3.0 Å. The 

color bars in (b-e) represent the dimensionless values from the charge density calculation using the iCoM 

method. The accelerating voltage used in the simulation was 80kV and more details can be found in 

Supporting Materials S2. 

 

As shown in EQ2, when there is no rotation between the scan-camera coordinates and 𝜃𝜃 = 0, 𝐽𝐽/01 is just a 

scaled version of 𝐽𝐽!"#$ . Experimentally this will result in the computed charge densities reaching a 

maximum, as demonstrated in Mo/S sites in a simulated dataset shown in Figure 1(b). As the rotation angle 𝜃𝜃 increases from 0 to π (Figure 1(b-e)), this computed charge density around the nuclei decreases and 

eventually appears inverted. This allows us to identify the rotation angle 𝜃𝜃 by maximizing a certain target 

function about 𝐽𝐽/01 . In this J-matrix method, the difference between the spatial integration of squared 

diagonal and non-diagonal terms of 𝐽𝐽/01, as a function of 𝜃𝜃, can be used as the target function, and similar 

target functions were used in previous works by J. Hachtel et al. and B. Savitzky et al. (Hachtel et al., 2018; 

Savitzky et al., 2021). The gradient of the target function reaches zero when: 
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 𝑡𝑡𝑡𝑡𝑠𝑠2𝜃𝜃 = 2∑(𝐽𝐽*𝐽𝐽, − 𝐽𝐽)𝐽𝐽+) /∑(𝐽𝐽)* + 𝐽𝐽,* − 𝐽𝐽** − 𝐽𝐽+*) EQ3 

 

where 𝐽𝐽), 𝐽𝐽*, 𝐽𝐽+, 𝐽𝐽, are defined in EQ1. The detailed derivation of EQ3 can be found in the Supporting 

Materials S3. This target function is found to be very sensitive to the uniform rotation angle 𝜃𝜃, as shown 

in Figure 1(f). However, solving the 𝜃𝜃 analytically from EQ3 will result in four possible solutions in the 

range [0, 2π]. Two of the solutions can be excluded as the corresponding integration of squared diagonal 

terms of 𝐽𝐽/01 are negative. From the remaining two possible solutions of 𝜃𝜃 that are 180° apart, one unique 

solution can be obtained by introducing an ADF-weighted J-matrix 𝐽𝐽2:  

 𝐽𝐽2 = 𝑊𝑊𝐽𝐽/01 EQ4 

 

where 𝑊𝑊 represents the corresponding ADF intensity at each pixel in practice. Interestingly, if there is a 

chirality change between the scan coordinates (h, v) and the camera coordinates (x, y), it can be directly 

observed from the sign of diagonal terms of 𝐽𝐽2. The detection and compensation of such a chirality change 

is critical for ptychographic reconstructions as demonstrated in Supporting Materials S4. More details 

about the ADF-weighted J-matrix can be found in the Supporting Materials S5.  
 

Figure 2 and Table 1 show an application example of the J-matrix method using numerical simulations of 

a MoS2 monolayer sample where the ground truth of the uniform rotation angle is known. While the J-

matrix method is effective in roughly determining the uniform rotation angle correctly, it is also obvious 

that various factors, including residual aberrations, the scanning step size, the magnitude of any uniform 

rotation, and even the rotation angle error itself can significantly impact the calibration accuracy. The reason 

for these increased errors could be for instance attributed to the reduced continuity of the electric field and 

hence less meaningful use of the J-matrices. Additional discussions about the influence of other factors 

such as scanning step size, camera tilt, camera gain distribution, camera point spread function, and sample 

thickness can be found in Supporting Materials S6. Clearly, the J-matrix method, when used alone, is not 

an accurate solution for the geometric calibration of 4D-STEM datasets. 

 



8 
 

 
Figure 2. Simulated in-focus 4D-STEM datasets of monolayer MoS2 with different imaging parameters 

(see Table 1). ADF images obtained from the 4D-STEM dataset in (a-f) are chosen to represent these 

datasets. (a-b) The scanning step size is set to 0.17 Å along both horizontal and vertical directions, and this 

dataset is simulated with perfect conditions. One typical CBED pattern of the 4D-STEM dataset is shown 

in (a2), and the CBED patterns are rotated by 25° in (b2). (c) Probe-forming lens aberration is introduced 

by setting first- and second-order astigmatisms with zero azimuthal angles to 5nm and 40 nm, respectively. 

The coma is set to 30 nm and the azimuthal angle is set to zero. (d-e) The scanning step size is increased to 

0.34 Å. The other settings are kept the same as (a) and (b), respectively. In (f), the rotation angle of the 

slow scanning direction is set to be 22.5°, and the step sizes of the fast and slow scanning direction are set 

to 0.34 and 0.48 Å, respectively. The number of scanning positions is reduced from 256*256 to 64*64. 

Scale bars in (a1-f1) represent 3.0 Å. The accelerating voltage used in the simulation was 80kV and more 

details can be found in Supporting Materials S2 

 

Table 1. Key microscope parameters in the simulation of 4D-STEM in Figure 2. 

Datasets in Figure 2 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 

With aberration N N Y  N N N 

Scan step size (Å) 0.17 0.17 0.17 0.34 0.34 0.17 

True rotation angle 0° 25° 0° 0° 25° 22.5° 

Calibrated rotation angle θ using 

the J-matrix method 
0.02° 26.02° 0.72° 0.03° 30.41° 32.16° 

Calibration error 0.02° 1.02° 0.72° 0.03° 5.41° 9.66° 

 

2.2 The Fourier method. 
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Figure 3 demonstrates a Type II calibration method which we call the Fourier method. A 4D-STEM dataset 

I(h, v, x, y) is visualized in Figure 3(a), where each sample pixel corresponds to a diffraction pattern 

displayed in the camera coordinates (x, y), and the diffraction patterns are organized according to probe 

positions (h, v). A 2D Fourier transform with respect to probe scanning positions (h, v) was applied which 

converted I(h, v, x, y) into the so-called G-sets (Rodenburg & Maiden, 2019) — G(kh, kv, x, y), where (kh, 

kv) are the corresponding reciprocal vectors of the (h, v). Figure 3(b) visualizes the slices of the G(kh, kv, 

x, y) at specific scanning spatial frequencies tiled in the (kh, kv) coordinates. Under the weak phase object 

approximation (Pennycook et al., 2015), a slice in the G-sets (Figure 3(c)) can be approximated to contain 

a central disk and two first-order disks. The amount and the direction of these first-order disks displaced 

relative to the central disk reveal information of the scanning intervals and rotation angles and are functions 

of the scanning spatial frequencies (i.e., the index (i, j) in the (kh, kv) coordinates). Consequently, the 

geometric parameters needed for the calibration can be determined by investigating these slices at known 

scanning spatial frequencies.  

 

Assuming there is an affine transformation between the scan-camera coordinates, the fast (h) and slow (v) 

scanning directions then no longer share a uniform rotation angle and scanning interval (Figure 4(a) and 

(d)). We can define the scanning intervals along h and v as 𝛥𝛥 and 𝛾𝛾𝛥𝛥, and the rotation angles of these two 

directions as 𝜃𝜃- and 𝜃𝜃., respectively. According to the reciprocal relationship between (h, v) and (kh, kv) 

coordinates, the shift vector Q of the first-order disks in a G-sets slice like Figure 3(c) is given as: 

 𝑸𝑸 =	 (𝑠𝑠 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐	𝜃𝜃. 	− 𝑗𝑗 ∗ 𝛾𝛾𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃-	, 𝑠𝑠 ∗ 𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃. 	+ 𝑗𝑗 ∗ 𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐	𝜃𝜃-	)/∆3	𝑬𝑬𝑸𝑸𝑬𝑬 

 

where 𝑠𝑠 and 𝑗𝑗 are the indexes of a G-sets slice in Figure 3) relative to the central disk in the kh and kv 

directions, respectively. 1/∆3, which is related to ∆, is the reciprocal scanning interval along the kh direction. 

The intersection angle of Q with the x direction is labeled as a (Figure 3(c)). The detailed derivation of 

EQ5 can be found in the Supporting Materials S7. The shift vector Q can be directly measured from the 

slices in the G-sets slices. Then 𝜃𝜃- , 𝜃𝜃. , ∆′ and 𝛾𝛾 in EQ5 can in principle be determined by solving an 

equation group using Q values derived from at least two slices in the G-sets.  



10 
 

 
Figure 3. The illustration of the Fourier method for the calibration of the affine transformation between 

the scan-camera coordinates. (a) A visualization of a simulated 4D-STEM dataset I(h, v, x, y) of a single 

layer MoS2, with each pixel being a diffraction pattern in the camera coordinates (x, y), and the diffraction 

patterns are organized according to probe positions (h, v). (b) A visualization of the G-sets G(kh, kv, x, y) 

after the 4D-STEM dataset I(h, v, x, y) being Fourier transformed with respect to the probe positions (h, v). 

(c) A slice in the G-sets with the indexes of i = 7 and j = 4 with respect to the central disk on the (kh, kv) 

coordinates, which represent the spatial frequencies of the probe positions. The central disk and the first-

order disks have been outlined, and the shift vector Q and its angle 𝛼𝛼 are highlighted. (d-g) Additional 

slices of the G-sets at different positions on the (kh, kv) coordinates. The accelerating voltage used in the 

simulation was 80kV and more details can be found in Supporting Materials S2. 
 

Unlike the J-matrix method, the Fourier method can calibrate the affine transformation between the scan-

camera coordinates. Such a calibration only relies on locating the central and first-order disks in the G-sets. 

When the WPOA is applied, this can be performed by fitting the positions of the shifted disks. Consequently, 

the factors such as the lens aberrations and the scanning step size do not affect the calibration results 

significantly, unlike the case for the J-matrix method. The accuracy of the rotation angle and scanning 

interval is determined by the precision of positioning the first-order disks and the shift vector Q. Hence, 

high spatial frequency G-sets slices (i.e., larger indices of i and j) are usually preferred to achieve higher 

accuracy, since the first order disks in those slices are better separated and smaller relative measurement 

errors can be achieved. Notice that the Fourier method so far only utilizes the WPOA and does not require 
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the sample to be crystalline. Also, notice that the Fourier method here did not consider localized small 

deviations in scanning positions. In the Supporting Materials S8, the technical details of the Q fitting 

algorithms and detailed workflow of the Fourier method are provided.  

 

However, one main drawback of the Fourier method is that one cannot obtain an unique set of solutions for 

the rotation angles since if the set (𝜃𝜃-, 𝜃𝜃.) satisfies EQ5 under the constrain of positive 𝛾𝛾, so does the set 

of (𝜃𝜃- + 180°	, 𝜃𝜃. + 180°). Misaligning the Scan-Camera coordinates by 180 could result in mistakes 

correlating the 4D-STEM results with other data such as electric field mapping for instance. As we will 

show in the next section, the result obtained from the J-matrix method, although being less accurate, can 

help to eliminate this ambiguity, which is one of the major synergistic benefits of the hybrid method.  

 

2.3 The hybrid method 

A typical workflow of the hybrid method is schematically shown in Figure 4. First the dataset is processed 

using the J-matrix method so that the uniform rotation angle can be obtained and possible flips between the 

scan-camera coordinates can be detected. Then the Fourier method is applied to fully calibrate the affine 

transformation, where the information acquired from the J-matrix method earlier can help to identify the 

unique solutions during the calibration of affine transformations. In addition, the geometric parameters 

determined by the J-matrix method provide credible initial positions of the first order disks in the G-sets 

slices that will help to achieve a more accurate determination of the Q vectors needed in the Fourier method. 

 

In the following sections, we will use simulated and experimental datasets to demonstrate the effectiveness 

of this hybrid method, where better calibration leads to more reliable ptychography reconstruction and post-

experimental aberration correction. We will also show that the hybrid method works well for thin samples 

and for relatively thick samples up to a few tens of nanometers.  
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Figure 4. A comparison between the uniform rotation and the affine transformation of scanning positions. 

In the real space, the scanning positions are rotated relative to the camera with the same angle as shown in 

(a). In the reciprocal space, two first-order disks are shifted relative to the bright field disk in (b) and (c). 

The intersection angle between the horizontal direction and the shift direction in (b) is the rotation angle of 

the scanning positions. Similarly, the measured angle between the shift direction and the vertical direction 

is also 𝜃𝜃 in (c). Considering the affine transformation, the rotation angle of the fast and slow scanning 

directions are defined as 𝜃𝜃- , 𝜃𝜃.  in (d), respectively. In addition, the scanning step size along the slow 

scanning direction is changed to 𝛥𝛥/𝛾𝛾. (e, f) In reciprocal space, the intersection angle between the shift 

direction and the vertical and horizontal direction becomes 𝜃𝜃-	and 𝜃𝜃., respectively. Moreover, the scanning 

intervals also affect the displacement of the bright field disk as shown in (f). 
 

3. Application Examples and Discussions 
To demonstrate the effectiveness of the hybrid method, we firstly examine a simulated dataset for which 

the ground truth is known. The simulated dataset VI of the single-layer MoS2 previously shown in Figure 
2 and Table 1 was used for this purpose and the calibration results are shown in Figure 5. If the dataset is 

only calibrated with the J-matrix method, the uniform rotation angle is found to have relatively large errors, 

which is illustrated as obvious mismatches between the disks in the G-sets slices and the cyan outlines 

drawn using the calibrated geometric parameters (Figure 5(a-c)). This has caused apparent errors in the 

ptychographic reconstruction using the single-sideband (SSB) method (Pennycook et al., 2015) shown in 

Figure 5(d), where the MoS2 structure has not been accurately recovered. In sharp contrast, when the hybrid 

method was applied, the disk locations could be identified much more accurately, and the reconstruction 

recovered the single-layer MoS2 structure nicely (Figure 5(e-h)). Moreover, having an accurate geometric 

calibration is critical for post-experiment probe aberration correction. The error in the recovered phase of 

the probe compared to the ground truth (Figure 5(i), Table 2) gets increasingly more apparent when the 



13 
 

rotation angle error changes from 0°, 2.5°, and 5°, as shown in Figure 5(j - l), respectively. More details 

about the residual aberration correction using the Fourier method are given in Supporting Materials S9.  

 

 
Figure 5. Illustration of benefits of the hybrid method using the simulated dataset VI shown in Figure 2 

and Table 1. (a-c) Determined shifted disk positions (cyan curves) using the uniform rotation angle 

determined by the J-matrix method. (d) The reconstructed phase angle of monolayer MoS2 with the SSB 

method according to geometric parameters determined by the J-matrix method. (e-g). Determined shifted 

disk positions using the uniform rotation angles obtained using the hybrid method. (h) The reconstructed 

phase of monolayer MoS2 with the SSB method according to geometric parameters determined by the 

hybrid method, the affine transformation is applied to (h). (i) The phase shift in the aperture of the probe 

forming lens according to the aberration coefficient listed in Table 2. (j-l) The phase map determined using 

the SSB method in the aperture of the probe forming lens when the rotation angle error is 0°, 2.5°, and 5°, 

respectively. A good match between the (i) and (j) is observed, and the discrepancy becomes more obvious 

with the increasing rotation angle error in the cases of (k) and (l). Color bars represent the phase shift in 

radians. 
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Table 2. Aberration coefficient in the probe forming lens in Figure 5 (i). A1, A2 and B2 represent the 2-

fold astigmatism, 3-fold astigmatism and coma, respectively.  

Aberration type defocus A1 A2 B2 3rd Spherical aberration 

Value 1.0nm 3.0nm 10nm  20nm 0.2um 

Angle - 0 0 0 - 

 

The hybrid method was also tested using experimental data. Figure 6 (a) is an ADF image computed from 

an experimental in-focus 4D-STEM dataset of monolayer MoS2. The yellow and red arrows indicate the 

fast and slow scan directions, respectively. Using the J-matrix method alone, the uniform rotation angle 

was determined to be -0.25 rad (14.32°), and a flip of the fast-scanning direction is detected as indicated by 

the yellow and red arrows in Figure 6 (c). After applying the hybrid method, an affine transformation was 

found with 𝜃𝜃- , 𝜃𝜃. , 𝛾𝛾  values being 3.00 rad (172.89°), -0.26 rad (14.90°), and 1.17, respectively. The 

effectiveness of the hybrid method was evidenced by a more accurate determination of the first-order disk 

positions in a G-sets slice, compared to the one drawn using the rotation angle obtained from the J-matrix 

method (Figure 6 (b)). It can also be evidenced from the resulting ptychographic reconstruction. The MoS2 

lattice was distorted if only considering the uniform rotation using the J-matrix method (Figure 6 (c)), 
while the hexagonal ring of atoms was much better recovered after considering the affine transformation 

using the hybrid method (Figure 6 (d)). The structure of the MoS2 lattice is reliably recovered when using 

the geometric parameters determined by the hybrid method as the same highlighted MoS2 ring shown in 

Figures 6 (d). Notice that during the calibration and the reconstruction processes, no a priori information 

about the structure of the MoS2 was used. Supporting Materials S10 shows the iteratively reconstructed 

results via ePIE (Maiden & Rodenburg, 2009) using the same datasets as above. Comparing the power 

spectra (Figure S7), the symmetry of the MoS2 lattice was better recovered in the case where the data has 

been pre-calibrated using the hybrid method, compared to the counterpart pre-calibrated with the J-matrix 

method. Clearly, the iterative method cannot simply replace the calibration of the uniform affine 

transformation. More on the benefits of pre-calibrating the 4D-STEM dataset before applying iterative 

reconstruction will be discussed later. Supporting Materials S11 shows additional 4D-STEM datasets and 

their calibration results of the same sample obtained subsequently to the one shown in Figure 6. The 

calibration results are slightly different on each acquisition, which re-emphasize the importance of the post-

experimental calibration as the geometrical parameters are changing even if the data were taken using the 

same instrument consecutively. 



15 
 

 
Figure 6. (a) The ADF-STEM image corresponds to an experimental 4D-STEM dataset of monolayer MoS2 

acquired using a JEOL ARM200CF operating at 80 kV. (b) The difference between the first-order disk 

positions in a G-sets slice using geometrical parameters that were determined by the J-matrix method (cyan 

ring) and by the hybrid method (yellow ring). Reconstructed phase distribution from the area highlighted 

by the white rectangle in (a) using the SSB methods with the geometrical parameters determined by (c) the 

J-matrix method and (d) by the hybrid method. A change in the chirality was detected in both cases, as 

marked by the red arrows in (a), (c), and (d). The residual aberrations in the electron probe are fitted based 

on the determined disk positions and corrected in both (c) and (d). Scale bar in (a) represents 1 nm and 

color bar represents the phase shift in radians. 

 

Interestingly, the hybrid method was found to work well in the case of relatively thick specimens. A series 

of simulated data using AA stacked MoS2 with sample thickness ranging from 3 Å to 30 nm was 

summarized in Supporting Materials S12. As shown in Figure S9, for G-sets slices with lower spatial 

frequencies (i.e., smaller i, j indices), the outlines of the first-order disks in the G-sets become less 

recognizable as the sample thickness increases. However, for G-sets slices with higher spatial frequencies 



16 
 

(i.e., larger i, j indices), the outlines can still be visually identified even when the specimen becomes thicker, 

hence making the calibration with the hybrid method feasible. The calibration results of the simulated 

dataset using a 30 nm AA stacked MoS2 specimen is shown in Figure 7 as an example. The distortion of 

the scanning positions was introduced by rotating the slow scanning direction by -10° (anti-clockwise). The 

scanning step size along both fast and slow directions is 0.17 Å. The J-matrix method was used first and a 

uniform rotation angle of -5.3° was found. Despite the inaccuracy, the positions of the first-order disks for 

four G-sets slices at different spatial frequencies estimated using this uniform rotation angle are visually 

close to the true value, as shown by the cyan rings in Figure 7. (a-d). The positions of the first-order disks 

can be further refined by the algorithms given in the Supporting Materials S8. The result is shown as 

yellow dashes in Figure 7 (a-d). Using the Fourier method, the geometric parameters 𝜃𝜃-, 𝜃𝜃. and 𝛾𝛾 were 

determined to be 0.2°, -9.6° and 0.98 respectively, which are much closer to the ground truth value of 0°, -

10° and 1.0, compared to the previous case. The benefit of having a more accurate geometric calibration 

can be visualized by reconstructing the annular bright field image (ABF) from the 4D-STEM dataset. The 

hexagonal rings are clearly more distorted in the ABF image calibrated by the J-matrix method (Figure 
7(e)) than the one calibrated by the hybrid method (Figure 7(f)). 

 
Figure 7. The simulated 4D-STEM dataset of a relatively thick MoS2 sample with an affine transformation 

exists between the scanning coordinates and the camera coordinates. The rotation angles of the fast and 

slow scanning direction are 0° and -10°, respectively. (a-d). Slices of the Fourier-transformed 4D-STEM 

dataset at different probe frequencies. The indices of these frequencies are (23, 4), (23, 11), (0, 19), (6, 24), 

respectively. The cyan circles are the outline of the shifted disks determined using the J-matrix method, and 
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the yellow curves are located using the hybrid method. (e) The corresponding ABF-STEM image of the 

original 4D-STEM dataset, the J-matrix method is not able to correct the distortion in this image. (f). The 

affine-transformed ABF-STEM image using the geometric parameters determined using a hybrid method. 

Scale bars in (e) and (f) represent 3 Å. The accelerating voltage used in the simulation was 80kV and more 

details can be found in Supporting Materials S2. 
 

So far, we have shown that the hybrid method is highly effective in correcting the possible affine 

transformation between the scan-camera coordinates. However, experimental 4D-STEM data often also 

contains localized and non-uniform scan distortions and the correction of which still requires an iterative 

ptychographic method or multiple frame 4D-STEM (O’Leary et al., 2021; Jannis et al., 2021) where non-

rigid registration technologies can also be used. In this section, we find that a more credible initial probe 

position provided by the initial calibration via the hybrid method will benefit iterative methods (e.g., ePIE 

(Maiden & Rodenburg, 2009)) by accelerating its convergence and reducing the residual errors. A simulated 

4D-STEM dataset of monolayer MoS2 was used as an example, where an affine transformation and 

additional local scanning distortions were deliberately introduced. The slow scanning direction is rotated 

by 10° (clockwise). Local scanning distortions are modelled in this simulation by perturbing each scanning 

position with a random shift following the linear distribution ranging from 0 to 0.3 Å. The acceleration 

voltage, step size, and aperture size of the probe forming lens are set to 80kV, 0.17 Å and 24 mrad, 

respectively. The number of scanning position is 64*64, indicating a 1.1*1.1 nm2 scanned area. This 

simulated dataset was first calibrated using the J-matrix method, and a uniform rotation of 7.2° was found. 

As a comparison, the same dataset was also calibrated using the hybrid method, and 𝜃𝜃-, 𝜃𝜃. and 𝛾𝛾 were 

found to be 0.1°, 9.8°, and 1.01 respectively. Then the probe positions were iteratively refined to account 

for the localized distortions. As shown in Figure 8 (a) and (b), the reconstruction with a better initial probe 

position calibrated by the hybrid method reproduces the MoS2 lattice much better than the counterpart with 

the J-matrix method. The difference made by having more reliable initial probe positions for the iterative 

methods can be better visualized if the residual errors can be plotted as a function of the iterative numbers 

(Figure 8 (c) and (d)). The error is the difference between the simulated diffraction patterns and the one 

computed using the object and probe function in each iteration. Clearly, the case with initial probe positions 

calibrated with the hybrid method has led to a faster convergence and smaller residual errors.  
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Figure 8. (a, b) Reconstructed phase using the geometric parameters determined using the J-matrix and the 

hybrid methods from simulated 4D-STEM dataset, respectively. The ePIE method is adopted in the 

ptychography reconstruction, and the correction of probe positions is applied. (c-d) The convergence curve 

of the errors between the estimated diffraction intensities and the recorded CBED patterns versus the 

iteration numbers. The probe position was fixed in the first 500 iterations as shown in (c), and position 

correction is enabled in the following 500 iterations as shown in (d). The scale bar represents 3 Å and the 

color bar represents the phase shift in radians. The accelerating voltage used in the simulation was 80kV 

and more details can be found in Supporting Materials S2. 
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Moreover, the effect of lowering the electron dose on the hybrid method was investigated using simulated 

data (Supporting Materials S13) with 80kV electrons and 128 by 128 probe positions, where the doses 

were set to change from 6.6 × 104 e/Å (the dose usually adopted for experimental HAADF imaging) to 6.6 × 10, and then to 6.6 × 10+	e/Å. In other words, the averaged number of electrons per diffraction 

pattern in these cases will be about 20000, 2000, and 200, respectively. As shown in Figure S10, both the 

J-matrix and the hybrid method remain effective and calibrated rotation angles very close to the true value 

of 0° (<0.1° difference) in the cases of both 20000 and 2000 electrons per diffraction pattern. In the case of 

200 electrons per diffraction pattern, both methods remain effective, but the errors have gone up as the 

calibrated uniform rotation angles show clear deviations from 0° (i.e., the J-matrix method (0.840°) and the 

Fourier method (0.410°). As the dose decreases, the local electric field measurement will become noisier 

and less continuous, which in turn degrades the accuracy of the J-matrix method. On the other hand, for the 

Fourier method, lowering the electron dose will make it more difficult to correctly identify the outline of 

the disks in the G-set slices. Interestingly, as shown in Figure S11, if the total number of electrons was kept 

the same for the 4D-STEM datasets, but the dose (e/Å) decreases as the probe scanning intervals increases, 

the accuracy of the J-matrix method degrades again, but the accuracy for the Fourier method remains 

largely unchanged. This can be understood as the Fourier method assesses the data as a whole so the signal 

to noise in the G-sets is mostly concerned with the total number of electrons. This finding gives one practical 

strategy to maintain or increase the necessary calibration accuracy, which is to keep or increase the total 

number of electrons in the dataset when increasing electron dose (e/Å) is not an option. We will explore 

more on this in follow-up work. 

 

Last but not least, in order to further illustrate the point that the hybrid method does not rely on a priori 

knowledge of the crystallinity of the specimen, a simulated 4D-STEM dataset of amorphous carbon was 

tested (Supporting Materials 14). As shown in Figure S12, the J-matrix method is effective for 

determining the overall rotation angle using the target function discussed in Figure 1. The Fourier method 

also remains effective, since the disks in the G-set slices are clearly visible, hence the values of the Q 

vectors and angle aa defined in Figure 3 can be obtained. Hence we can safely say that the material is not 

the limiting factor for the hybrid method to be effective, as long as the weak phase object approximation 

holds. 

  

 

4. Conclusion: 
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To summarize, in this work, we have proposed a hybrid method to effectively calibrate possible affine 

transformations between the probe scanning positions and the 4D-STEM cameras. The hybrid method 

incorporates two complementary sub-routines, namely the J-matrix method and the Fourier method. The 

Fourier method is found to be more accurate and robust, while the J-matrix method helps to find a unique 

calibration solution within the Fourier method. Using simulated and experimental data, we have shown that 

the hybrid method works without a priori knowledge about the crystallinity of the specimen and remains 

effective when there are defects in the specimen or when the sample becomes relatively thick. Although 

our method only deals with the uniform or isotropic affine transformation of scanning positions relative to 

the camera, many localized and non-uniform scan distortions do exist in practice. We showed that a 

successful calibration of the uniform distortion will establish a more credible starting point and leads to a 

more reliable recovery of both the specimen and the electron probe in iterative reconstruction. The hybrid 

method was also found effective with noisy 4D-STEM data when the electron dose decreases, although the 

calibration accuracy can indeed be compromised if the data becomes too noisy. We show that one practical 

way of maintaining the necessary calibration accuracy is to keep or increase the total number of electrons 

in the dataset when increasing electron dose (e/Å) is not an option. A final remark is that although using 

the hybrid method will be more computationally demanding compared to using the J-matrix method alone, 

for a typical dataset such as the one shown in Figure 8, the code can be run on personal computers and 

usually finishes within a few minutes (see Supporting Materials 15). The benefits of using the hybrid 

method certainly outweigh the additional computational cost. The improved quality and reproducibility of 

4D-STEM data analysis with this method will hopefully accelerate the adoption of the 4D-STEM technique 

for materials research. 
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S1 Coordinate system transformation between the 𝐽𝐽!"#$ and the 𝐽𝐽%&' matrices 

 

Using the camera coordinates that is Cartesian as a reference, if the scanning coordination system 

has been uniformly rotated for an angle 𝜃𝜃, then 𝒉𝒉 = (cos 𝜃𝜃 , sin 𝜃𝜃) ∗ ∆			 	𝒗𝒗 = (− sin 𝜃𝜃 , cos 𝜃𝜃) ∗ ∆ 

where 𝒉𝒉 is the fast-scanning direction, and 𝒗𝒗 is the slow scanning direction, 𝛥𝛥 is the scan interval 

in the sample plane and the scan interval along the fast and slow scanning direction is assumed to 

be the same for a conventional raster scanning. In the reciprocal space, we have: 𝒌𝒌𝒉𝒉 = (cos 𝜃𝜃 , sin 𝜃𝜃)/∆				 𝒌𝒌𝒗𝒗 = (− sin 𝜃𝜃 , cos 𝜃𝜃)/∆				 
where 𝒌𝒌𝒉𝒉 and 𝒌𝒌𝒗𝒗 is the corresponding reciprocal vectors of 𝒉𝒉 and 𝒗𝒗, respectively. Using the chain 

rule, the gradient of a 𝐸𝐸* components of the electric field along the horizontal direction of the 

camera coordinates is formulated as: 𝜕𝜕𝐸𝐸*𝜕𝜕𝑥𝑥 = 𝜕𝜕𝐸𝐸*𝜕𝜕ℎ ∗ 𝜕𝜕ℎ𝜕𝜕𝑥𝑥 + 𝜕𝜕𝐸𝐸*𝜕𝜕𝑣𝑣 ∗ 𝜕𝜕𝑣𝑣𝜕𝜕𝑥𝑥 = ∆𝜕𝜕𝐸𝐸*𝜕𝜕ℎ ∗ cos 𝜃𝜃 − ∆𝜕𝜕𝐸𝐸*𝜕𝜕𝑣𝑣 ∗ sin 𝜃𝜃 𝜕𝜕𝐸𝐸*𝜕𝜕𝑦𝑦 = 𝜕𝜕𝐸𝐸*𝜕𝜕ℎ ∗ 𝜕𝜕ℎ𝜕𝜕𝑦𝑦 + 𝜕𝜕𝐸𝐸*𝜕𝜕𝑣𝑣 ∗ 𝜕𝜕𝑣𝑣𝜕𝜕𝑦𝑦 = ∆𝜕𝜕𝐸𝐸*𝜕𝜕ℎ ∗ sin 𝜃𝜃 + ∆𝜕𝜕𝐸𝐸*𝜕𝜕𝑣𝑣 ∗ cos 𝜃𝜃 

The 𝐸𝐸+ component of the electric field E along the vertical direction of the camera coordinate 

can be formulated in the same way.  𝜕𝜕𝐸𝐸+𝜕𝜕𝑥𝑥 = 𝜕𝜕𝐸𝐸+𝜕𝜕ℎ ∗ 𝜕𝜕ℎ𝜕𝜕𝑥𝑥 + 𝜕𝜕𝐸𝐸+𝜕𝜕𝑣𝑣 ∗ 𝜕𝜕𝑣𝑣𝜕𝜕𝑥𝑥 = ∆𝜕𝜕𝐸𝐸+𝜕𝜕ℎ ∗ cos 𝜃𝜃 − ∆𝜕𝜕𝐸𝐸+𝜕𝜕𝑣𝑣 ∗ sin 𝜃𝜃 𝜕𝜕𝐸𝐸+𝜕𝜕𝑦𝑦 = 𝜕𝜕𝐸𝐸+𝜕𝜕ℎ ∗ 𝜕𝜕ℎ𝜕𝜕𝑦𝑦 + 𝜕𝜕𝐸𝐸+𝜕𝜕𝑣𝑣 ∗ 𝜕𝜕𝑣𝑣𝜕𝜕𝑦𝑦 = ∆𝜕𝜕𝐸𝐸+𝜕𝜕ℎ ∗ sin 𝜃𝜃 + ∆𝜕𝜕𝐸𝐸+𝜕𝜕𝑣𝑣 ∗ cos 𝜃𝜃 

Rewrite above equations for both 𝐸𝐸* and 𝐸𝐸+ as a matrix multiplication:  

⎣⎢⎢
⎡𝜕𝜕𝐸𝐸*𝜕𝜕𝑥𝑥 𝜕𝜕𝐸𝐸+𝜕𝜕𝑥𝑥𝜕𝜕𝐸𝐸*𝜕𝜕𝑦𝑦 𝜕𝜕𝐸𝐸+𝜕𝜕𝑦𝑦 ⎦⎥⎥

⎤ = ∆ @cos 𝜃𝜃 − sin 𝜃𝜃sin 𝜃𝜃 cos 𝜃𝜃 A B𝜕𝜕𝐸𝐸*𝜕𝜕ℎ
𝜕𝜕𝐸𝐸+𝜕𝜕ℎ𝜕𝜕𝐸𝐸*𝜕𝜕𝑣𝑣 𝜕𝜕𝐸𝐸+𝜕𝜕𝑣𝑣 C 
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where 𝐸𝐸* and 𝐸𝐸+ are the electric field components determined from the diffraction patterns in the 

camera coordinates. D,-!,ℎ ,-",ℎ,-!,. ,-",. E can be numerically computed for each scanning position.  

S2 STEM image simulation parameters. 

 

The simulated datasets shown in Figures 1, 2, 3, S3, 5, and 8 are generated using the same sample 

and same machine parameters. The defocus is set to 0. The accelerating voltage is set to 80 kV, 

the probe forming lens aperture is set to 30mrad, and the size of the electron probe is set to 256*256 

pixels.  The maximum angle of the diffraction patterns is set to 120 mrad, indicating a 44.6Å sptial 

extend and a 0.17 Å sampling interval of the probe. In the simulated data used in Figure 8, the 

aperture is reduced to 24 mrad, and the pixel number and spatial extend of the probe is the same 

as Figure1 (b-e). The CUDAEM code developed by Dr. Ning is used for the simulations, the slice 

thickness is set to 0.5 Å, and the phonon configuration number is set to 80 to consider the thermal 

diffuse scattering. Figure2 III and Figure3 share the same simulation parameters except for 

probe-forming lens settings to consider residual lens aberrations. 

In the simulation of the 4D-STEM dataset of thick MoS2 sample shown in Figure 7 and Figure 
S9, the accelerating voltage, the probe forming lens aperture and the size of the electron probe are 

kept the same as monolayer MoS2. The slice thickness is set to 0.5 angstroms, and the number of 

phonon configurations is set to 40. As shown in Figure S1, compared to the position averaged 

CBED (PACBED) of the monolayer MoS2, the boundary of the bright field aperture of thick MoS2 

with 30nm thickness is interrupted due to the multiple scattering. 

 
Figure S1. The averaged CBED patterns of (a) monolayer MoS2 and (b) 30nm thick MoS2.  
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S3 The selection of target functions in the J-matrix method. 

 

The published method (Hachtel et al., 2018) identifies the uniform rotation angle by either 

maximizes the charge density or minimizes the curls of the electric field, which are mathematically 

equivalent. In the J-matrix method, the sum of the difference between the squared diagonal terms 

(charge density) and non-diagonal terms (curls) are combined as one target function in the 

determination of the uniform rotation angle 𝜃𝜃 in order to improve the signal to noise ratio in 

practice. The Jacobian matrix 𝐽𝐽%&' computed in the camera coordinates is given in EQ2 in the main 

text as: 𝐽𝐽%&' = ∆ @cos 𝜃𝜃 − sin 𝜃𝜃sin 𝜃𝜃 cos 𝜃𝜃 A 𝐽𝐽!"#$ = F𝐽𝐽/0 𝐽𝐽10𝐽𝐽20 𝐽𝐽30 G  
where	𝐽𝐽!"#$ = [𝐽𝐽/, 	𝐽𝐽1; 	𝐽𝐽2, 𝐽𝐽3] is numerically computed in the coordinate system of the scanning 

coordinate system for each scanning position. Assuming ∆	= 1  ( ∆  does not influence the 

determination of rotation angle), the sums of each squared diagonal at all scanning position is: L𝐽𝐽/01 =L(𝐽𝐽/ cos 𝜃𝜃 − 𝐽𝐽2 sin 𝜃𝜃)1 =L𝐽𝐽/1 cos1 𝜃𝜃 + 𝐽𝐽21 sin1 𝜃𝜃 − 2𝐽𝐽/𝐽𝐽2 cos 𝜃𝜃 sin 𝜃𝜃 

 L𝐽𝐽30 1 =L(𝐽𝐽1 sin 𝜃𝜃 + 𝐽𝐽3 cos 𝜃𝜃)1 =L𝐽𝐽31 cos1 𝜃𝜃 + 𝐽𝐽11 sin1 𝜃𝜃 + 2𝐽𝐽1𝐽𝐽3 cos 𝜃𝜃 sin 𝜃𝜃 

Then the sums of the squared diagonal at all scanning position is: L(𝐽𝐽/01 + 𝐽𝐽30 1) =L(𝐽𝐽/1 + 𝐽𝐽31) cos1 𝜃𝜃 + (𝐽𝐽11 + 𝐽𝐽21) sin1 𝜃𝜃 + 2(𝐽𝐽1𝐽𝐽3 − 𝐽𝐽/𝐽𝐽2) cos 𝜃𝜃 sin 𝜃𝜃 

Since 2 cos 𝜃𝜃 sin 𝜃𝜃 = sin 2𝜃𝜃 , cos1 𝜃𝜃 = (cos 2𝜃𝜃 + 1)/2 , sin1 𝜃𝜃 = (1 − cos 2𝜃𝜃)/2 , the above 

equation will be updated as: L(𝐽𝐽/01 + 𝐽𝐽30 1) =L(𝐽𝐽/1 + 𝐽𝐽31)(cos 2𝜃𝜃 + 1)/2 + (𝐽𝐽11 + 𝐽𝐽21)(1 − cos 2𝜃𝜃)/2 + (𝐽𝐽1𝐽𝐽3 − 𝐽𝐽/𝐽𝐽2) sin 2𝜃𝜃 

A simple form will be derived by separating the constant and variates: 	L(𝐽𝐽/01 + 𝐽𝐽30 1) = 	𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃∑(𝐽𝐽/1 + 𝐽𝐽31 − 𝐽𝐽11 − 𝐽𝐽21)2 + 𝑐𝑐𝑠𝑠𝑠𝑠	2𝜃𝜃L 	(𝐽𝐽1𝐽𝐽3 − 𝐽𝐽/𝐽𝐽2)+L(𝐽𝐽/1 + 𝐽𝐽11 + 𝐽𝐽21 + 𝐽𝐽31) /2 

Similarly, the integrated squared non-diagonal terms of 𝐽𝐽%&' at rotation angle θ at all scanning 

positions is: 
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L(𝐽𝐽10 1 + 𝐽𝐽20 1) = 	𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃L(𝐽𝐽11 + 𝐽𝐽21 − 𝐽𝐽/1 − 𝐽𝐽31)2 + 𝑐𝑐𝑠𝑠𝑠𝑠	2𝜃𝜃	L(𝐽𝐽/𝐽𝐽2 − 𝐽𝐽1𝐽𝐽3)+L(𝐽𝐽/1 + 𝐽𝐽11 + 𝐽𝐽21 + 𝐽𝐽31) /2 

Consequently, maximizing the squared diagonal terms or minimizing the squared non-diagonal 

terms are equivalent. Practically, in order to improve the signal to noise ratio, both the charge 

density and the curl are used in the J-matrix method as the target function 𝑇𝑇(𝜃𝜃) to determine the 

uniform rotation angle 𝜃𝜃: T(𝜃𝜃) = 	L(𝐽𝐽/01 + 𝐽𝐽30 1) −	LV𝐽𝐽10 1 + 𝐽𝐽20 1W= −	𝑐𝑐𝑐𝑐𝑐𝑐	2𝜃𝜃L(𝐽𝐽11 + 𝐽𝐽21 − 𝐽𝐽/1 − 𝐽𝐽31) + 2𝑐𝑐𝑠𝑠𝑠𝑠	2𝜃𝜃	L(𝐽𝐽1𝐽𝐽3 − 𝐽𝐽/𝐽𝐽2) 
When 𝜕𝜕𝑇𝑇(𝜃𝜃)/𝜕𝜕𝜃𝜃 equals zero, the uniform rotation angle 𝜃𝜃 is analytically given as EQ3 in the main 

text: 𝑡𝑡𝑡𝑡𝑠𝑠2𝜃𝜃 = 2L(𝐽𝐽1𝐽𝐽3 − 𝐽𝐽/𝐽𝐽2) /L(𝐽𝐽/1 + 𝐽𝐽31 − 𝐽𝐽11 − 𝐽𝐽21) 
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S4 Influence of chirality change on ptychography reconstruction. 

 

To show the influence of incorrect initialization of scanning positions, the simulated 4D STEM 

dataset of single-layered graphene is used. The whole dataset consists of 64*64*256*256 pixels, 

the defocus and aperture of the probe are set to 40nm and 30 mrad, respectively. The accelerating 

voltage is 60 kV, and the maximum angle in the diffraction pattern is set to 120 mrad, indicating 

a 0.2 Å sampling interval. There is no rotation between the CBED frames and scanning positions 

of the probe. The scanning interval along both directions is 0.65 angstroms, and this interval 

ensures the uniqueness of reconstructed results. The ePIE approach (Maiden & Rodenburg, 2009) 

is adopted in the reconstruction of the object and electron probe, and only the bright field signal 

of CBED patterns is used. The reconstructed object has almost no changes after 100 iterations; the 

phase angle of the reconstructed result is plotted in Figure S2 (a). As shown, the phase distribution 

of carbon atoms inside the scanned area matches the atomic structures of graphene. The outline of 

the atomic model is successfully retrieved, and an extension of this model is also observed due to 

the periodic boundary condition adopted in the multislice simulation. When a π-rotation is applied 

to the scanning positions, the reconstructed object phase distribution (Figure S2 (b)) shows 

inverted contrast compared to Figure S2 (a). The negative phase values at carbon atoms consist 

of the electric field in Figure 1 (e). In Figure S2(c), further ptychography reconstruction is 

conducted with flipped fast scanning direction and the determined object phase is shown. Different 

from the π-rotation case, there are almost no similarities between Figure S2(a) and Figure S2(c), 

the structure of graphene cannot be correlated with the reconstructed phase when the chirality of 

the scanning directions is changed. 
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Figure S2. Ptychography reconstruction 

phase results using different scanning 

directions based on a simulated graphene 4D 

STEM dataset. (a). Reconstructed phase 

angle when the diffraction patterns are 

flipped and the scanning vectors are 

determined directly on modified diffraction 

patterns. (b). Reconstructed phase angle 

when the scanning vectors along the row 

and column direction are rotated by 180° 

referring to their correct values. (c). 

Reconstructed phase angle when the flip is 

applied to diffraction patterns but the 

corresponding probe positions of these 

diffraction patterns are the same as the 

values used in the simulation. Color bars 

represent the phase shift in the unit of 

radian. The accelerating voltage used in the 

simulation was 60kV.  
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S5 About the Weighted J-Matrix. 

 

The weighted Jacobian matrix 𝐽𝐽4 of the electric field is used to ensure the solution uniqueness of 

the J-matrix method and check the existence of the flip, and the weight used in the generation of 𝐽𝐽4  is the signal having higher values at nuclei. Taking the simulated 4D-STEM dataset of 

monolayer MoS2 given in Figure 2(i) as an example. The ADF-STEM image of it is chosen as the 

weight matrix, and 𝐽𝐽4 is computed by multiplying the ADF intensity at each scanning position 

with the terms of J-matrix.  The integrated 𝐽𝐽4 at all scanning positions at rotation angles 0° and 

180° are listed in Table S1. At angle 0°, both two diagonal terms are positive, and they are right 

opposite to the 180° case. In comparison, the corresponding integrated squared J-matrix listed in 

Table S2 does not show any difference when the 180° rotation is applied.   𝐽𝐽4 terms J1 J2 J3 J4 

0° 2469.93 1.25 1.14 2504.16 

180° -2469.93 -1.25 -1.14 -2504.16 

Horizontal flip -2469.93 1.25 -1.14 2504.16 

Table S1. The integrated terms of weighted Jacobian matrix at different geometrical 

configurations. 𝐽𝐽 terms J1 J2 J3 J4 

0° 11547.11 4296.81 4296.81 11547.11 

180° 11547.11 4296.81 4296.81 11547.11 

Horizontal flip 11547.11 4296.81 4296.81 11547.11 

Table S2. The integrated terms of the squared Jacobian matrix at different geometrical 

configurations. 

Moreover, when the fast scanning direction h is flipped, the gradient of the electric field along this 

direction will become their negative values. As listed in Table S1, the two diagonal terms show 

different signs at rotation angles 0 and 180°, while the flip does not have any influences on the 

integrated terms of the squared J-matrix as shown in Table S2. Consequently, the weighted J-

matrix 𝐽𝐽4 must be computed to detect the flip and find the unique solution. 

 

The flip of the scanning directions does not influence the determination of uniform rotation angle 

computed using EQ3 since the square of gradient terms listed in Table S2 is used. Consequently, 
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we use EQ3 to determine the possible uniform rotation angles in practice. Then the integrated 

squared Jacobian matrix will be computed at these angles to exclude the two solutions. After that, 

the only solution and possible flip can be confirmed when integrated 𝐽𝐽4 is known. 

 

S6 Other factors influencing the accuracy of the J-matrix method. 

 

In addition to the sampling interval, lens aberrations, and scanning distortions, other factors such 

as camera tilt, camera gain distribution, point spread function (PSF), incoherency, and the sample 

thickness are also evaluated in this part. In Figure S3 (a) and (b), a 10° rotation is applied to the 

electron camera and the vertical direction is taken as the rotational axis. Compared to the result 

computed in Figure 3 (a) and (b), the tilt of the cameras do not influence the accuracy of the J-

matrix method. Moreover, the other properties of cameras such as PSF (Figure S3(g)) and gain 

distribution (Figure S3 (c) and (d)) also have negligible influence on the determined rotation angle. 

The incoherency of the electron microscope reduces the error by enhancing the spatial continuity 

of the electric field since the spatial resolution of the electron probe decreases. In addition, the 

temporal incoherence (Figure S3 (f)) has smaller influences on the accuracy compared to the 

spatial incoherent case (Figure S3 (e)) although the contrast of its CBED patterns has been more 

dramatically reduced. The surprising result appears when the sample thickness is considered as 

shown in Figure S3 (h) and (i). The increasing sample thickness reduces the error caused by the 

J-matrix method when a 25° rotation was applied to the CBED patterns. The dynamical scattering 

of the electrons in the thick specimen possibly eliminates the difference of properties of the 

computed electric field in both scanning directions.  

 

To further explore the factors causing the error at the case with a 25° rotation, we rotate the CBED 

patterns in the dataset shown in Figure 2. I and IV from 0° to 45° with a 5° interval. As shown in 

Table S3, for both datasets, the computed angle obviously increases as the rotation angle increases, 

and symmetrically drops off at 45°. For the dataset with a 0.34Å scan interval, the angular error is 

more dramatic compared to the 0.17Å case. Consequently, the angular error is caused by the 

interruption of continuity of the electric field, and this error is a function of both rotation angle and 

the scan interval. The error disappears at 45° since the errors along the horizontal and the vertical 

direction cancel each other. 
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Figure S3. The influence of extra factors on the accuracy of the J-matrix method. (a-b) The camera 

is rotated by 10° along the vertical direction to consider the camera tilt. In (b), CBED patterns are 

rotated by 25° to introduce the sampling artifacts and differences of the electric field along with 

the horizontal and vertical directions. (c-d). The gain distribution of the camera is considered by 

applying a gain distribution function linearly increasing along the horizontal direction. As shown 

by the CBED patterns, the intensity is lower on the left part since the gain on the left is 0.4 and 

grows to 0.6 on the right border of the aperture.  In (d), A 25° rotation is also applied. (e-f) The 

spatial and temporal incoherence is considered in the 4D-STEM simulation, the defocus spread is 

set to 4.88nm and the source size is set to 0.37 angstroms. In addition, the scanning step size is set 

to 0.34 angstroms for both cases.  (g) The point spread function of the camera is considered by the 

convolution of CBED patterns with a Gaussian kernel, and the sigma value of the Gaussian kernel 

is set to 1.0 pixel. The scanning step size is the same as (e) and (f). In (h) and (i), the thickness of 

the sample increases to 15 nm and 30 nm, respectively, and the scanning step size is set to 0.17 

angstroms. In addition, the CBED patterns are rotated by 25° to evaluate if the sample thickness 

can suppress the sampling artifacts and differences of the electric field in each scanning direction. 

The scale bars represent 3.0 Å. The accelerating voltage used in the simulation was 80kV and more 

details can be found in Supporting Materials S2. 
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Step 

size 

0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 

0.34Å 0.02° 2.42° 4.32° 5.47° 5.78° 5.41° 4.49° 3.20° 1.66° 0.01° 

0.17Å 0.01 0.41° 0.71° 0.94° 1.04° 1.02° 0.88° 0.65° 0.34° 0.01° 

Table S3. The influence of CBED rotation angles on the difference between the true rotation angle 

and computed rotation angle using the J-matrix method at 0.17 Å and 0.34Å scanning step size. 

As the rotation angle increases, the error increases and starts to drop off around 22.5°, and finally 

reduces to near zero at 45°. This phenomenon is due to the different properties of the electric field 

in different scanning directions and sampling artifacts.  

 

S7. First-order disk shift vector Q. 

 

Following the discussion in the section S1, the shift vector Q of the first order disks relative to the 

center disk in the G-slices with index (i, j) according to 𝒌𝒌𝒉𝒉 and 𝒌𝒌𝒗𝒗 is given as: 𝑸𝑸 = 𝑠𝑠𝒌𝒌𝒉𝒉 + 𝑗𝑗	𝒌𝒌𝒗𝒗 =	 (𝑠𝑠 ∗ cos 𝜃𝜃 − 𝑗𝑗 ∗ sin 𝜃𝜃 , 𝑠𝑠 ∗ sin 𝜃𝜃 + 𝑗𝑗 ∗ cos 𝜃𝜃)/∆ 

When the rotation angle and scanning interval are not uniform, we assume that there is an affine 

transformation between the scanning positions and the camera. Then the real space and reciprocal 

space vector of scanning directions are given as: 𝒉𝒉 = (cos 𝜃𝜃* , sin 𝜃𝜃*) ∗ ∆			 	𝒗𝒗 = (− sin 𝜃𝜃+ , cos 𝜃𝜃+) ∗ γ∆ 

In reciprocal space, the corresponding reciprocal space scanning frequency is: 𝒌𝒌𝒉𝒉 = (cos 𝜃𝜃+ , sin 𝜃𝜃+)/(∆′)			 𝒌𝒌𝒗𝒗 = (− sin 𝜃𝜃* , cos 𝜃𝜃*)γ/(∆′)			 ∆′= ∆(cos 𝜃𝜃+ cos 𝜃𝜃* + sin 𝜃𝜃* sin 𝜃𝜃+) 
where 𝜃𝜃*, 𝜃𝜃+ are the rotation angle of the fast and slow scanning direction, respectively. ∆0 equals ∆ only when 𝜃𝜃* = 𝜃𝜃+ due to the reciprocal relationship. The relationship between the Jacobian 

Matrix computed in scanning coordinate systems and camera coordinate systems is modified as:  
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⎣⎢⎢
⎡𝜕𝜕𝐸𝐸*𝜕𝜕𝑥𝑥 𝜕𝜕𝐸𝐸+𝜕𝜕𝑥𝑥𝜕𝜕𝐸𝐸*𝜕𝜕𝑦𝑦 𝜕𝜕𝐸𝐸+𝜕𝜕𝑦𝑦 ⎦⎥⎥

⎤ = ∆ Fcos 𝜃𝜃* −𝛾𝛾 sin 𝜃𝜃+sin 𝜃𝜃* 𝛾𝛾 cos 𝜃𝜃+ G B𝜕𝜕𝐸𝐸*𝜕𝜕ℎ
𝜕𝜕𝐸𝐸+𝜕𝜕ℎ𝜕𝜕𝐸𝐸*𝜕𝜕𝑣𝑣 𝜕𝜕𝐸𝐸+𝜕𝜕𝑣𝑣 C 

The shift vector Q of the first order disks relative to the center disk in the G-slices with index (i, j) 

is given as: 𝑸𝑸 = (𝑠𝑠 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐		𝜃𝜃+ 	− 𝑗𝑗 ∗ 𝛾𝛾𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃*	, 𝑠𝑠 ∗ 𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃+ 	+ 𝑗𝑗 ∗ 𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐	𝜃𝜃*	)/∆′ 

 

S8. The Algorithm of fitting first-order disks. 

 

S7.1 Disk fitting algorithm 

In the G-set slices of Fourier transformed 4D-STEM datasets, three disks including the direct disk 

and two first-order appear. The direct disk shares the same position with the aperture, and the other 

two first-order disks are relatively shifted referring to the direct disk with the opposite shift vectors 

Q and -Q. Here we proposed an algorithm to accurately determine the first order disk, or the shift 

vector Q by maximizing the similarity between the slice and the predicted slice using Q. For weak-

phase objects, the non-overlapped area of these disks shows zero intensities. When there are almost 

no aberrations in the probe forming lens, the triple overlapped areas show zero intensities. When 

the residual aberrations appear, the intensity distribution inside the triple overlapped area cannot 

be easily predicted.  

 

To estimate the intensity distribution after computing the shift vector of first-order disks using 

known geometric parameters, the bright field disk (Figure S4. (a)) is shifted with this vector and 

its inversion. The shifted frames (Figure S4. (b-c)) are summed and multiplied with the bright 

field disk to generate the intensity distribution of G-set slices as shown in Figure S4. (d). If there 

is no residual aberration, the triple overlapped region (the brightest part in Figure S4. (d)) can be 

set to zero. Now we can generate the ideal intensity distribution of G-set slices when Q is known 

as shown in Figure S4. 
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Figure S4. The generation of the intensity distribution in a G-set slice. (a) The zero-order disk, or 

the bright field disk. (b-c) The first-order disks determined using the provided disk shift vector, or 

the probe frequency vector computed using the geometric parameters and slice index. (d) 

Estimated intensity distribution in the G-set slice by summing (b) and (c), and masking with (a).  

Using the cross-correlation between the intensity distribution of actual and estimated G-set slices 

(Figure S5. (a-b)) as the objective function, the Q, or the geometric parameters can be estimated 

iteratively using various optimization methods. The initialization of Q can be done manually or 

using the geometric parameters determined using the J-matrix method. Practically, we can select 

the slices with high spatial frequencies to get rid of the triple overlapped region. For the cases 

when the triple overlapped region appears in the G-set slices and the intensity distribution in this 

region varies, the gradient error between the actual and estimated G-set slices (Figure S5. (c-d)) 

can be used as the to be minimized target when optimizing Q.  
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Figure S5. (a) Experimental G-set slice with index (i = 6, j=20). (b) Generated G-set slice using 

the refined geometric parameters. (c) Gradient of (a). (d) Gradient of (b). 

S7.2 Procedures of the Fourier method 

To get a better understanding of our Fourier method and its source code, the procedures of the 

Fourier method are given as follows. 

1. Generate the position averaged CBED patterns on the 4D-STEM dataset and locate 

the center of the position averaged CBED pattern.  
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2. Trim the diffraction patterns of 4D-STEM dataset. The aperture must be included in 

the trimmed dataset, and the center of the position averaged CBED corresponds to 

the center of each trimmed diffraction pattern. 

3. Apply Fourier transformation on the trimmed 4D-STEM dataset with respect to scan 

coordinates.  

4. Plot the total intensity distribution on different probe frequencies, and select three 

slices in the G-sets with large total intensity values.  

5. Determine the Q vectors in the selected slices using the disk fitting algorithm.  

6. Compute the geometric parameters such as 𝜃𝜃* , 𝜃𝜃+ , ∆′ and 𝛾𝛾 with the Q vectors of 

slices of the G-sets and their corresponding frequency index (i, j) by solving these 

equation groups:  

⎩⎨
⎧𝑠𝑠/ ∗ ∆′𝑐𝑐𝑐𝑐𝑐𝑐		𝜃𝜃+ 	− 𝑗𝑗/ ∗ 𝛾𝛾∆′𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃* = 𝑄𝑄*/𝑠𝑠1 ∗ ∆′𝑐𝑐𝑐𝑐𝑐𝑐		𝜃𝜃+ 	− 𝑗𝑗1 ∗ 𝛾𝛾∆′𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃* = 𝑄𝑄*1𝑠𝑠2 ∗ ∆′𝑐𝑐𝑐𝑐𝑐𝑐		𝜃𝜃+ 	− 𝑗𝑗2 ∗ 𝛾𝛾∆′𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃* = 𝑄𝑄*2 

⎩⎨
⎧𝑠𝑠/ ∗ ∆′𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃+ 	+ 𝑗𝑗/ ∗ 𝛾𝛾∆′𝑐𝑐𝑐𝑐𝑐𝑐	𝜃𝜃* 	= 𝑄𝑄+/𝑠𝑠1 ∗ ∆′𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃+ 	+ 𝑗𝑗1 ∗ 𝛾𝛾∆′𝑐𝑐𝑐𝑐𝑐𝑐	𝜃𝜃* 	= 𝑄𝑄+1𝑠𝑠2 ∗ ∆′𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃+ 	+ 𝑗𝑗2 ∗ 𝛾𝛾∆′𝑐𝑐𝑐𝑐𝑐𝑐	𝜃𝜃* 	= 𝑄𝑄+2 

Where 𝑄𝑄* and 𝑄𝑄+ are the horizontal and the vertical components of Q, respectively.  

The 𝑠𝑠/, 𝑠𝑠1, 𝑠𝑠2 are the horizontal index of three slices, and 𝑗𝑗/, 𝑗𝑗1, 𝑗𝑗2 are their vertical 

indexes. From these two equation groups, the ∆0𝑐𝑐𝑐𝑐𝑐𝑐		𝜃𝜃+ , ∆0𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃+  and 𝛾𝛾∆′𝑐𝑐𝑠𝑠𝑠𝑠	𝜃𝜃𝑥𝑥 , 𝛾𝛾∆′𝑐𝑐𝑐𝑐𝑐𝑐	𝜃𝜃𝑥𝑥 can be solved firstly. Then 	𝜃𝜃*, 𝜃𝜃+ are known. Then the ∆0 and 𝛾𝛾 can be 

determined by solving these six linear equations with the least square method. When 𝜃𝜃*, 𝜃𝜃+ and ∆0 are known, ∆ can be solved using the following relationship: ∆′= ∆(cos 𝜃𝜃+ cos 𝜃𝜃* + sin 𝜃𝜃* sin 𝜃𝜃+) 
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S9 The reconstructed object using different aberration correction results. 

  

 
Figure S6. Reconstructed object functions using SSB methods on the simulated dataset VI shown 

in Figure 2 and Table 1. (a-b) Phase and amplitude distribution of the reconstructed object 

function without aberration correction. (c-d) Reconstructed object function with the aberration 

coefficient determined with a 5° error. (e-f) Reconstructed object function with the aberration 

coefficient determined with a 2.5° error. (g-h) Reconstructed object function with the aberration 

coefficient determined without angular error. (i) The phase shift in the aperture of the probe 

forming lens according to the aberration coefficient listed in Table 2. (j-l) The determined phase 

shift using SSB method in the aperture of the probe forming lens when the rotation angle error is 

0°, 2.5°, and 5°, respectively. A good match between the (i) and (j) is observed, and the discrepancy 

becomes dramatic as the increase of the rotation angle error. Color bars of (i-l) represent phase 

shift in the unit of radian. 
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S10 ePIE reconstruction of an experimental dataset. 
 

 

Figure S7. The phase-angle distribution and power spectrum of retrieved object using iterative 

ePIE reconstruction, the experimental 4D-STEM dataset shown in Figure 6 is used. (a-b) The 

reconstructed object phase with the scanning positions initialized with the J-matrix method and 

hybrid method, respectively. (c-d) The corresponding power spectrums of computed objects with 

the J-matrix and hybrid calibration method, respectively. A more obvious lattice distortion in (a) 

compared to (b) due to uncorrected uniform scan distortions can be visualized with the help of a 
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dash hexagon reference overlaid on the power spectra. Color bars represent the phase shift in the 

unit of radian. 

In the ePIE reconstruction of the experimental dataset in Figure 6, the position correction is 

enabled for both cases after the 30th iteration. An obvious elongation of the lattice is still observed 

in Figure S7(a) and the uniform deformation of the scanning positions is not eliminated during 

position correction after 500 iterations. This experimental result well matches our simulations in 

Figure 8.  In comparison, the honeycomb-structured lattice of MoS2 is recovered in Figure S7 (b) 

when our hybrid method is adopted. More evidences are provided by the Bragg peaks corrected 

using a ortho-hexagon in the power spectrum of the reconstructed object (Figure S7 (d)). In 

comparison, the power spectrum of the object with J-matrix method does not only show a 

degradation of resolution, especially along the vertical directions, but the {1100} Bragg peaks 

deviate from the hexagonal rings plotted using dotted yellow lines in Figure S7 (c).  

 

S11 Experimental 4D-STEM dataset of MoS2. 
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Figure S8. (a-c) Corresponding ADF-STEM images of three 4D-STEM datasets captured within 

the same time slot without change of samples. The sample is monolayer MoS2, and the model of 

the electron microscope is JEOL ARM200CF operating at 80 kV. The (b) and (c) suffer from more 

obvious scanning distortions compared to the (a) as indicated by the elongation of MoS2 hexagons 

along the vertical direction. (d-f). Reconstructed phase angles of (a-c). In (d-f), the scanning 

distortion is considered during the determination of shifted disk positions, and further compensated 

by applying an affine transformation to the 2D phase distribution as shown by the obvious outlines. 

The affine transformation successfully compensates for the uniform scanning distortion as 

indicated by the regular hexagons. Both local scan distortions and local strains due to defects 

remain in the image. Color bars in (a-c) represent the number of electrons. Color bars in (d-f) 
represent the phase shift in the unit of radian. 
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S12 Simulated 4D-STEM datasets of thick specimens. 

 
Figure S9. Simulated slices at different probe frequencies of 4D-STEM datasets of AA stacked 

MoS2 samples with sample thickness ranges from 3Å to 30 nm. The indexes of the probe 

frequencies, increasing from left to right, are (7, 4), (14, 8), (21, 12), (28, 0) respectively. The 

outline of the double-overlapped regions is the most obvious in the G-set slices of MoS2 monolayer. 

As the sample thickness increase, the outlines of these regions are interrupted by the multiple 

scattering. The aperture in the averaged CBED patterns of the 30 nm MoS2 specimen shown in 

Figure S1 also has an interrupted outline. Compared to the G-set slices indexed (7, 4), (14, 8), (21, 

12), the double-overlapped regions marked by the white rectangles in (28, 0) G-set slice have clear 

outlines.   
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S13 Performance of the hybrid method at the cases of low electron doses. 

 

Figure S10. The low-dose performance of the J-matrix and the Fourier method involved in the 

hybrid method was evaluated using a similar on three simulated 4D-STEM datasets with  electron 

doses of 6.6 × 107 , 6.6 × 103 , 6.6 × 102  e/Å2. These datasets are generated based on the 

simulated dataset shown in Figure 2 (I) with128 × 128 scanning positions, assuming 0° rotation 

angles between the scan-camera coordinates. Only random Poisson noise has been considered in 

the generation of low-dose datasets. (a1-a3) Representative diffraction patterns are taken from 

these three 4D-STEM datasets, the number of electrons for these diffraction patterns are roughly 

20000, 2000, and 200, respectively. (b1- b3) The computed amplitude of the electric fields using 

these datasets, the contrast of the electric field degrades as the dose decreases. The determined 

uniform rotation angle using the J-matrix method are -0.023°, -0.013°, and 0.840°, respectively. 
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(c1-c3). The amplitude distribution of the G-set slice is indexed (0, 14) in different cases. (d1-d3). 

The phase distribution of the G-set slice indexed (0, 14) at different doses.  It becomes increasingly 

difficult to distinguish the outlines of the double-overlapped regions in G-set slices in both 

amplitude and phase pictures as the dose decreases. Using the phase images of the G-set slices, the 

rotation angle by fitting the diffracted disks are -0.077, 0.088, and 0.410, respectively. The 

accelerating voltage used in the simulation was 80kV and more details can be found in Supporting 
Materials S2. 

 

Figure S11. Additional discussion about the dose effect on the J-matrix method and the Fourier 

method. (a-d) The computed amplitude of the electric fields and the corresponding calibrated 

uniform rotation angles using the J-matrix method, which are -0.013°, -0.464°, 0.840° and 1.475°, 

respectively (e-h) The phase distribution of the G-set slice indexed (0, 28) and the corresponding 

calibrated uniform rotation angles using the Fourier method, which are -0.088°, -0.083°, -0.410° 

and -0.387°. (a) (e), (b) (f), (c) (g) and (d) (h) are obtained from the same simulated datasets. (b) 

and (d) are related to (a) and (c) in the way that the field of view was englarged by 4 times, but the 

total number of electrons in the dataset remain unchanged: (a,e) - 6.6 × 103  e/Å2;(b,f) - 1.65 × 103	 e/Å2 ; (c,g) - 6.6 × 102 e/Å2; (d,h) - 1.65 × 102 e/Å2 . (a) and (c) are the same data 

as in Figure S10 (b2) and (b3), respectively. The accuracy of the Fourier method remains largely 

unchanged as long as the total number of electrons in the dataset were kept the same. This is not 

the case for the J-matrix method. The accelerating voltage used in the simulation was 80kV, with 

128 by 128 probe positions and 0° angle between the scan-camera coordinates. More details can 

be found in Supporting Materials S2. 
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S14 Testing the hybrid method on simulated amorphous carbon. 

The hybrid method was tested using a simulated 4D-STEM dataset of the amorphous carbon, 

which not only is more complicated than crystalline MoS2, but also has small projected interatomic 

spacings within. As shown in Figure S12 below, we found that both the J-matrix method and the 

Fourier methods (two sub-routines for the hybrid method) behaves exactly the same as in the case 

of MoS2 sample: (i) the J-matrix method is still able to find the correct rotation angle using the 

target function discussed in Figure 1; (ii) the disks are clearly visible in the G-slices and the shift 

vector Q and the angle a defined in Figure 3 can be easily determined. Hence the hybrid method 

will be able to function properly in the case of the amorphous carbon specimen, which is 

structurally much more complicated than single layer MoS2 specimen. We can safely say that 

material is not the limiting factor as long as the weak phase object approximation holds.  

 

 
Figure S12. Testing the hybrid method using a simulated 4D-STEM data from the amorphous 

carbon. (a1 –a2). The top-view and the cross-section view of a thin amorphous carbon model. The 
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thickness of this amorphous carbon sample is set to 2nm, and the minimum distances between the 

carbon atom is set to 1.4 Å.  In the 4D-STEM simulation, the aperture of the probe-forming lens 

is set to 30 mrad, and the accelerating voltage is set to 80 kV. The scanning interval and defocus 

are 0.35 Å and 0 nm, respectively. The 4D-STEM dataset consists of 128*128 diffraction patterns, 

and each diffraction pattern have 256*256 pixels. The angular ranges of the diffraction pattern 

along horizontal and vertical directions are both 240 mrad. (b). The computed ADF-STEM image 

from the 4D-STEM dataset of the thin amorphous carbon model. (c). The computed modulus of 

the electric filed from the 4D-STEM dataset of the thin amorphous carbon model. (d). The 

integrated squared Jmatrix terms at different rotations angles. The computed relationship between 

the Jmatrix and the rotation angle is the same as the one give in Figure 1(f). (e–f). The intensity 

distribution of the G-set slice of different (i,j) coordinates. The disks are clearly visible so that the 

vector Q and the angle a defined in Figure 3 can be determined. 

 

S15 Estimation of computation time/requirement for a typical 4D-STEM dataset between the 

case of using the hybrid method and the case of using the J-matrix method alone. 

For a typical 4D-STEM dataset like the experimental dataset given in Figure 6 consisting of 

256*256 diffraction patterns with 256*256 pixels as an example, the time cost using the J-matrix 

code is around 44.5 seconds including the time cost of generating the STEM and electric field 

images for data visualization, the cost of the computer RAM is around 4.0GB since the 

experimental dataset is stored in 8 bit. When applying the Fourier method, the time and RAM cost 

dramatically increase to 122.3 seconds and 32GB since the Fourier transform of the 4D-STEM 

dataset is needed. 
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