|
Record |
Links |
|
Author |
Yusupov, M.; Yan, D.; Cordeiro, R.M.; Bogaerts, A. |
|
|
Title |
Atomic scale simulation of H2O2permeation through aquaporin: toward the understanding of plasma cancer treatment |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Journal of physics: D: applied physics |
Abbreviated Journal |
J Phys D Appl Phys |
|
|
Volume |
51 |
Issue |
12 |
Pages |
125401 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H 2 O 2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H 2 O 2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H 2 O 2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H 2 O 2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000426378100001 |
Publication Date |
2018-02-28 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-3727 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.588 |
Times cited |
7 |
Open Access |
OpenAccess |
|
|
Notes |
MY gratefully acknowledges financial support from the Research Foundation—Flanders (FWO) via Grant No. 1200216N and a travel grant to George Washington University (GWU). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Super- computer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Work at GWU was supported by the National Science Foundation, grant 1465061. RMC thanks FAPESP and CNPq for finan- cial support (Grant Nos. 2012/50680-5 and 459270/2014-1, respectively). |
Approved |
Most recent IF: 2.588 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:149382 |
Serial |
4811 |
|
Permanent link to this record |