|
Record |
Links |
|
Author |
Song, C.-H.; Attri, P.; Ku, S.-K.; Han, I.; Bogaerts, A.; Choi, E.H. |
|
|
Title |
Cocktail of reactive species generated by cold atmospheric plasma: oral administration induces non-small cell lung cancer cell death |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Journal Of Physics D-Applied Physics |
Abbreviated Journal |
J Phys D Appl Phys |
|
|
Volume |
54 |
Issue |
18 |
Pages |
185202 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with 85% of all lung cancer reported as NSCLC. Moreover, there are no effective treatments in advanced NSCLC. This study shows for the first time that oral administration of plasma-treated water (PTW) can cure advanced NSCLC. The cold plasma in water generates a cocktail of reactive species, and oral administration of this cocktail to mice showed no toxicities even at the highest dose of PTW, after a single dose and repeated doses for 28 d in mice. In vivo studies reveal that PTW showed favorable anticancer effects on chemo-resistant lung cancer, similarly to gefitinib treatment as a reference drug in a chemo-resistant NSCLC model. The anticancer activities of PTW seem to be involved in inhibiting proliferation and angiogenesis and enhancing apoptosis in the cancer cells. Interestingly, the PTW contributes to enhanced immune response and improved cachexia in the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000621503200001 |
Publication Date |
2021-05-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-3727 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.588 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
National Research Foundation (NRF) of Korea, NRF-2016K1A4A3914113 ; We gratefully acknowledge financial support from the Leading Foreign Research Institute Recruitment program (Grant # NRF-2016K1A4A3914113) through the Basic Science Research Program of the National Research Foundation (NRF) of Korea and in part by Kwangwoon University. |
Approved |
Most recent IF: 2.588 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:176649 |
Serial |
6747 |
|
Permanent link to this record |