toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Fischetti, M.V. url  doi
openurl 
  Title Inter-ribbon tunneling in graphene: An atomistic Bardeen approach Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 214306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases in current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000378923100022 Publication Date 2016-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes (up) ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:134652 Serial 4198  
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M. doi  openurl
  Title Atomic Collapse in Graphene Type P1 Proceeding
  Year 2016 Publication Nanomaterials For Security Abbreviated Journal  
  Volume Issue Pages 3-17  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract When the charge Z of an atom exceeds the critical value of 170, it will undergo a process called atomic collapse which triggers the spontaneous creation of electron-positron pairs. The high charge requirements have prevented the observation of this phenomenon with real atomic nuclei. However, thanks to the relativistic nature of the carriers in graphene, the same physics is accessible at a much lower scale. The atomic collapse analogue in graphene is realized using artificial nuclei which can be created via the deposition of impurities on the surface of graphene or using charged vacancies. These supercritically charged artificial nuclei trap electrons in a sequence of quasi-bound states which can be observed experimentally as resonances in the local density of states.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Dordrecht Editor  
  Language Wos 000386506200001 Publication Date 2016-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-94-017-7593-9; 978-94-017-7591-5 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes (up) ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:138237 Serial 4348  
Permanent link to this record
 

 
Author Khoeini, F.; Shakouri; Peeters, F.M. url  doi
openurl 
  Title Peculiar half-metallic state in zigzag nanoribbons of MoS2 : spin filtering Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 125412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Layered structures of molybdenum disulfide (MoS2) belong to a new class of two-dimensional (2D) semiconductor materials in which monolayers exhibit a direct band gap in their electronic spectrum. This band gap has recently been shown to vanish due to the presence of metallic edge modes when MoS2 monolayers are terminated by zigzag edges on both sides. Here, we demonstrate that a zigzag nanoribbon of MoS2, when exposed to an external exchange field in combination with a transverse electric field, has the potential to exhibit a peculiar half-metallic nature and thereby allows electrons of only one spin direction to move. The peculiarity of such spin-selective conductors originates from a spin switch near the gap-closing region, so the allowed spin orientation can be controlled by means of an external gate voltage. It is shown that the induced half-metallic phase is resistant to random fluctuations of the exchange field as well as the presence of edge vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383238800009 Publication Date 2016-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137130 Serial 4360  
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K. pdf  doi
openurl 
  Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type A1 Journal article
  Year 2016 Publication Topics in Current Chemistry Abbreviated Journal Topics Curr Chem  
  Volume 374 Issue 374 Pages 81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Springer international publishing ag Place of Publication Cham Editor  
  Language Wos 000391178900006 Publication Date 2016-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.033 Times cited 50 Open Access  
  Notes (up) ; ; Approved Most recent IF: 4.033  
  Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443  
Permanent link to this record
 

 
Author Neilson, D.; Perali, A.; Zarenia, M. url  doi
openurl 
  Title Many-body electron correlations in graphene Type P1 Proceeding
  Year 2016 Publication (mbt18) Abbreviated Journal  
  Volume 702 Issue 702 Pages 012008  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract The conduction electrons in graphene promise new opportunities to access the region of strong many-body electron-electron correlations. Extremely high quality, atomically flat two-dimensional electron sheets and quasi-one-dimensional electron nanoribbons with tuneable band gaps that can be switched on by gates, should exhibit new many-body phenomena that have long been predicted for the regions of phase space where the average Coulomb repulsions between electrons dominate over their Fermi energies. In electron nanoribbons a few nanometres wide etched in monolayers of graphene, the quantum size effects and the van Hove singularities in their density of states further act to enhance electron correlations. For graphene multilayers or nanoribbons in a double unit electron-hole geometry, it is possible for the many-body electron-hole correlations to be made strong enough to stabilise high-temperature electron- hole superfluidity.  
  Address  
  Corporate Author Thesis  
  Publisher Iop publishing ltd Place of Publication Bristol Editor  
  Language Wos 000389756000008 Publication Date 2016-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 702 Series Issue Edition  
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes (up) ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:140268 Serial 4455  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Neek-Amal, M.; Hussein, I.A.; Madjet, M.E.; Peeters, F.M. url  doi
openurl 
  Title Large CO2 uptake on a monolayer of CaO Type A1 Journal article
  Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 5 Issue 5 Pages 2110-2114  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Density functional theory calculations are used to study gas adsorption properties of a recently synthesized CaO monolayer, which is found to be thermodynamically stable in its buckled form. Due to its topology and strong interaction with the CO2 molecules, this material possesses a remarkably high CO2 uptake capacity (similar to 0.4 g CO2 per g adsorbent). The CaO + CO2 system shows excellent thermal stability (up to 1000 K). Moreover, the material is highly selective towards CO2 against other major greenhouse gases such as CH4 and N2O. These advantages make this material a very promising candidate for CO2 capture and storage applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000395074300035 Publication Date 2016-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 2 Open Access  
  Notes (up) ; ; Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:142034 Serial 4556  
Permanent link to this record
 

 
Author Heshmati-Moulai, A.; Simchi, H.; Esmaeilzadeh, M.; Peeters, F.M. url  doi
openurl 
  Title Phase transition and spin-resolved transport in MoS2 nanoribbons Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 235424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure and transport properties of monolayer MoS2 are studied using a tight-binding approach coupled with the nonequilibrium Green's function method. A zigzag nanoribbon of MoS2 is conducting due to the intersection of the edge states with the Fermi level that is located within the bulk gap. We show that applying a transverse electric field results in the disappearance of this intersection and turns the material into a semiconductor. By increasing the electric field the band gap undergoes a two stage linear increase after which it decreases and ultimately closes. It is shown that in the presence of a uniform exchange field, this electric field tuning of the gap can be exploited to open low energy domains where only one of the spin states contributes to the electronic conductance. This introduces possibilities in designing spin filters for spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000394546100005 Publication Date 2016-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:141978 Serial 4557  
Permanent link to this record
 

 
Author Çakir, D.; Otalvaro, D.M.; Brocks, G. url  doi
openurl 
  Title From spin-polarized interfaces to giant magnetoresistance in organic spin valves Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 11 Pages 115407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the spin-polarized electronic transport through a molecular bilayer spin valve from first principles, and establish the link between the magnetoresistance and the spin-dependent interactions at the metal-molecule interfaces. The magnetoresistance of a Fe vertical bar bilayer-C-70 vertical bar Fe spin valve attains a high value of 70% in the linearresponse regime, but it drops sharply as a function of the applied bias. The current polarization has a value of 80% in linear response and also decreases as a function of bias. Both these trends can be modeled in terms of prominent spin-dependent Fe vertical bar C-70 interface states close to the Fermi level, unfolding the potential of spinterface science to control and optimize spin currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000332504900007 Publication Date 2014-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128321 Serial 4596  
Permanent link to this record
 

 
Author Zografos, O.; Dutta, S.; Manfrini, M.; Vaysset, A.; Sorée, B.; Naeemi, A.; Raghavan, P.; Lauwereins, R.; Radu, I.P. pdf  doi
openurl 
  Title Non-volatile spin wave majority gate at the nanoscale Type A1 Journal article
  Year 2017 Publication AIP advances T2 – 61st Annual Conference on Magnetism and Magnetic Materials (MMM), OCT 31-NOV 04, 2016, New Orleans, LA Abbreviated Journal Aip Adv  
  Volume 7 Issue 5 Pages 056020  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract A spin wave majority fork-like structure with feature size of 40 nm, is presented and investigated, through micromagnetic simulations. The structure consists of three merging out-of-plane magnetization spin wave buses and four magneto-electric cells serving as three inputs and an output. The information of the logic signals is encoded in the phase of the transmitted spin waves and subsequently stored as direction of magnetization of the magneto-electric cells upon detection. The minimum dimensions of the structure that produce an operational majority gate are identified. For all input combinations, the detection scheme employed manages to capture the majority phase result of the spin wave interference and ignore all reflection effects induced by the geometry of the structure. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).  
  Address  
  Corporate Author Thesis  
  Publisher Amer inst physics Place of Publication Melville Editor  
  Language Wos 000402797100177 Publication Date 2017-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.568 Times cited 13 Open Access  
  Notes (up) ; ; Approved Most recent IF: 1.568  
  Call Number UA @ lucian @ c:irua:144288 Serial 4673  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Mortazavi, B.; Ahzi, S.; Peeters, F.M.; Khraisheh, M.K. url  doi
openurl 
  Title Effect of straining graphene on nanopore creation using Si cluster bombardment: A reactive atomistic investigation Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 120 Issue 120 Pages 225108  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene nanosheets have recently received a revival of interest as a new class of ultrathin, high-flux, and energy-efficient sieving membranes because of their unique two-dimensional and atomically thin structure, good flexibility, and outstanding mechanical properties. However, for practical applications of graphene for advanced water purification and desalination technologies, the creation of well controlled, high-density, and subnanometer diameter pores becomes a key factor. Here, we conduct reactive force-field molecular dynamics simulations to study the effect of external strain on nanopore creation in the suspended graphene by bombardment with Si clusters. Depending on the size and energy of the clusters, different kinds of topography were observed in the graphene sheet. In all the considered conditions, tensile strain results in the creation of nanopores with regular shape and smooth edges. On the contrary, compressive strain increases the elastic response of graphene to irradiation that leads to the formation of net-like defective structures with predominantly carbon atom chains. Our findings show the possibility of creating controlled nanopores in strained graphene by bombardment with Si clusters. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000391535900022 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes (up) ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:141451 Serial 4554  
Permanent link to this record
 

 
Author Longo, R.; Ferrarotti, M.; Garcia Sánchez, C.; Derudi, M.; Parente, A. pdf  doi
openurl 
  Title Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings Type A1 Journal article
  Year 2017 Publication Journal of wind engineering and industrial aerodynamics Abbreviated Journal J Wind Eng Ind Aerod  
  Volume 167 Issue Pages 160-182  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract When dealing with Atmospheric Boundary Layer (ABL) simulations, commercial computational fluid dynamics (CFD) acquires a strategic resonance. Thanks to its good compromise between accuracy of results and calculation time, RANS still represents a valid alternative to more resource-demanding methods. However, focusing on the models' performances in urban studies, LES generally outmatches RANS results, even if the former is at least one order of magnitude more expensive. Consequently, the present work aims to propose a variety of approaches meant to solve some of the major problems linked to RANS simulations and to further improve its accuracy in typical urban contexts. All of these models are capable of switching from an undisturbed flux formulation to a disturbed one through a local deviation or a marker function. For undisturbed flows, a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles. Around obstacles, Non-Linear Eddy-Viscosity closures are adopted, due to their prominent capability in capturing the anisotropy of turbulence. The purpose of this work is then to propose a new Building Influence Area concept and to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000405766600013 Publication Date 2017-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6105 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.049 Times cited 9 Open Access Not_Open_Access  
  Notes (up) ; ; Approved Most recent IF: 2.049  
  Call Number UA @ lucian @ c:irua:145191 Serial 4713  
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M. url  doi
openurl 
  Title Anisotropic hybrid excitation modes in monolayer and double-layer phosphorene on polar substrates Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 11 Pages 115402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the anisotropic hybrid surface optical (SO) phonon-plasmon dispersion relations in monolayer and double-layer phosphorene systems located on the polar substrates, such as SiO2, h-BN, and Al2O3. We calculate these hybrid modes by using the dynamical dielectric function in the random phase approximation in which the electron-electron interaction and long-range electric field generated by the substrate SO phonons via Frohlich interaction are taken into account. In the long-wavelength limit, we obtain some analytical expressions for the hybrid SO phonon-plasmon dispersion relations which agree with those obtained from the loss function. Our results indicate a strong anisotropy in SO phonon-plasmon modes, which are stronger along the light-mass direction in our heterostructures. Furthermore, we find that the type of substrate has a significant effect on the dispersion relations of the coupled modes. Importantly, the hybrid excitations are apparently sensitive to the misalignment and separation between layers in double-layer phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000408826200004 Publication Date 2017-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145665 Serial 4737  
Permanent link to this record
 

 
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B. url  doi
openurl 
  Title Double quantum dots defined in bilayer graphene Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 3 Pages 035434  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Artificial molecular states of double quantum dots defined in bilayer graphene are studied with the atomistic tight-binding method and its low-energy continuum approximation. We indicate that the extended electron wave functions have opposite parities on sublattices of the layers and that the ground-state wave-function components change from bonding to antibonding with the interdot distance. In the weak-coupling limit, the one most relevant for quantum dots defined electrostatically, the signatures of the interdot coupling include, for the two-electron ground state, formation of states with symmetric or antisymmetric spatial wave functions split by the exchange energy. In the high-energy part of the spectrum the states with both electrons in the same dot are found with the splitting of energy levels corresponding to simultaneous tunneling of the electron pair from one dot to the other.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000406284200005 Publication Date 2017-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145758 Serial 4739  
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-Fard, T.; Farmanbar, M.; Peeters, F.M. url  doi
openurl 
  Title Strong anisotropic optical conductivity in two-dimensional puckered structures : the role of the Rashba effect Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 7 Pages 075411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000407097100005 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145725 Serial 4752  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Dietz, W.; Verwerft, M. pdf  url
doi  openurl
  Title Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes Type A1 Journal article
  Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 493 Issue Pages 154-167  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This paper presents a large database of thermal creep data from pressurized unirradiated DIN 1.4970 Ti-stabilized austenitic stainless steel (i.e. EN 1515CrNiMoTiB or “15-15Ti”) cladding tubes from more than 1000 bi-axial creep tests conducted during the fast reactor R&D program of the DeBeNe (Deutschland-Belgium- Netherlands) consortium between the 1960's to the late 1980's. The data comprises creep rate and time-to-rupture between 600 and 750 degrees C and a large range of stresses. The data spans tests on material from around 70 different heats and 30 different melts. Around one fourth of the data was obtained from cold worked material, the rest was obtained on cold worked + aged (800 degrees C, 2 h) material. The data are graphically presented in log-log graphs. The creep rate data is fit with a sinh correlation, the time to rupture data is fit with a modified exponential function through the Larson-Miller parameter. Local equivalent parameters to Norton's law are calculated and compared to literature values for these types of steels and related to possible creep mechanisms. Some time to rupture data above 950 degrees C is compared to literature dynamic recrystallization data. Time to rupture data between 600 and 750 degrees C is also compared to literature data from 316 steel. Time to rupture was correlated directly to creep rate with the Monkman-Grant relationship at different temperatures. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000408044000018 Publication Date 2017-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 5 Open Access OpenAccess  
  Notes (up) ; ; Approved Most recent IF: 2.048  
  Call Number UA @ lucian @ c:irua:145686 Serial 4753  
Permanent link to this record
 

 
Author Rezaei, M.; Sisakht, E.T.; Fazileh, F.; Aslani, Z.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model investigation of the biaxial strain induced topological phase transition in GeCH3 Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 8 Pages 085441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a tight-binding (TB) model, that includes spin-orbit coupling (SOC), to describe the electronic properties of methyl-substituted germanane (GeCH3). This model gives an electronic spectrum in agreement with first principle results close to the Fermi level. Using the Z(2) formalism, we show that a topological phase transition from a normal insulator (NI) to a quantum spin Hall (QSH) phase occurs at 11.6% biaxial tensile strain. The sensitivity of the electronic properties of this system on strain, in particular its transition to the topological insulating phase, makes it very attractive for applications in strain sensors and other microelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000408570800004 Publication Date 2017-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145697 Serial 4755  
Permanent link to this record
 

 
Author Van de Put, M.L.; Sorée, B.; Magnus, W. pdf  doi
openurl 
  Title Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field Type A1 Journal article
  Year 2017 Publication Journal of computational physics Abbreviated Journal J Comput Phys  
  Volume 350 Issue Pages 314-325  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time evolution of a one-dimensional resonant tunneling diode driven out of equilibrium. (C) 2017 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000413379000016 Publication Date 2017-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.744 Times cited 5 Open Access  
  Notes (up) ; ; Approved Most recent IF: 2.744  
  Call Number UA @ lucian @ c:irua:146630 Serial 4780  
Permanent link to this record
 

 
Author Zografos, O.; Manfrini, M.; Vaysset, A.; Sorée, B.; Ciubotaru, F.; Adelmann, C.; Lauwereins, R.; Raghavan, P.; Radu, I.P. url  doi
openurl 
  Title Exchange-driven magnetic logic Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 12154  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Direct exchange interaction allows spins to be magnetically ordered. Additionally, it can be an efficient manipulation pathway for low-powered spintronic logic devices. We present a novel logic scheme driven by exchange between two distinct regions in a composite magnetic layer containing a bistable canted magnetization configuration. By applying a magnetic field pulse to the input region, the magnetization state is propagated to the output via spin-to-spin interaction in which the output state is given by the magnetization orientation of the output region. The dependence of this scheme with input field conditions is extensively studied through a wide range of micromagnetic simulations. These results allow different logic operating modes to be extracted from the simulation results, and majority logic is successfully demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000411434900020 Publication Date 2017-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 7 Open Access  
  Notes (up) ; ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:146742 Serial 4784  
Permanent link to this record
 

 
Author Pourtois, G.; Dabral, A.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Houssa, M.; Collaert, N.; Horiguchi, N. pdf  doi
openurl 
  Title Probing the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type P1 Proceeding
  Year 2017 Publication Semiconductors, Dielectrics, And Metals For Nanoelectronics 15: In Memory Of Samares Kar Abbreviated Journal  
  Volume Issue Pages 303-311  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first-principles calculations with Non-Equilibrium Green functions transport simulations. The intrinsic contact resistivity is found to saturate at similar to 2x10(-10) Omega.cm(2) with the doping concentration and sets an intrinsic limit to the ultimate contact resistance achievable for n-doped Si vertical bar amorphous-TiSi. This limit arises from the intrinsic properties of the semiconductor and of the metal such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting metals with a heavy electron effective mass helps reducing the interface intrinsic contact resistivity.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical soc inc Place of Publication Pennington Editor  
  Language Wos 000426271800028 Publication Date 2017-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 80 Series Issue 1 Edition  
  ISSN 978-1-62332-470-4; 978-1-60768-818-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access Not_Open_Access  
  Notes (up) ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149966 Serial 4976  
Permanent link to this record
 

 
Author Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F.M. pdf  url
doi  openurl
  Title Phase transition and field effect topological quantum transistor made of monolayer MoS2 Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 23 Pages 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q(2)) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q(2) diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q(2) diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000432821600001 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes (up) ; ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:151457UA @ admin @ c:irua:151457 Serial 5035  
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Saleh, M.; Farmanbar, M.; Salavati-fard, T. pdf  url
doi  openurl
  Title Plasmon modes in monolayer and double-layer black phosphorus under applied uniaxial strain Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 123 Issue 17 Pages 174301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the effects of an applied in-plane uniaxial strain on the plasmon dispersions of monolayer, bilayer, and double-layer black phosphorus structures in the long-wavelength limit within the linear elasticity theory. In the low-energy limit, these effects can be modeled through the change in the curvature of the anisotropic energy band along the armchair and zigzag directions. We derive analytical relations of the plasmon modes under uniaxial strain and show that the direction of the applied strain is important. Moreover, we observe that along the armchair direction, the changes of the plasmon dispersion with strain are different and larger than those along the zigzag direction. Using the analytical relations of two-layer phosphorene systems, we found that the strain-dependent orientation factor of layers could be considered as a means to control the variations of the plasmon energy. Furthermore, our study shows that the plasmonic collective modes are more affected when the strain is applied equally to the layers compared to the case in which the strain is applied asymmetrically to the layers. We also calculate the effect of strain on the drag resistivity in a double-layer black phosphorus structure and obtain that the changes in the plasmonic excitations, due to an applied strain, are mainly responsible for the predicted results. This study can be readily extended to other anisotropic two-dimensional materials. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000431651600014 Publication Date 2018-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access  
  Notes (up) ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:151522UA @ admin @ c:irua:151522 Serial 5037  
Permanent link to this record
 

 
Author Beckers, A.; Thewissen, M.; Sorée, B. pdf  doi
openurl 
  Title Energy filtering in silicon nanowires and nanosheets using a geometric superlattice and its use for steep-slope transistors Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 124 Issue 14 Pages 144304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This paper investigates energy filtering in silicon nanowires and nanosheets by resonant electron tunneling through a geometric superlattice. A geometric superlattice is any kind of periodic geometric feature along the transport direction of the nanowire or nanosheet. Multivalley quantum-transport simulations are used to demonstrate the manifestation of minibands and minibandgaps in the transmission spectra of such a superlattice. We find that the presence of different valleys in the conduction band of silicon favors a nanowire with a rectangular cross section for effective energy filtering. The obtained energy filter can consequently be used in the source extension of a field-effect transistor to prevent high-energy electrons from contributing to the leakage current. Self-consistent Schrodinger-Poisson simulations in the ballistic limit show minimum subthreshold swings of 6 mV/decade for geometric superlattices with indentations. The obtained theoretical performance metrics for the simulated devices are compared with conventional III-V superlatticeFETs and TunnelFETs. The adaptation of the quantum transmitting boundary method to the finite-element simulation of 3-D structures with anisotropic effective mass is presented in Appendixes A and B. Our results bare relevance in the search for steep-slope transistor alternatives which are compatible with the silicon industry and can overcome the power-consumption bottleneck inherent to standard CMOS technologies. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000447148100011 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes (up) ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:154729UA @ admin @ c:irua:154729 Serial 5099  
Permanent link to this record
 

 
Author Choudhary, K.; Bercx, M.; Jiang, J.; Pachter, R.; Lamoen, D.; Tavazza, F. pdf  url
doi  openurl
  Title Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 15 Pages 5900-5908  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solar energy plays an important role in solving serious environmental

problems and meeting the high energy demand. However, the lack of suitable

materials hinders further progress of this technology. Here, we present the largest

inorganic solar cell material search till date using density functional theory (DFT) and

machine-learning approaches. We calculated the spectroscopic limited maximum

efficiency (SLME) using the Tran−Blaha-modified Becke−Johnson potential for 5097

nonmetallic materials and identified 1997 candidates with an SLME higher than 10%,

including 934 candidates with a suitable convex-hull stability and an effective carrier

mass. Screening for two-dimensional-layered cases, we found 58 potential materials

and performed G0W0 calculations on a subset to estimate the prediction uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine-learning model to prescreen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar

cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.

ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480826900060 Publication Date 2019-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes (up) ; ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:161814 Serial 5291  
Permanent link to this record
 

 
Author Yuan, H.F.; Xu, W.; Zhao, X.N.; Song, D.; Zhang, G.R.; Xiao, Y.M.; Ding, L.; Peeters, F.M. url  doi
openurl 
  Title Quantum and transport mobilities of a Na3Bi-based three-dimensional Dirac system Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 23 Pages 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically, which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron Hamiltonian is taken from a simplified k center dot p approach. From the obtained electronic band structure and the Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in the energy band can be observed experimentally in magnetotransport coefficients in both low-and high-density samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471983500006 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161329 Serial 5425  
Permanent link to this record
 

 
Author Bafekry, A.; Ghergherehchi, M.; Shayesteh, S.F. url  doi
openurl 
  Title Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: first-principles calculations Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 20 Pages 10552-10566  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Defects are inevitably present in materials, and their existence in a material strongly affects its fundamental physical properties. We have systematically investigated the effects of surface adsorption, substitutional impurities, defect engineering, an electric field and strain engineering on the structural, electronic and magnetic properties of antimonene nanosheets, using spin-polarized density functional calculations based on first-principles. The adsorption or substitution of atoms can locally modify the atomic and electronic structures as well as induce a variety of electronic behaviors including metal, half-metal, ferromagnetic metal, dilute magnetic semiconductor and spin-glass semiconductor. Our calculations show that the presence of typical defects (vacancies and Stone-Wales defect) in antimonene affects the geometrical symmetry as well as the band gap in the electronic band structure and induces magnetism to antimonene. Moreover, by applying an external electric field and strain (uniaxial and biaxial), the electronic structure of antimonene can be easily modified. The calculation results presented in this paper provide a fundamental insight into the tunable nature of the electronic properties of antimonene, supporting its promise for use in future applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476561000031 Publication Date 2019-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 17 Open Access  
  Notes (up) ; ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:161945 Serial 5430  
Permanent link to this record
 

 
Author Cotte, M.; Genty-Vincent, A.; Janssens, K.; Susini, J. url  doi
openurl 
  Title Applications of synchrotron X-ray nano-probes in the field of cultural heritage Type A1 Journal article
  Year 2018 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 19 Issue 7 Pages 575-588  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Synchrotron-based techniques are increasingly used in the field of cultural heritage, and this review focuses notably on the application of nano-beams to access high-spatial-resolution information on fragments sampled in historical or model artworks. Depending on the targeted information, various nano-analytical techniques can be applied, providing both identification and localization of the various components. More precisely, nano-X-ray fluorescence probes elements, nano-X-ray diffraction identify crystalline phases, and nano X-ray absorption spectroscopy is sensitive to speciation. Furthermore, computed tomography-based techniques can provide useful information about the morphology and in particular the porosity of materials. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451631400006 Publication Date 2018-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; 1878-1535 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 3 Open Access  
  Notes (up) ; ; Approved Most recent IF: 2.048  
  Call Number UA @ admin @ c:irua:156320 Serial 5476  
Permanent link to this record
 

 
Author Moro, G.; De Wael, K.; Moretto, L.M. pdf  url
doi  openurl
  Title Challenges in the electrochemical (bio)sensing of non-electroactive food and environmental contaminants Type A1 Journal article
  Year 2019 Publication Current opinion in electrochemistry Abbreviated Journal  
  Volume 16 Issue 16 Pages 57-65  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The electrochemical detection of non-electroactive contaminants can be successfully faced via the use of indirect detection strategies. These strategies can provide sensitive and selective responses often coupled with portable and user-friendly analytical tools. Indirect detection strategies are usually based on the change in the signal of an electroactive probe, induced by the presence of the target molecule at a modified electrode. This critical review aims at addressing the developments in indirect electro-sensing strategies for non-electroactive contaminants in food and environmental analysis in the last years (2017-2019). Emphasis is given to the strategy design, the electrode modifiers used and the feasibility of technological transfer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000485814400010 Publication Date 2019-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes (up) ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:159574 Serial 5498  
Permanent link to this record
 

 
Author van der Linden, V.; Schalm, O.; Houbraken, J.; Thomas, M.; Meesdom, E.; Devos, A.; van Dooren, R.; Nieuwdorp, H.; Janssen, E.; Janssens, K. doi  openurl
  Title Chemical analysis of 16th to 19th century Limoges School painted enamel objects in three museums of the Low Countries Type A1 Journal article
  Year 2010 Publication X-ray spectrometry Abbreviated Journal X-Ray Spectrom  
  Volume 39 Issue 2 Pages 112-121  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this study, the results of analysing of a series of 16th-19th century painted enamel objects of the Limoges School currently in collections in three Dutch and Flemish museums by means of portable and micro x-ray fluorescence analysis (PXRF and µ-XRF) and electron probe micro analysis (EPMA) are presented. The aim of the investigation was the authentication of specific pieces. Therefore, the glass compositions as well as the (glass) colouring agents used by the Limoges' artists were studied as a function of the age of the objects. Due to the evolution of these properties, it is possible to approximately date these objects based on their chemical composition. The complete émail peint collection of the Museum Boijmans-Van Beuningen (Rotterdam, The Netherlands), consisting of 20 émail peint plaques, was analysed with µ-XRF. Quantitative information was obtained by EPMA analysis of 15 enamel fragments of objects from museum and private collections in the Low Countries. PXRF analyses were performed on the painted enamel collection of the Antwerp Vleeshuis Museum (13 objects) and the Mayer van den Bergh Museum (4 objects) and on a set of 18 plaques that were donated to the Boijmans-Van Beuningen Museum by a private collector. The results obtained by means of EPMA, µ-XRF and PXRF proved to be useful in the discrimination of 16th century painted enamel objects from those of the19th century. From a total of 70 objects examined, 2 objects (OM964A and OM993) featured a chemical signature that deviated from the published literature composition and pigment use consistent with its presumed period of manufacture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000275959400007 Publication Date 2009-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.298 Times cited 8 Open Access  
  Notes (up) ; ; Approved Most recent IF: 1.298; 2010 IF: 1.661  
  Call Number UA @ admin @ c:irua:82325 Serial 5509  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Cotte, M.; Sorace, L.; Vanmeert, F.; Brunetti, B.G.; Miliani, C. pdf  url
doi  openurl
  Title Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium Type A1 Journal article
  Year 2016 Publication Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 272-282  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Environmental factors, such as light, humidity and temperature are triggering agents for the alteration of organic and/or inorganic constituents of oil paintings. The oxidation of the organic material is favored by increasing of relative humidity and temperature, whereas processes involving changes of the oxidation states of a number of inorganic pigments (e.g., vermilion, cadmium yellows, zinc yellows, chrome yellows) are mainly activated by light-exposure. In view of the optimization of the long-term conservation and restoration strategies of paintings it is of relevant interest to establish the consequences of thermal parameters (temperature and relative humidity) on the chemical/photochemical-reactivity and the nature of the alteration products of light sensitive-pigments in oil medium. To this aim here we propose a multi-method analytical approach based on the combination of diffuse reflectance UV-Vis, FTIR, synchrotron radiation (SR)-based micro X-ray fluorescence (mu-XRF)/micro-X-ray absorption neat edge structure ()CANES) and electron paramagnetic resonance (EPR) spectroscopies for studying the effects of different relative humidity conditions before and after light exposure on the reactivity of a series of lead chromate-based pigments [such as PbCrO4 center dot PbO (monoclinic), PbCrO4 (monoclinic) and PbCr0.2S0.8O4 (orthorhombic)] in an oil medium. The investigation of paint models was also compared to that of a late 19th century historical orthorhombic PbCr0.4S0.6O4 oil paint. Diffuse reflectance UV-Vis and FTIR spectroscopies were used to obtain information associated with chromatic changes and the formation of organo-metal degradation products at the paint surface. SR-based Cr K-edge mu-XANES/mu-XRF mapping analysis and EPR spectroscopy were employed in a complementary fashion to determine the amount, nature and distribution of Cr(III) and Cr(V)-based alteration compounds within the paints with micrometric spatial resolution. Under the employed thermal aging conditions, lead(II)-carboxylates and reduced Cr-compounds (in abundance of up to about 35% at the surface) have been identified in the lead chromate-based paints. The tendency of chromates to become reduced increased with increasing moisture levels and was favored for the orthorhombic PbCr0.2S0.8O4 compounds. The redox process gave rise to the formation of Cr(V)-species in relative amount much higher than that was formed in the equivalent paint which was exposed only to light. After light-exposure of the thermally aged paints, compounds ascribable to the oxidation of the organic binder were detected for all the types of pigments. Nevertheless, the previous thermal treatment increased the tendency toward photo-reduction of only the PbCr0.2S0.8O4 pigment. For this light-sensitive compound, the thickness variation of the reduced Cr-rich (ca. 70%) photo-alteration layer with moisture levels could be ascribed to a surface passivation phenomenon that had already occurred before photochemical aging. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600042 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 23 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:131099 Serial 5519  
Permanent link to this record
 

 
Author Smits, M.; Vanpachtenbeke, F.; Horemans, B.; De Wael, K.; Hauchecorne, B.; Van Langenhove, H.; Demeestere, K.; Lenaerts, S. url  doi
openurl 
  Title Effect of operating and sampling conditions on the exhaust gas composition of small-scale power generators Type A1 Journal article
  Year 2012 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 7 Issue 3 Pages e32825-e32825,10  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303836500012 Publication Date 2012-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.806 Times cited 5 Open Access  
  Notes (up) ; ; Approved Most recent IF: 2.806; 2012 IF: 3.730  
  Call Number UA @ admin @ c:irua:96545 Serial 5581  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: