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Abstract. We study topological phase transitions and topological quantum field

effect transistor in monolayer Molybdenum Disulfide (MoS2) using a two-band

Hamiltonian model. Without considering the quadratic (q2) diagonal term in the

Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect

(QAH), quantum spin Hall effect (QSH), and spin quantum anomalous Hall effect

(SQAH) regions such that the topological Kirchhoff law is satisfied in the plane. By

considering the q2 diagonal term and including one valley, it is shown that MoS2 has a

non-trivial topology, and the valley Chern number is non-zero for each spin. We show

that the wave function is (is not) localized at the edges when the q2 diagonal term

is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the

quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green

function method and show how this device works as a field effect topological quantum

transistor.

Keywords: Phase Transition; MoS2; Topological Insulator; Field Effect Transistor
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1. Introduction

Phase transitions are an important tool in the armory of a material scientist. In the

simplest sense, a phase diagram demarcates regions of existence of various phases. In

addition, a phase can be defined as a physically distinct and chemically homogeneous

portion of a system that has a particular chemical composition and structure. As an

example, water in liquid or vapor state is single phase, and ice floating on water is an

example of a two phase system.

In 1879, the American physicist E. H. Hall observed the deflected motion of charged

particles in solids under external electric and magnetic field [1]. The effect is called the

Hall Effect (HE). In some materials, the electron orbital motion is coupled to its spin, and

consequently, a spin-orbit or spin transverse force can be used to understand the spin-

dependent scattering by either impurities (extrinsic origin) or band structure (intrinsic

origin). Thus, the anomalous Hall Effect (AHE) can have either an extrinsic or an

intrinsic origin due to the spin-dependent band structure of the conduction electrons,

which can be expressed in terms of the Berry phase in momentum space [2]. While

the AHE vanishes in the absence of an external magnetic field and in the absence of

magnetization in a paramagnetic metal, the spin-dependent deflected motion of electrons

in a solid can still lead to an observable effect, that is, the spin Hall effect (SHE)

[3, 4]. The quantum Hall effect (QHE) is a quantum version of the Hall Effect in two

dimensions. The key feature of the QHE is that all electrons in the bulk are localized

and the electrons near the edges form a series of edge-conducting channels [5]. The

quantized anomalous Hall Effect (QAHE) can be realized in a ferromagnetic insulator

with strong spin-orbit coupling [6, 7, 8, 9]. Finally, similar to SHE, the spin version of

QHE is called the quantum spin Hall effect (QSHE). The QSHE can be regarded as a

combination of two quantum anomalous Hall effects of spin-up and spin-down electrons

with opposite chirality [10, 11].

Here, we want to address the following question: Is it possible that a specific type

of HE is changed to another type of HE by applying some specific fields? This implies

that a phase transition occurs between different phases of HE. Physicists have already

developed the necessary concepts and theories which are necessary for explaining and

estimating the phase transition between different phases of HE [12, 13, 14, 15, 16].

One of the main goals of this article is to study the topological phase transition in

monolayer Molybdenum Disulfide (MoS2) and to show how this can be used in a field

effect transistor (FET).

The flow of carriers between source and drain is adjusted by applying an external

gate voltage. If the conductance of the channel is quantized, the current will be quantized

and the transistor is called a quantum FET (QFET) [17]. If the quantized conductance

is topologically protected, it will be robust against impurities due to its topological

stability. Consequently, we can call it a field effect topological quantum transistor

(FETQT) [17]. Basically, one is able to design a three-digit quantum transistor

by attaching an antiferromagnet based on such a topological phase transition [17].
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Figure 1: (Color online) Crystal structure of monolayar MoS2 from top and side view.

a and b denote for Mo – Mo distance and Mo – S distance, respectively. a = 3.16

Åand b = 2.41 Å. It consists of triangularly arranged Mo atoms sandwiched between

two layers of triangularly arranged S atoms.

Therefore, another main goal of this article is to investigate the FETQT in a monolayer

of MoS2.

The monolayer MoS2 has a honeycomb lattice and is a direct band gap

semiconductor with band gap Eg = 1.86eV . The two planes of sulfur atoms are placed

above and below the plane of Mo atom (Fig. 1). The Mo – S atoms form an almost ideal

trigonal prism structure with a Mo – Mo distance a = 3.16 Åand a slight elongation

along the perpendicular axis with Mo – S distance, b = 2.41 Å[18].

Different Hamiltonian models have been introduced to describe the electronic

properties of MoS2. Usually, the three 4d-orbitals of the Mo i.e., d3z2−r2 , dxy, and

dx2−y2 and three 3p-orbitals of S i.e., px, py, and pz and/or their hybridization have been

considered and the Slater-Koster [18] method has been used to find the tight binding

Hamiltonian model of MoS2 [19, 20, 21, 22]. It has been shown that a low-energy two-

band Hamiltonian model can be deduced around the K-points for each spin component

[20, 21, 22]. By considering |ϕc >= d3z2−r2 and |ϕτv >= dx2−y2 + iτdxy as the basis wave

vectors, where the subscript c (v) indicates conduction (valence) band, and τ = ±1 is

the valley index, a two-band ~k · ~p Hamiltonian has been introduced [23, 24, 25, 26].

Using first-principles calculations within density functional theory, the intrinsic spin

Hall effect in monolayers of group-VI transition-metal dichalcogenides (TMD) MX2 (M

= Mo, W and X = S, Se) has been investigated [27]. It was shown that because of

the inversion symmetry breaking and the strong spin-orbit coupling charge carriers in

opposite valleys carry opposite Berry curvature and spin moment, giving rise to both

a valley-Hall and a spin-Hall effect [27]. Qian et al showed that the quantum spin

Hall phase can be transformed into a trivial one by applying a vertical electric field
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in 1T ′ structure of TMD [28]. A weak topological protection for the metallic edge

modes in the zigzag MoS2 nanoribbon has been clarified by considering a low-energy
~k ·~p Hamiltonian [22]. In addition, it has been shown that the crossing point of the edge

modes is not located on the K-point and it shifts away from it due to the effect of trigonal

warping [22]. It has been shown that by applying a transverse electric field beyond

a critical value, the inverted band gap disappears and the zigzag MoS2 nanoribbon

(in 1H structure) turns into a semiconductor [29]. Olsen has applied first principles

calculations to show that the quantum spin Hall insulator 1T ′-MoS2 exhibits a phase

transition to a trivial insulator upon adsorption of various atoms [30]. Liu et al used

quantum transport device simulations to investigate the potential of single-layer MoS2

FETs for vertical field modulation of the topological edge states [31]. Experimental and

theoretical works have unambiguously confirmed that the contribution of edge states to

the channel conductance is significant before the threshold voltage but negligible once

the bulk of the TMD device becomes conductive [32].

In this paper, we study the topological phase transition in monolayer MoS2 by

using a low-energy two-band Hamiltonian model around the K-points. First, we neglect

the electron-hole asymmetry and the q2 diagonal terms in the spin-valley Dirac mass

equation and find the phase diagram in the (V,∆M) plane where V and ∆M are external

applied voltage and exchange field to the A(B)-sublattice, respectively. We will show

that the phase diagram includes QAH, QSH, and SQAH regions such that the topological

Kirchhoff law [15] is satisfied in the plane. Furthermore, we find that the wave function

along the width of a zigzag nanoribbon of MoS2 (e.g in the x-direction) is not localized

at the edges when V (x) = αx and ∆M = 0. By solving the spin-valley Dirac mass

equation in case the quadratic (q2) diagonal term is added, it is shown that the wave

function becomes localized at the edges. Also, by considering the q2 diagonal term and

one valley, it is shown that MoS2 has non-trivial topology and the valley Chern number

is non-zero for each spin. Finally, we find the quantum conductance of a zigzag MoS2

nanoribbon by using the nonequilibrium Green function method [33] and show how this

device works as a field effect topological quantum transistor.

The structure of the article is as follows: In section II, the model is introduced. The

phase diagram is extracted and the localization of wave functions is studied, in section

III. In section IV, the topological quantum transistor behavior of a zigzag nanoribbon

is explained and finally the conclusion are presented in section V.

2. Formulation of the model

The low-energy two-band Hamiltonian model around the K-points can be written as

[20, 21, 22]:

Hτs (q) =
∆0 + λ0τs

2
+

∆ + λτs

2
σz + t0a0~q · στ

+
h̄2|~q|2

4m0

(α + βσz) + a0
2|~q|2(λ′0 + λ′)τs.

(1)
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Phase Transition and Field Effect Topological Quantum Transistor made of monolayer MoS25

The two- band Hamiltonian is obtained from a six- band Hamiltonian[22]. Here, ∆

and ∆0 are crystal fields (energy gap), and λ, λ0, λ′, and λ′0 are spin-orbit coupling

constants. α is the mass asymmetry parameter and β is the topological term and both

are related to the general physical properties of the band structure. Finally, t0 is the

hopping integral and a0 = a/
√

3 where a is the lattice constant. s = ± and τ = ±
stand for the spin and valley degree of freedom, respectively. Notice στ = (τσx, σy)

with σi=x,y,z are Pauli matrices, ~q = (qx, qy) is the wave vector in two dimensions and

m0 is the free electron mass. The other constants are ∆0 = −0.11 eV, ∆ = 1.82 eV,

λ0 = 69 meV, λ = −80 meV, λ′0 = −17 meV, λ′ = −2 meV, t0 = 2.34 eV, α = −0.01,

β = −1.54, and α′ = 0.44, β′ = −0.53 [22].

It should be noted that the six and two-band Hamiltonian have been used before

[22, 29, 34]. The six-band Hamiltonian has been used to study spin-selective transport

in a zigzag monolayer ribbon of MoS2 using the non-equilibrium Green function (NEGF)

method [29]. Also, they showed that the metallic phase is transferred to a semiconductor

phase by applying some external fields [29]. The two-band Hamiltonian was used to

study perfect valley polarization in MoS2 using NGEF method [34]. The edge modes

in monolayer MoS2 have been studied by calculating the normalized projected density

of states (NPDOS)[22] within a two-band Hamiltonian and tight-binding method. The

Berry curvature in the whole Brillouin zone was also determined together with Chern

number and the time reversal Z2 invariant calculated within the ~k·~pmodel [22]. However,

they did not study the phase diagram (PD), the Kirchhoff law in the plane of PD, the

field effect topological quantum transistor in monolayer MoS2 and they did not find the

zero energy wave function under different external conditions. In this article, the above

listed quantities will be calculated.

Eq. (1) can be written as

Hτs (q) = ε (k) I + ~σ · ~d, (2)

where I is the unit matrix,

ε (k) =
∆0 + λ0τs

2
+
h̄2|~q|2α

4m0

+ a0
2|~q|2λ′0τs, (3)

and

~d = (t0a0τqx)̂i+ (t0a0τqy)ĵ + (
∆ + λτs

2
+
h̄2|~q|2β

4m0

+ a0
2|~q|2λ′τs)̂k. (4)

The Chern number, Cτ
s , is defined as [15]:

Cτ
s =

1

4π

∫
d2q

(
∂d̂

∂qx
× ∂d̂

∂qy

)
· d̂. (5)

By using Eq. (4), and neglecting the electron-hole asymmetry, it can be shown:

Cτ
s =

τs

2
(sgn (∆ + λsτ)− sgn (β)). (6)

The details of Eq. (6) derivation can be found in Appendix A. It means that the Chern

number is specified up to the sign of the total spin-valley Dirac mass. Therefore, we
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Phase Transition and Field Effect Topological Quantum Transistor made of monolayer MoS26

should find their signs when we want to plot the phase diagram. Another important

subject is the behavior of the position-dependent wave function. We consider a

zigzag nanoribbon of MoS2 with its width in the x-direction and its length in the y-

direction. If C = ξσy, such that ξ2 = 1, it can be shown that, CHτsC
† = −HT

τs if(
−iξψB
iξψA

)
=

(
ψA
ψB

)
. In other words, the system has particle-hole symmetry (PHS).

By using Eq. (1) and Hτs

(
ψA
ψB

)
= E

(
ψA
ψB

)
, it can be shown (neglecting electron-

hole asymmetry) that(
h̄2β

4m0

∂2
x − (

∆ + λτs

2
)− t0a0τξ∂x

)
φA (x) = 0 (7)

The details of derivation of Eq. (7) can be found in Appendix B. By solving Eq. (7),

we find the position-dependent wave function. In next section, we consider two separate

cases for the electron-hole asymmetry (β): first, β = 0 and second when β 6= 0.

3. Phase diagram

3.1. The case β = 0

We neglect the electron-hole asymmetry term and assume β = 0. In this case, we can

use the ~k · ~p Hamiltonian model [34] and write the total spin-valley Dirac mass equation

as [34]

∆τ
s =

∆ + λτs

2
− V + s∆M, (8)

where, V and ∆M are applied voltage and exchanged field to the A(B)-sublattice,

respectively. Fig. 2(a) (Fig. 2(b)) shows the contour plot of ∆τ
s for spin up (spin down)

in the (V , ∆M) plane with ∆ = 1.82 eV and λ = −80 meV [22] for the K and K ′ points.

The main difference between K and K ′ is in the intersection points of lines with the

axes. Using Eq. (6) and these figures we can find different Chern numbers i.e., C, Cs,

Cv, and Csv which are Chern, spin-Chern, valley-Chern and spin-valley-Chern numbers,

respectively, which are defined as [12, 13, 14, 15, 16, 17]:

C =
(
CK
↑ + CK

↓

)
+
(
CK′

↑ + CK′

↓

)
, (9a)

2Cs =
(
CK
↑ − CK

↓

)
+
(
CK′

↑ − CK′

↓

)
, (9b)

Cv =
(
CK
↑ + CK

↓

)
−
(
CK′

↑ + CK′

↓

)
, (9c)

Csv =
(
CK
↑ − CK

↓

)
−
(
CK′

↑ − CK′

↓

)
. (9d)

The results are summarized in Table 1. Fig. 3 shows the result of Table 1 graphically.

Notice that, we can assign four numbers (C, Cs, Cv, and Csv) to each region of Fig. 3.

There are four regions around the point A in Fig. 3(b). Two of theme are QSH and

others are SQAH. For justifying the topological Kirchhoff law we should round the
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Figure 2: (Color online) Contour plot of spin-valley Dirac mass term (∆τ
s) in the plane

of applied voltage and exchanged field at K (solid lines) and K ′ (dashed lines) points

for (a) spin up and (b) spin down. Here, ∆ = 1.82 eV and λ = −0.08 eV[22]. For

spin-up electrons, ∆τ
s = 0.87(0.95)− V + ∆M at K(K ′) point and for spin-down

electrons, ∆τ
s = 0.95(0.87)− V −∆M at K(K ′) point. The arrows show for what

values of V and ∆M ∆τ
s can be greater/smaller than zero.

Table 1: Chern (C), spin-Chern (Cs), Valley-Chern (Cv) and spin-valley-Chern

numbers (Csv), at the different region of the phase diagram (indicated by Roman

letters) (Fig. 3) for β = 0.

Region C Cs Cv Csv Type

I 2 0 0 0 QAH

II 1 1/2 1 -1 SQAH

III 0 1 0 0 QSH

IV 1 1/2 1 -1 SQAH

V 0 1 0 0 QSH

VI 0 1 0 0 QSH

VII 0 1 0 0 QSH

VIII -1 1/2 1 1 SQAH

IX -2 0 0 0 QAH

point A and subtract the Chern numbers of different regions. Thus, there are two below

differences:

(1, 1/2, 1,−1)SQAH − (0, 1, 0, 0)QSH =
(

1,−1

2
, 1,−1

)
, (10)

(0, 1, 0, 0)QSH −
(

1, 1

2
, 1,−1

)SQAH
=
(
−1,

1

2
,−1, 1

)
. (11)

Therefore, the topological Kirchhoff law is satisfied at point A (similar to the published

results about silicene in Ref. [15]). In this case, E = t0a0kyξ and the general solution
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Figure 3: Phase diagram of MoS2, where we have (a) the different regions and (b) the

different types of Hall effects, based on Table 1. Here, ∆ = 1.82 eV and λ = −0.08

eV[22]. The first term at r.h.s. of Eq. 8 is equal to ∆+λ
2

for spin up (down) at K(K ′)

point and is equal to ∆−λ
2

for spin down (up) at K(K ′) point. By using Eq. 6 and Fig.

2 Cτ
s can be found. Here, β = 0.

of Eq. (7) can be written as φA (x) = Bef(x) where B is a constant and

f (x) = − τξ

t0a0

∫ ∆ (x′) + λτs

2
dx′. (12)

The sign of ξ is determined such that the wave function is finite in the limit |x| → ∞.

If the integrand is generally written as

∆ (x′) =
∆ + λτs

2
− V (x′) , (13)

and V (x′) ∝ x′, then the wave function is localized along the lines x = ∆+λτs
2

= ∆
2
± λ

2

and not at the edges of the nanoribbon [15].

3.2. The case β 6= 0

From Eq. (6) it is clear that we should specify the sign of β if we want to specify the

Chern number. In order to obtain the sign of β, we should study the behavior of the

wave function. If ∆ (x) = a− bx where a = ∆+λτs
2

> 0 and b is a positive constant, the

general solution of Eq. (7) is written as φA (x) ∝ eαx where

α± =
2m0t0a0τξ

h̄2β
± 2m0

h̄2β

(
t20a

2
0 + h̄2β(∆ + λτs)/2m0

)1/2
, (14)

or

φA(x) = e
(

2t0a0τξm0
h̄2β

)x
+ [Aeηx +Be−ηx], (15)

where, A and B are integration constants and

η =
2m0

h̄2β

(
t20a

2
0 + h̄2β(∆ + λτs)/2m0

)1/2
. (16)
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Figure 4: (Color online) Quantum conductance of a monolayer MoS2 zigzag

nanoribbon, for (a) spin up and (b) spin down. Here, ∆M = 0, ∆ = 1.82 eV and

λ = −0.08 [22]. (G0 = e2/h)

Now if we demand that the wave function is localized at the edges of the nanoribbon

which are placed at x = ±a and φA(x = 0) = 0, then

φA (x) = Ne(2t0a0τξm0/(h̄
2β))xsinhηx, (17)

where N is a normalization constant. The sign of ξ/β is determined to make the wave

function finite in the limit |x| → ∞. If we consider ξ > 0 then β < 0. First, we define

the general solution without ξ factor. It means that only for β < 0 a physical wave

function exists which is localized at the edges of the nanoribbon. It has been shown

that β = −1.54 [22]. Using Eq. (6), since always β < 0, then

Cτ
s =

τs

2
+
τs

2
(sgn(∆τ

s)). (18)

Thus, if we take the spin as a good quantum number and consider one valley, the MoS2

monolayer has a non-trivial topology. This non-trivial topology results in crossing edge

modes, which has been seen before [22]. As Eq. (18) shows CK
s = −CK′

s and as a

consequence, the total Chern number is zero which is consistent with the time reversal

symmetry [22]. But, Cv 6= 0 for each spin (see Eq. (9c)), and the total Chern number

is zero.

4. Topological quantum transistor

Fig. 3(b) shows the different phases in the phase diagram for β = 0. There are specific

boundaries between regions such that at each boundary ∆τ
s = 0. Inside each boundary

∆τ
s 6= 0 and consequently it is expected that there is a transmission gap in the quantum

conductance curves when we cross each region. During a phase transition which is

induced by applying a specific set of (V,∆M) parameters, the variation of ∆τ
s is seen

as ∆τ
s 6= 0 → ∆τ

s = 0 → ∆τ
s 6= 0. However, the condition ∆τ

s 6= 0, which means the

conductance is zero at the transmission gap, which can be considered as an “Off” state
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Figure 5: (Color online) Quantum conductance of a monolayer MoS2 zigzag

nanoribbon, for (a) spin up and (b) spin down. Here, ∆ = 1.82 eV and λ = −0.08 [22].

It is assumed that a total field, −∆M = (∆ + λ)/2, is applied to the nanoribbon.

(G0 = e2/h)

and the condition ∆τ
s = 0, which means the conductance is non-zero at the transmission

gap, which is like an “On” state. Therefore, we are able to design a quantum topological

field effect transistor by using a monolayer MoS2 and applying a specific set of (V,∆M)

values (similar to published results in silicene [15, 16, 17]). It should be noted that a

FET behaves as a switch when the gate voltage changes. Here, the FETQT behaves as

a switch when the set of (V,∆M) changes.

Now, we consider a zigzag monolayer of MoS2 nanoribbon and assume a total field

−∆M = (∆ + λ)/2 is applied to the nanoribbon. We can calculate the quantum

conductance of the nanoribbon by using the tight-binding non-equilibrium Greens

function (NEGF) method [33, 34]. Based on NEGF method, it is assumed that the

device is composed of three parts which are the left lead, transport channel, and right

lead. By using the Sancho method, the surface Green function is found for calculating

the self-energy of left (ΣL) and right (ΣR) leads. Using the self-energies the coupling

matrices will be found and call ΓL and ΓR [33].

Based on ~k · ~p method, the Hamiltonian of transport channel is two-band [35]. By

using the two-band Hamiltonian (Hc), the Green function is calculated by using the

formula G = (Hc − ΣR − ΣL)−1. Finally, the quantum conductance is calculated by

using T = e2

h
(ΓL G ΓR G†) [33]. It should be noted that the ~k · ~p method is an

approximated semi-empirical approach with which the band structure can be calculated

from a restricted set of parameters derived in a single point in the reciprocal sapce

[26, 36].

Fig. 4 (for ∆M = 0) and 5 (for −∆M = (∆+λ)/2) show the quantum conductance

as function of the fermi energy. As Fig. 4(a) shows, there is a transmission gap equal to

1.74 (1.9) eV for spin up electrons from K (K ′)-valley and their quantum conductance is

higher (lower) than the quantum conductance of spin up electrons from K ′ (K)-valley.
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Phase Transition and Field Effect Topological Quantum Transistor made of monolayer MoS211

Fig. 4(b) shows the tranmission gap and quantum conductance of spin down electrons

from K and K ′-valleys. Here, the conductance of spin down electrons from K ′-valley is

higher than the quantum conductance of spin up electrons from K-valley. As Fig. 5(a)

(Fig. 5(b)) shows, the transmission gap is closed by applying the exchanged field ∆M

for the spin up (down) electrons from the K(K ′)-valley. Therefore, spin up electrons

from K-valley and the spin down electrons from the K ′-valley take part in the quantum

conductance because the transmission gap, ET
g , is zero for these kinds of spins. Since

both kinds of spins take part in the conductance, we deal with helical edge states. When

β 6= 0, we cannot use the NEGF method because the quadratic (q2) diagonal term is

present in the two-band Hamiltonian model. Previously, it has been shown that the

quantum conductance and the related edge states can be calculated by using a six-band

Hamiltonian model [29] when β 6= 0. They have shown that how one can close the

transmission gap by applying an external electric field and an exchanged field [29]. In

both above cases, the switching is done when the set of (V,∆M) changes. It is well

known that he number of transport channels depends on the number of the atoms in

each supercell of nanoribbon. Therefore, it is expected that the number increases by

increasing the width of the channel and its effects are observed in the level of conductance

values. The effect has been reported by, before [34]. Also, it has been shown that by

increasing the width of the nanoribbon the band gap decrement is very small ([29]).

They have shown that a constant value of band gap can be reached by an appropriate

value of gate voltage for any chosen width ([29]).

It should be noted that the Dirac mass term (Eq. 8) appears in the energy dispersion

relation as energy band gap (Eg). The Eg shows the forbidden values of electron energies.

Therefore, the conductance of electrons is zero for electron energies within the band gap.

The region is called transmission gap (ET ). Therefore, by changing the value of the Dirac

mass term the ET changes and in consequence it is expected that Figs. 4 and 5 change,

but the FETQT behaves as a switch for suitable values of (V,∆M).

5. Conclusion

We obtained topological phase transitions in a monolayer of MoS2 within a two-band

Hamiltonian model. By neglecting the electron-hole asymmetry and quadratic (q2) di-

agonal terms in the spin-valley Dirac mass equation, we showed that the phase diagram

includes QAH, QSH, and SQAH regions such that the topological Kirchhoff law is sat-

isfied in the plane. In this case, we found that the wave function is localized inside (not

at the edges) of a nanoribbon when an external potential V (x) ∝ x is applied along the

width of the nanoribbon.

By adding the quadratic (q2) diagonal terms, we found that MoS2 has a non-trivial

topology if one valley is considered and spin is a good quantum number. In this case,

the wave function is localized at the edges of the nanoribbon.

We considered a zigzag monolayer of MoS2 and studied the quantum transport by using

the NEGF method. We showed that the spin-valley Dirac mass term (∆τ
s) could be zero
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Phase Transition and Field Effect Topological Quantum Transistor made of monolayer MoS212

by applying an external potential and an exchange field such that we deal with helical

edge states in the nanoribbon. The ∆τ
s 6= 0 (∆τ

s = 0) case has been assigned to “Off

(On)” state of a field effect transistor. Therefore, the device can act as a field effect

topological quantum transistor. i.e., behaves as a switch when the set (V,∆M) changes.

Appendix A.

By using Eq. (4), and neglecting the electron-hole asymmetry, it can be shown:(
∂d̂

∂qx
× ∂d̂

∂qy

)
· d̂ =

1∣∣∣~d∣∣∣3 t20a2
0(

∆ + λτs

2
− h̄2|~q|2β

4m0

). (A.1)

Therefore, (see Eq. (5))

Cτ
s =

1

4π

∫ ∞
0

∫ ∞
0

1∣∣∣~d∣∣∣3 t20a2
0

(
∆ + λτs

2
− h̄2|~q|2β

4m0

)
dqxdqy. (A.2)

When solving Eq.(A.2), we use polar coordinates and write:

Cosθ =
2m0 (∆ + λτs) + h̄2|~q|2β

4m0

(
t20a

2
0q

2 +
(

∆+λτs
2

+ h̄2|~q|2β
4m0

)2
)1/2

, (A.3)

then

∂(Cosθ)

∂(q2)
= (
−t20a2

0

2
)

∆+λτs
2
− h̄2βq2

4m0

d3
(A.4)

and therefore

Cτ
s =

1

4π

∫ ∞
0

∂(q2)(
−2

t20a
2
0

)
∂(Cosθ)

∂(q2)
. (A.5)

Now by mapping the Brilliouin zone to the surface of a sphere with radius d̂, it can be

shown [22]

Cτ
s =

τs

2
(sgn (∆ + λsτ)− sgn (β)). (A.6)

Appendix B.

By using Eq. (1) and Hτs

(
ψA
ψB

)
= E

(
ψA
ψB

)
, it can be shown (neglecting electron-

hole asymmetry) that(
∆ + λτs

2
+
h̄2|~q|2β

4m0

)
ψA + t0a0 (τqx − iqy)ψB = EψA. (B.1)
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Assuming ψA = eikyφA(x), substituting into Eq. (B.1), and using PH-symmetry we find

(
∆ + λτs

2
− h̄2β

4m0

∂2
x + t0a0τξ∂x)φA (x)

= (E −
h̄2k2

yβ

4m0

− t0a0kyξ)φA (x) .

(B.2)

Now for E =
h̄2k2

yβ

4m0
+ t0a0kyξ, the right hand side of the Eq. (B.2) is equal to zero, and

we obtain (
h̄2β

4m0

∂2
x − (

∆ + λτs

2
)− t0a0τξ∂x

)
φA (x) = 0 (B.3)

[1] Hall E H 1879 Am. J. Math. 2 287

[2] Nagasoa N, Sinova J, Onod S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539

[3] Dyakonov M I and Perel V I 1971 JETP Lett. 13 467

[4] Dyakonov M I and Perel V I 1971 Phys. Lett. A 35 459

[5] Halperin B I 1982 Phys. Rev. B 25 2185

[6] Jungwirt T, Niu Q and MacDonald A H 2002 Phys. Rev. Lett. 88 207208

[7] Onoda M and Nagaosa N 2003 Phys. Rev. Lett. 90 206601

[8] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802

[9] Yu R, Zhang W, Zhang H, Zhang S, Dai X and Fang Z 2010 Science 329 61

[10] Shen S Q 2005 Phys. Rev. Lett. 95 187203

[11] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801

[12] Shen S Q 2012 Dirac Equation in Condensed Matter (Springer, Berlin)

[13] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005

[14] Benalcazar W A, Teo J C and Hughes T L 2014 Phys. Rev. B 89 224503

[15] Ezawa M 2015 J. Phys. Soc. Jpn. 84 121003

[16] Fu L 2011 Phys. Rev. Lett. 106 106802

[17] Ezawa M 2013 Appl. Phys. Lett. 102 172103

[18] Slater J C and Koster G F 1954 Phys. Rev. 94 1498

[19] Gomez A C, Roldan R, Cappelluti E and Buscema M 2013 Nano Lett. 13 5361

[20] Rostami H, Moghaddam A G and Asgari R 2013 Phys. Rev. B 88 085440

[21] Rostami H, Roldan R, Cappelluti E, Asgari R and Guinea F 2015 Phys. Rev. B 92 195402

[22] Rostami H, Asgari R and Guinea F 2016 J. Phys. Condens. Matter 28 495001

[23] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802

[24] Tahir M, Vasilopoulos P and Peeters F 2016 Phys. Rev. B 93 35406

[25] Klinovaja J and Loss D 2013 Phys. Rev. B 88 75404

[26] Kormanyos A, Burkard G, Gmitra M, Fabian J, Zolyomi V, Drummond N and Falko V 2015 2D

Mater. 2 22001

[27] Feng W, Yao Y, Zhu W, Zhou J, Yao W and Xiao D 2012 Phys. Rev. B 86 165108

[28] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344

[29] Heshmati-Moulai A, Simchi H, Esmaeilzadeh M and Peeters F M 2016 Phys. Rev. B 94 235424

[30] Olsen T 2016 Phys. Rev. B 94 235106

[31] Liu L and Guo J 2015 J. Appl. Phys. 118 124502

[32] Wua D, Lia X, Luana L, Wua X, Lib W, Yogeeshb M N, Ghoshb R, Chua Z, Akinwandeb D, Niua

Q and Laia K 2016 PNAS 113 31

[33] Shakouri K, Simchi H, Esmaeilzadeh M, Mazidabadi H and Peeters F M 2015 Phys. Rev. B 92

035413

[34] Heshmati-Moulai1 A, Simchi H and Esmaeilzadeh M 2017 Eur. Phys. J. B 90 128

[35] Lu H Z, Shan W Y, Yao W, Niu Q and Shen S Q 2010 Phys. Rev. B 81 115407

[36] Marconcini P and Macucci M 2011 La Rivista del Nuovo Cimento 34 489

Page 13 of 13 AUTHOR SUBMITTED MANUSCRIPT - JPCM-111280.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


