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The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically,
which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac
semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron
Hamiltonian is taken from a simplified k · p approach. From the obtained electronic band structure and the
Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in
the energy band can be observed experimentally in magnetotransport coefficients in both low- and high-density
samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance
equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum
and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured
experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them
largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding
of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac
systems.
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I. INTRODUCTION

Since the discovery of graphene in 2004 [1], the investiga-
tion of Dirac electronic systems has been a fast-growing field
of research in condensed matter physics, materials science,
electronics, and optoelectronics [2]. Graphene is an ideal two-
dimensional (2D) Dirac electronic material that is gapless,
massless, and with a linear energy dispersion for electrons
in the relatively low-energy regime. As a result, graphene
exhibits many unique and interesting physical properties [3]
that can be utilized for the realization of advanced electronic
and optoelectronic devices [4,5]. In recent years, some unique
topological materials that are three-dimensionally akin to 2D
graphene have been discovered and realized, and therefore
they are called three-dimensional (3D) Dirac systems [6].
For example, it is found that the semimetals Cd3As2 [7] and
Na3Bi [8] can be gapless and with roughly linear energy
dispersion for conduction and valence bands around the Dirac
points. Such 3D Dirac electronic systems have a linear energy
spectrum for the bulk states around the Dirac nodes and have
a topologically protected surface state. In these materials,
if either the crystal inversion symmetry or the time-reversal
symmetry is broken, each Dirac node splits into a pair of
opposite-chirality Weyl nodes. Unique and interesting phys-
ical properties can be explored in these 3D Dirac systems
such as the Fermi-arc surface states [9], chiral-pumping ef-
fect [10], and magnetoelectric-like effects in plasmonics and
optics [11]. Very recently, the 3D quantum Hall effect has
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been observed in Cd3As2-based 3D Dirac semimetal systems
[12]. These new and important experimental findings indicate
that the field of 3D Dirac systems is very rich in terms of
fundamental physics and of potential applications as advanced
electronic and optical devices.

At present, the most popularly studied 3D Dirac systems
are Cd3As2- and Na3Bi-based semimetal materials. From
the viewpoint of physics, the electronic band structures of
Cd3As2 and Na3Bi around the Dirac point are basically the
same [13,14]. Thus, they exhibit roughly similar physical
properties. Hence, we focus our present study mainly on
Na3Bi-based 3D Dirac systems. It is known that Na3Bi is
normally in a hexagonal P63/mmc phase (or D4

6h) [13]. There
are two nonequivalent Na sites called Na(1) and Na(2). Na(1)
and Bi can form layers of simple honeycomb lattice layers
that are stacked along the c axis. The Na(2) atoms are inserted
between the above-mentioned layers, making connection with
the Bi atoms and forming layers of honeycomb lattices. From
first-principles calculations [13], we know that Na3Bi has an
inverted band structure and its Fermi surface consists of two
isolated Fermi points. Since both time-reversal and inversion
symmetries are present, there is fourfold degeneracy at each
Fermi point around which the band dispersion can be lin-
earized. High-quality hexagon platelike Na3Bi crystals with
large (001) plane surfaces can be grown from a molten Na
flux [15]. Xiong et al. carried out high-field magnetotransport
measurements on n-type Na3Bi single crystals with relatively
low [16] and high [17] electron densities. They measured
the de Haas–van Alphen oscillations and the Shubnikov–de
Haas oscillations along with the Hall resistance in different
samples with and without postannealing. They found that
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both the conductivity and resistivity tensors exhibit robust
anomalies in the presence of high magnetic fields in both
low- and high-density cases. They found that the longitudinal
resistivity depends roughly linearly on the strength of the
magnetic field up to 35 T, while the Hall angle exhibits an
unusual profile approaching a step function. It is known that
the large negative longitudinal magnetoresistance associated
with the chiral anomaly is most pronounced in Na3Bi crystals
when the Fermi level is close to the Dirac nodes. This effect
occurs in the low-density case [16]. However, as pointed
out by Xiong and co-workers [17], even in samples with
relative high electron density or high Fermi level away from
the Dirac points, the finite Berry curvature seems to lead to
major anomalous features in the elements of the conductivity
tensor in Na3Bi. This has led to a reexamination of the elec-
tronic transport properties in Na3Bi-based Dirac semimetals
[17]. Furthermore, from high-field magnetotransport mea-
surements, the effective electron mass, the Fermi velocity, the
electron density, and the quantum and transport mobilities for
different Na3Bi samples were obtained experimentally [17]. It
was found that similarly to the case of a 2D Dirac system such
as graphene, the transport mobility is larger than the quantum
mobility in the Na3Bi semimetal.

Motivated by these interesting and important experimental
findings, we present here a detailed theoretical study on elec-
tronic and transport properties of the semimetal Na3Bi. Al-
though some theoretical studies on electronic band structure
and related electronic properties of 3D Dirac systems have
been published [13], there is a lack of a systematic theoretical
investigation of the electronic transport properties of Na3Bi.
In this study, we employ a simple and apt theoretical approach
to examine the many-body effects such as the electronic
screening length and the electron-impurity interaction. We
also calculate the quantum and transport mobilities in Na3Bi
at low temperatures. The prime motivation of the present
theoretical study is to gain an in-depth understanding of the
experimental results on electronic and transport properties of
Na3Bi-based 3D Dirac systems.

This paper is organized as follows. The theoretical ap-
proaches to calculate the electronic band structure, the Fermi
level, the electronic screening length, and the quantum and
transport mobilities in the Na3Bi semimetal are presented in
Sec. II. In Sec. III, we present the numerical results, discuss
the electronic and transport properties of Na3Bi, and compare
with those obtained experimentally. The concluding remarks
from this study are summarized in Sec. IV.

II. THEORETICAL APPROACH

A. Simplified electron Hamiltonian

In 2012 Wang and co-workers [13] constructed a Hamilto-
nian to describe the carriers in the semimetal Na3Bi by using
a k · p formula, which reads

H = εK × I +

⎡
⎢⎢⎢⎣

MK Ak+ 0 B∗
K

Ak− MK B∗
K 0

0 BK MK −Ak−
BK 0 −Ak+ −MK

⎤
⎥⎥⎥⎦, (1)

where K = (k, kz ) = (kx, ky, kz ) is the wave vector or mo-
mentum operator, I is a 4 × 4 unitary matrix, k± = kx ± iky,
εK = C0 + C1k2

z + C2k2, MK = M0 − M1k2
z − M2k2, and C0,

C1, C2, M0, M1, M2, and A are band parameters [13]. In this
Hamiltonian, the stacking direction of the honeycomb lattice
layers formed by Na(1) and Bi is taken as the z direction. It
should be noted that BK = B3kzk2

+ is a high-order term in the
Hamiltonian, which contributes significantly only at relatively
large electron momentum. The corresponding Schrödinger
equation can be solved analytically. The eigenvalue corre-
sponding to this Hamiltonian is given as E±(K) = εK ±
(M2

K + A2k2 + |BK|2)1/2 with the upper (lower) case referring
to the conduction (valence) band. This result suggests that
there are two Dirac points, determined by E+(K) − E−(K) =
0, in Na3Bi that are found when taking k = 0 and kz = ±kc =
±√

M0/M1.
It is well known that the k · p model is valid for the calcula-

tion of the electronic states near the bottom of the conduction
band and the top of the valence band [18,19]. Under the action
of a relatively weak dc driving electric field, the electronic
transport occurs mainly around the Fermi energy, which is
normally in the low-energy and small-momentum regime.
In such a case, the high-order contribution BK ∼ K3 � 1 in
Eq. (1) can be neglected. Thus, the 4 × 4 matrix given by
Eq. (1) is decoupled and the electron Hamiltonian is reduced
to become a 2 × 2 matrix, which reads

H =
[
εK + MK Ak+

Ak− εK − MK

]
. (2)

By solving the corresponding Schrödinger equation, the ana-
lytical expression for the eigenvalue and eigenfunction for a
free carrier in Na3Bi are obtained, respectively, as

Eλ(K) = εK + λ

√
M2

K + A2k2 (3)

and

�Kλ(R) = a1(1, a2)eiK·R. (4)

Here, R = (x, y, z), a1 = ξK/(ξ 2
K + A2k2)1/2, a2 = Ak−/ξ 2

K,
ξK = MK + λ

√
M2

K + A2k2, and λ = +1 (λ = −1) refers to
the conduction (valance) band. Using this simplified Hamil-
tonian, two Dirac points are formed when k = 0 and kz =
±kc = ±√

M0/M1. We can prove that the neglect of the BK
term in Eq. (1) does not affect the electronic band structure
significantly in the momentum and energy regime in which
we are interested (see Sec. III). Hence, for the convenience
of the analytical and numerical calculations, in this study we
take the electron Hamiltonian given by Eq. (2) for further
investigation.

B. Electronic density of states and Fermi energy

With the electronic energy spectrum, the Green’s function
for an electron in a 3D Dirac system can be written as

Gλ(E ) = P

(
1

E − Eλ(K)

)
− iπδ[E − Eλ(K)],

with P being the principal value, E the electron energy, and
Eλ(K) the electron energy given by Eq. (3). From now on, we
consider the case of an n-type semimetal Na3Bi in which the
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conducting carriers are electrons. By definition, the density
of states (DOS) for an electron in an electronic system can
be obtained from the imaginary part of the Green’s function,
which gives

D+(E ) = −gs

π

∑
K

ImG+(E )

= 1

π2

∫ ∞

0
dkz

∫ ∞

0
dkk δ[E − E+(K)], (5)

where gs = 2 counts for spin degeneracy.
Using the electronic DOS, we can determine the cor-

responding Fermi energy by applying the condition of
electron number conservation: Ne = ∫ ∞

0 dED+(E ) f (E ) =
gs

∑
K f [E+(K)] with Ne being the electron density, f (x) =

[e(x−EF )/kBT + 1]−1 the Fermi-Dirac function, and EF the
chemical potential (or Fermi energy at T → 0). For the case
of an n-type Na3Bi, at a finite-temperature we have

Ne = 1

π2

∫ ∞

0
dkz

∫ ∞

0
dkk f (E+(K)). (6)

Thus, the Fermi energy EF of a semimetal Na3Bi can be
obtained via root finding from Eq. (6) at the given electron
density Ne and temperature T .

C. Random phase approximation screening length

Here we look into some of the related many-body proper-
ties of a 3D Dirac system. With the electron wave function,
we can calculate the electrostatic energy induced by the bare
electron-electron (e-e) interaction:

V0(K, Q) = V (K + Q, K; K − Q, K), (7)

with

V (K
′
1, K1; K

′
2, K2) =

∫
d3R1d3R2�

∗
K′

1+
(R1)�K1+(R1)

× e2

κ|R1 − R2|�
∗
K′

2+
(R2)�K2+(R2)

= F0(K, Q)VQ,

where the momentum conservation law for e-e interaction has
been applied [20]; namely, K1 = K2 = K are momentums
entering into the interaction along with K1

′ = K + Q and
K2

′ = K − Q being the momentums flowing out of the inter-
action. Here, Q = (qx, qy, qz ) is the change of electron wave
vector or momentum during an e-e interaction event, VQ =
4πe2/(κQ2) is the Fourier transformation of the Coulomb po-
tential with κ being the static dielectric constant of Na3Bi, and
F0(K, Q) = 〈K + Q|K〉〈K − Q|K〉 is the form factor for e-e
interaction. The strength of the effective e-e interaction can be
calculated through Veff = ε−1(
, Q)V0(K, Q), where ε(
, Q)
is the dynamical dielectric function matrix with 
 being the
excitation frequency. Under the random phase approximation
(RPA) the dielectric function matrix can be written as

ε(
, Q) = 1 −
∑

K

V0(K, Q)�(
; K, Q), (8)

with

�(
; K, Q) = gs
f [E+(K + Q)] − f [E+(K)]

h̄
 + E+(K + Q) − E+(K) + iδ

being the pair-bubble or density-density correlation function.
Here f (x) is the Fermi-Dirac function. In the long-wavelength
limit Q → 0, F0(K, Q) � 1, and V0(K, Q) � VQ. Thus, for
the static case 
 = 0 the sum of the real part of the pair bubble
becomes

η = − lim
Q→0

gs

∑
K

Re �(0; K, Q) = −gs

∑
K

∂ f (x)

∂x

∣∣∣∣
x=E+(K)

.

(9)

In the low-temperature limit (T → 0), we have ∂ f (x)/∂x =
−δ(EF − x) and

η = 1

π2

∫ ∞

0
dkz

∫ ∞

0
dkk δ[EF − E+(K)]. (9a)

Thus, the real part of the static dielectric function can
be written as Re ε(0, Q) = 1 + K2

s (Q)/Q2 with K2
s (Q) =

−(4πe2/κ )
∑

K Re �(0; K, Q) being the square of the inverse
screening length. In the long-wavelength Q → 0 limit, we
have

K2
s (Q) → K2

s = 4πe2η

κ
. (10)

The screening length 1/Ks obtained here can be applied for
counting, e.g., the screened e-e interaction and the electron-
impurity scattering when the effect of e-e interaction is taken
into account.

It should be noted that in the present study, we consider
an n-type 3D Dirac system. In the presence of relatively weak
driving electric field alone, the effect of electric-field-induced
carriers can be neglected. Moreover, at low temperatures the
effect of thermal excitation of the carriers is very weak. Thus,
under these conditions there are almost no holes presented in
the electronic system no matter how big the electron density
is. Hence, the electron-hole interaction can be neglected in the
present study.

D. Electron-impurity scattering

Experimentally, the quantum mobility or lifetime in an
electronic system can normally be determined via the am-
plitudes of the de Haas–van Alphen oscillations or the
Shubnikov–de Haas oscillations measured at low tempera-
tures. At relatively low temperatures, the electron-impurity
(e-i) scattering is the principal channel for the relaxation of
electrons in an electronic system. For the case where the e-i
scattering is caused through the Coulomb potential induced
by charged impurities that are 3D-like, the e-i interaction
Hamiltonian is given as

Hei = e2

κ

1

|R − Ra| , (11)

where R = (x, y, z) is the coordinate of an electron in Na3Bi
and a charged impurity is located at Ra = (xa, ya, za). After
assuming that the system can be separated into electrons of
interest |K〉 and impurities |I〉, namely |K; I〉 = |K〉|I〉, the
e-i interaction potential is obtained, in the absence of e-e
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screening, as

U (Q, Ra) = 〈K′
; I|Hei|K; I〉

= 〈K′ |K〉4πe2

κQ2

√
Nie

−iQ·RaδK′
,K+Q, (12)

where 〈I|I〉 = √
Ni with Ni being the impurity concentration,

Q = (qx, qy, qz ) is the change of electron wave vector during
an e-i scattering event, and the term δK′

,K+Q is responsible
for momentum conservation of the scattering mechanism.
Here we have assumed that the impurities are distributed
homogeneously in the Na3Bi crystal. Using Fermi’s golden
rule, the electronic transition rate for scattering of an electron
from a state |K〉 to a state |K′ 〉 due to e-i interaction is obtained
in the presence of e-e screening as [20]

W (K
′
, K) = 2π

h̄
|UQ|2FK′

,KδK′
,K+Qδ[E+(K

′
) − E+(K)],

(13)

where UQ = (4πe2/κ )(K2
s + Q2)−1, Q2 = (k′

z − kz )2 + k2 +
k′2 − 2kk′ cos θ is induced by momentum conservation for the
scattering, θ is the angle between k and k′ in the xy plane, and

FK′
,K = |〈K′ |K〉|2 = QK′K + PK′K cos θ

is the form factor for e-i interaction. Furthermore,

QK′K = ξ 2
Kξ 2

K′ + A2k2k′2(
ξ 2

K + A2k2
)(

ξ 2
K′ + A2k′2)

and

PK′K = 2A2kk′ξKξK′(
ξ 2

K + A2k2
)(

ξ 2
K′ + A2k′2) .

E. Quantum and transport mobilities

In this study, we employ the Boltzmann equation (BE)
approach to calculate the electronic transport coefficients of
the semimetal Na3Bi. The semiclassic BE for a 3D electron
gas can be written as

− e

h̄
F · ∇K f (K) = gs

∑
K′

[T (K′, K) − T (K, K′)], (14)

where F is a dc electric field acting on the electron, f (K) is
the momentum distribution function (MDF) for an electron
in state |K〉, and T (K, K′) = f (K)W (K, K′) with W (K, K′)
being the electronic transition rate. When the driving electric
field is applied along the α direction [α = (x, y, z)], we have

− e

h̄
F · ∇K f (K) = −eFα

h̄

∂ f (K)

∂kα

.

For the first moment, the momentum-balance equation can be
obtained by multiplying gs

∑
K kα on both sides of the BE

given by Eq. (14). It should be noted that the main effect of
Fα is to cause the drift velocity vα of the electron along the
α direction. As a result, the electron wave vector in the MDF
is shifted by [21] K → K∗ = K − m∗

αvα/h̄ with m∗
α being the

transport effective mass for an electron along the α direction.
Thus, the momentum-balance equation becomes

eNeFα

4h̄
=

∑
K′,K

(k′
α − kα ) f (K∗)W (K, K′), (15)

where the condition of electron number conservation Ne =
gs

∑
K f (K) has been applied. For the case of a weak driving

field Fα , the drift velocity of the electron is small so that

f (K∗) � f (K) − m∗
αvα

h̄

∂ f (K)

∂kα

.

Due to the symmetry of the electronic energy spectrum in a 3D
Dirac system, we have

∑
K′,K(k′

α − kα ) f (K)W (K, K′) = 0,
and Eq. (15) gives the electron mobility along the α direction:
μα = −vα/Fα = eτα/m∗

α , where the momentum relaxation
time τα is determined by

1

τα

= 4

Ne

∑
K′,K

(k′
α − kα )W (K, K′)

∂ f (K)

∂kα

. (16)

After assuming that the electron momentum distribution func-
tion can be described by a statistical electron energy distribu-
tion (EED) function f (K) � f (E+(K)), we have

1

τα

= 4

Ne

∑
K′,K

(k′
α − kα )W (K, K′)

dE+(K)

dkα

∂ f (x)

∂x

∣∣∣∣
x=E+(K)

.

(17)

We take the EED function as the Fermi-Dirac function and
in the low-temperature limit (T → 0) we have ∂ f (x)/∂x =
−δ(x − EF ). Thus, for the case of electron-impurity scattering
we have

1

τα

= −8πNi

h̄Ne

∑
K′,K

(k′
α − kα )FK′K|UQ|2 dE+(K)

dkα

δK′,K+Q

× δ[E+(K′) − EF ]δ[E+(K) − EF ]

= − 2Ni

π h̄Ne

∑
k′,k

(k′
α − kα )FK′K|UQ|2δK′,K+Q

× dE (K)

dkα

∣∣∣∣dE (K′)
dk′

z

∣∣∣∣
−1

k′
z=k′

0

∣∣∣∣dE (K)

dkz

∣∣∣∣
−1

kz=k0

,

where k0 is the solution for kz from EF − E+(K) = 0 and k′
0 is

the solution for k′
z from EF − E+(K′) = 0. We find k2

0 = (s2 +√
s2

2 − s1s3)/s1 with s1 = M2
1 − C2

1 , s2 = M1(M0 − M2k2) −
C1(EF − C0 − C2k2), and s3 = (M0 − M2k2)2 − (EF − C0 −
C2k2)2 + A2k2. Thus, the transport lifetime along the z direc-
tion is

1

τzt
= − Ni

π h̄Ne

∑
k′,k

(k′
0 − k0)k0

|k′
0k0|

FK′KMK

|MK′MK| |UQ|2δk′
z,k

′
0
δkz,k0 ,

(18)

with

MK = C1 − M1MK√
M2

K + A2k2
.

Due to the symmetry of E+(K) in the xy plane, the electronic
lifetimes along the x and y direction should be the same.
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The transport lifetime along the x direction is given by

1

τt
= Ni

4π4h̄Ne

∫ ∞

0
dk

∫ ∞

0
dk′

∫ π

0
dθ

k3k′FK′KNK|UQ|2
|k′

0k0||MK′MK|

×
[

1 − k′

k
cos θ

]
δk′

z,k
′
0
δkz,k0 , (19)

where kx = k cos ϕ, ky = k sin ϕ, k′
x = k′ cos(ϕ + θ ), and

k′
y = k′ sin(ϕ + θ ) have been applied with ϕ being the angle

between k and the x direction, and

NK = C2 − M2MK − A2√
M2

K + A2k2
.

Experimentally, the quantum mobility or lifetime is measured
in the presence of a quantizing magnetic field, which is
obtained though the amplitude of the Shubnikov–de Haas
oscillations [17] or the de Haas–van Alphen oscillations [17]
with the help of the Dingle plot [22]. Thus, the quantum
mobility or lifetime reflects basically the consequences of
small-angle scattering within the plane of the cyclotron orbits
in an electronic device. In the case in which the magnetic
field is applied perpendicular to the honeycomb lattice layer
(i.e., the xy plane) of the Na3Bi crystal, the Landau levels are
formed in the xy plane. As a result, the quantum mobility or
lifetime can be measured along the x or y direction [17] and
reflects the features of small-angle scattering in the xy plane.
By considering that the quantum lifetime along the x direction
τq is induced by small-angle scattering in the xy plane [23], we
have the quantum lifetime along the x direction as

1

τq
= Ni

4π4h̄Ne

∫ ∞

0
dk

∫ ∞

0
dk′

∫ π

0
dθ

× k3k′FK′KNK|UQ|2
|k′

0k0||MK′MK| δk′
z,k

′
0
δkz,k0 . (20)

It should be noted that in sharp contrast to the case of a 2D
Dirac system such as graphene in which relatively simple
analytical expressions for quantum and transport lifetimes can
be derived [20], the quantum and transport lifetimes for a 3D
Dirac system are more complicated because of the 3D nature
of the electronic system and because of the more complicated
electronic energy spectrum.

III. RESULTS AND DISCUSSION

For our numerical calculations in this study, we take
the band parameters for the semimetal Na3Bi as given

in Ref. [13]: C0 = −0.06382 eV, C1 = 8.7536 eVÅ
2
, C2 =

−8.4008 eVÅ
2
, M0 = −0.08686 eV, M1 = −10.6424 eVÅ

2
,

M2 = −10.3610 eVÅ
2
, and A = 2.4598 eVÅ. These param-

eters are determined by fitting the energy spectrum of the
effective Hamiltonian given by Eq. (1) with those obtained
from ab initio calculations. It should be noted that in the
theoretical model, the energy at the bottom of the conduction
band is achieved by taking k = 0 and kz = ±kc, which is
at E0 = E+(0,±kc) = C0 + C1M0/M1 = 7.6 meV for Na3Bi.
Because of the linear energy dispersion near the ±kc points,
we cannot define the band effective mass for an electron in
the unusual way 1/m∗

α = h̄−2[∂2E+(K)/∂k2
α]. In this study,

we deal with the case of electronic transport in relatively high
density samples in which the Fermi level is well above the
Dirac points. As a result, we can take the transport effective
mass for an electron in calculating the Fermi energy and
the transport coefficients. It has been found experimentally
that the transport effective mass for an electron in Na3Bi is
m∗

x � m∗
y � m∗

z � m∗ = 0.11me (me is the rest electron mass),
which is determined by the de Haas–van Alphen oscillations
in high B-field magnetotransport measurements [17]. The
static dielectric constants along the x/y and z axis are found
to be, respectively, 5.99 and 5.73 [24]. Because the difference
of the dielectric constants along the different directions is
relatively small, we take κ = 5.99 in the calculation. We
would like to note that for the calculation of the quantum
and transport mobilities along different crystal directions, we
only need to take the impurity concentration Ni to be a fitting
parameter.

In Fig. 1, we show the conduction band energy given by
Eq. (1) as a function of k and kz for different values of B3

(left panel). We also show the energy as a function of kz for
k = 0 (right panel) in order to see more clearly the effect of
the Berry curvature. It should be noted that in the theoretical
model, the minimum value of the bottom of the conduction
band is achieved by taking k = 0 and kz = ±kc, which is at
E0 = 7.6 meV. Thus, in this study we take E0 = 7.6 meV as
a reference for measuring the electron energy. From Fig. 1
we note the following features: (i) Two Dirac points can be
found at the bottom of the conduction band when kz = ±kc

and k = 0. (ii) The energy splitting induced by the presence
of the BK = B3kzk2

+ terms in Eq. (1) is rather weak for the

case of relatively small k. Even if we take B3 = 50 eVÅ
3

and

100 eVÅ
3
, which are rather large values for Na3Bi, the effect

of band splitting is still very small. This is similar to the case
of Cd3As2-based 3D Dirac systems in which the effect of band
splitting is weak [14]. (iii) When B3 = 0, the results shown in
Fig. 1 correspond to a simplified electron Hamiltonian given
by Eq. (2). This motivates us to employ Eq. (2) as the basis for
further calculations in the present study. (iv) Because of the
presence of the Berry curvature in a 3D Dirac system, the elec-
tronic energy spectrum in the conduction band looks archlike
when kz = [−kc, kc]. Therefore, in contrast to a conventional
3D electron gas where the minimum of the conduction band
is at k = 0 and kz = 0, the top or maximum of the archlike
electronic energy spectrum for a 3D Dirac system is reached
at k = 0 and kz = 0, which is EB = C0 + |M0| � 23 meV, as
shown in the right panel of Fig. 1. (v) The results shown in
Fig. 1 imply that the electronic DOS for E < EB should be
much smaller than that for E > EB.

In Fig. 2, we show the Fermi energy EF as a function
of electron density Ne for Na3Bi-based 3D Dirac systems
at different temperatures and for an ideal 3D electron gas
(I3DEG) at T = 0. Here the Fermi energy for 3D Dirac
system is measured from E0 = 7.6 meV. It can be seen
that similarly to an I3DEG with a parabolic band structure
E+(k) = h̄2K2/2m∗, the Fermi energy for a 3D Dirac system
increases with electron density but decreases with increasing
temperature. We find that the Fermi energy depends weakly
on temperature when T < 10 K. The theoretical results shown
in Fig. 1 and Fig. 2 suggest that when EF is smaller than
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FIG. 1. The energy spectrum of the conduction band as a function of k and kz for different values of B3 as indicated (left panel). Here
B3 �= 0 corresponds to the Hamiltonian given by Eq. (1) and B3 = 0 to that given by Eq. (2). The pink line refers to Fermi energy EF = 37 meV
calculated by taking Ne = 4 × 1018 cm−3 and T = 4.2 K. The right panel shows the result for k = 0, which also leads to B3 = 0.

E0 + EB = 30.6 meV, the electrons are mainly located in the
energy range with Berry curvature, which corresponds to an
electron density Ne ∼ 4 × 1018 cm−3. It is known that the
presence of Berry curvature in the electronic energy spectrum
of the 3D Dirac system is largely responsible for anomalous
features in the conductivity tensor elements observed exper-
imentally in Na3Bi [16,17]. Such an effect can obviously be
measured for samples with relatively low electron density so
that the Fermi level is below or around the maximum of the
Berry curvature as shown in Fig. 1. For samples with low
electron densities Ne ∼ 1017 cm−3 in Xiong’s experimental
work [16], we find theoretically that the Fermi level is in the
regime of Berry curvature. For samples with high electron
densities Ne ∼ 1019 cm−3 in Xiong’s experimental work [17],
the theoretical values of the Fermi level are roughly about
50 meV (see Fig. 2), which is above the top of the Berry
curvature in the energy spectrum (see Fig. 1). Hence, the
difference of the Fermi levels for their low- and high-density
samples is only about a factor of 3, instead of 10 times as

FIG. 2. The Fermi energy EF in a 3D Dirac system as a function
of electron density Ne at different temperatures as indicated. Here we
also show the result for an ideal 3D electron gas (I3DEG) at T = 0.
The results for Na3Bi 3D Dirac system at T = 0 K, 4.2 K, and 10 K
coincide roughly. The inset shows the electronic DOS for a 3D Dirac
system and for an I3DEG, with D0 = C2

0 /A3 for 3D Dirac system and
D0 = m∗3/2√2|C0|/π h̄3 for an I3DEG.

was mentioned in Ref. [17]. This becomes the reason why
robust anomalies in magnetoconductivities or resistivities can
be observed in both their low- and high-density sample cases
[16,17]. Moreover, we would like to point out that the energy
spectrum for a 3D Dirac system differs very much from that
for an I3DEG due to the presence of the Berry curvature. The
formula nF = gvk3

F /3π2 that Xiong et al. used to evaluate the
Fermi wave vector kF or Fermi energy [17] from electron
density nF is derived for an I3DEG. This is why the Fermi
energy was overestimated for their high-density samples in
their paper. Another point we would like to make is that due
to the presence of the Berry curvature in the energy band in
3D Dirac system (see Fig. 1) in the low-energy regime, the
effective electronic DOS for a 3D Dirac system is less than
that in an I3DEG. Thus, the Fermi energy in a 3D Dirac
system is larger than that in an I3DEG at a given electron
density as shown in Fig. 2.

Additionally, it should be noted that the robust anomalies
in the magnetotransport can also be induced by the presence
of a chiral anomaly in 3D Dirac semimetals. It has been
demonstrated explicitly [25] that the nonconservation of the
number of electrons in the Weyl nodes or Dirac points depends
on the chirality of the nodes. Because the electrons with
different chiralities move along different directions under
the action of perpendicular magnetic field, this feature can
lead Landau levels to carry only right or left movers and,
consequently, can result in anomalies in magnetoconductiv-
ities. Very recently, Thakur et al. reported [26] interesting
theoretical results for wave-vector- and frequency-dependent
longitudinal and transverse current-current response functions
for 3D Dirac and Weyl semimetals. They employed these
results to examine the impact of chiral anomalies on electronic
and plasmonic properties of Weyl semimetals. Basically, the
chiral anomaly in a 3D Dirac system or Weyl semimetal can
be induced by the joint action of the electric and magnetic
fields in the magnetotransport measurement [26]. Because
the momentum spacing between two Dirac points is not too
large in Na3Bi (see Fig. 1), the electrons around two Dirac
points can interact via, e.g., many-body exchange coupling.
Thus, the charge transfer between different Dirac points can
occur. Hence, the effective electron densities in different Dirac
points or nodes can be different when the Fermi level becomes
close to the nodes. More specifically, because the Dirac points
are located at kz ∼ ±kc, the longitudinal conductivities σxx
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FIG. 3. Inverse screening length Ks as a function of electron
density Ne at different temperatures. The results for T = 0 K, 4.2 K,
and 10 K coincide roughly.

and σyy can differ significantly from σzz. Furthermore, the
robust anomalies in the Hall resistance [17] Rxy are a direct
consequence of chiral anomalies in 3D Dirac semimetals. It
has been found experimentally that for lower electron density
samples (e.g., B6, G1), the chiral-anomaly-affected Hall resis-
tance is more pronounced. This is because the Fermi energy is
closer to the Berry curvature regime and to the Dirac points for
lower-electron-density samples. Thus, the nonconservation of
the number of electrons in the Dirac points with different
chiralities can be more significant for a lower-density sam-
ple. Consequently, the anomaly in Hall resistance observed
experimentally [17] in the Na3Bi semimetal is the overall
contribution from the chiral anomaly, the Berry curvature, and
the Fermi energy in the electronic system.

In Fig. 3, we plot the inverse screening length Ks as a
function of electron density at different temperatures. The
results show that due to the nature of the RPA approach
and the nonparabolic electronic energy spectrum, stronger
electronic screening is found in a 3D Dirac system with
increasing electron density. This is in line with the electronic
screening effect found in 2D Dirac systems such as graphene
[20] and in monolayer black phosphorus [27]. We find that
Ks for Na3Bi is on the order 106 cm−1, which is smaller
than that for monolayer black phosphorus and of the same
magnitude as graphene. The inverse screening length reflects
the strength of the e-e interaction in an electronic system. A
larger value of Ks corresponds to a stronger e-e interaction
effect. With increasing temperature, because of the thermal
broadening of the electronic transitions, the inverse screening
length decreases. This behavior is similar to that in I3DEG
and in graphene.

In Fig. 4, the quantum and transport mobilities in the
xy plane, μt/q, are shown as a function of electron den-
sity for two impurity concentrations Ni = 5.0 × 1018 cm−3

(black curve) and Ni = 1.2 × 1019 cm−3 (red curves). Here
the quantum/transport mobility, μq/t , is defined as μq/t =
eτq/t/m∗. It should be noted that the impurity concentration
Ni is the only fitting parameter used in the present calculation.

FIG. 4. The quantum μq and transport μt mobilities as a function
of electron density at different impurity concentrations Ni = 5.0 ×
1018 cm−3 (black curves) and Ni = 1.2 × 1019 cm−3 (red curves).
The black and red curves are obtained from the present theoretical
calculation and the symbols are experimental results [17] with cor-
responding sample numbers. Note that the experimental result of the
quantum lifetime for sample B2 was shown in the caption of Fig. 2
in Ref. [17].

We also show the corresponding experimental results [17]
(symbols) for comparison. Here the experimental results for
five samples (i.e., B10, B11, C1, F1, and B2) are shown.
Experimentally, Na3Bi samples with different postannealing
times were measured at T = 4 K, resulting in different values
of electron density while having roughly the same impurity
concentration. The electron density and mobility of different
samples are shown in Table 1 of Ref. [17]. The samples
B2, B10, B11, and C1 were measured without postannealing,
while sample F1 was postannealed for 2 weeks. It should be
mentioned that because of the lattice structure of Na3Bi and
the nature of small-angle scattering measured via high-field
magnetotransport experiment, the quantum mobility can only
be measured in the xy plane of the semimetal Na3Bi. We
see from Fig. 4 that both μq and μt increase with increasing
electron density Ne. Similarly to other electron gas systems,
the electron mobility in Na3Bi decreases with increasing im-
purity concentration because a larger Ni leads to a stronger e-i
scattering strength. As can be seen from Fig. 4, the theoretical
results agree both qualitatively and quantitatively with those
obtained experimentally. Due to the nature of small-angle
scattering, which can reduce the electronic scattering channels
and therefore leads to a shorter lifetime or momentum relax-
ation time, the quantum mobility is smaller than the transport
mobility. This feature is similar to features observed in other
electronic systems such as a semiconductor-based 2DEG [23]
and graphene [20]. Furthermore, we find that the difference
between μq and μt in the semimetal Na3Bi increases slightly
with electron density and is less than a factor of three even in
high-density regimes. It is known that the difference between
μt and μq in semiconductor-based 2DEG systems can be up
to 10 times [23]. In a 3D Dirac system, the presence of the
electronic scattering channels along the z direction can lead
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FIG. 5. The transport mobility along the x direction, μxx (solid
curves), and the z direction, μzz (dashed curves), as a function of
electron density Ne for a fixed impurity concentration Ni = 5.0 ×
1018 cm−3.

to a reduction of the effective small-angle scattering in the xy
plane. This is the main reason why the difference between μt

and μq in Na3Bi is much smaller than that in semiconductor-
based 2DEG systems.

We note that in Fig. 4, two relatively high impurity con-
centrations are taken to calculate the quantum and transport
mobilities and to compare with experimental results for dif-
ferent samples (i.e., B10, B11, C1, F1, and B2) shown in
Ref. [17]. The transport mobilities for samples B6, B12, and
G1 shown in Table 1 of Ref. [17] are significantly higher than
those for B10, B11, C1, F1, and B2. If we take lower impurity
concentrations in the calculation, good fittings of the transport
mobilities between theoretical and experimental results can be
achieved.

In Fig. 5, we show the transport mobility along different
directions as a function of electron density. We find that in
the Na3Bi semimetal, the normal mobility μzz is larger than
the in-plane one μxx. This anisotropic feature is mainly a
consequence of the lattice structure of Na3Bi, which results in
different electronic energy dispersions along the xy plane and
the z direction. From Fig. 1, we see that the electronic energy
spectrum exhibiting Berry curvature occurs in the wave vector
region kz = [−kc, kc]. The presence of the Berry curvature in
the energy band can reduce considerably the electronic DOS
along the z direction and, as a result, reduces the electronic
scattering channels along the z direction. It should be noted
that as shown in Fig. 1, the Berry curvature in the electronic
energy spectrum occurs in a relatively low energy regime
in the conduction band when k ∼ 0 and kz = [−kc, kc] in a
3D Dirac system. As a result, the conductivity tensor can be
significantly affected by the Berry curvature effect in rela-
tively low electron density samples in which the Fermi level is
around the energy regime with the Berry curvature and Dirac
points. Thus, one would expect that the difference between
μzz and μxx can be further enhanced when reducing electron
density in a 3D Dirac system. At low temperatures and weak
driving electric fields, the electronic transport properties are
determined by electronic transition within a relatively low

energy range around the Fermi level. For a 3D Dirac system,
the presence of the Dirac points and the Berry curvature in
the conduction band can reduce the DOS for the low-energy
regime. As a result, the electronic transport is accompanied by
electronic transition very close to the Fermi level. For high-
density samples with electron density Ne ∼ 1019 cm−3, the
Fermi level is still not too far away from the Dirac points and
the top or maximum of the Berry curvature in the electronic
energy spectrum. Hence, electronic transport in high-density
Na3Bi samples can still feel features of the 3D Dirac system.

IV. CONCLUDING REMARKS

In this work, we have developed a systematic theoretical
approach to evaluate the low-temperature electronic and trans-
port properties of the n-type Na3Bi semimetal. The electronic
band structure, the Fermi energy, the electronic screening
length induced by electron-electron interaction, the electron-
impurity scattering, and the electron quantum and transport
mobilities have been examined. The obtained theoretical re-
sults have been applied to understanding recent experimental
findings on the quantum and transport mobilities of the 3D
Dirac semimetal Na3Bi. The main conclusions from this study
are summarized as follows.

The simplified k · p Hamiltonian can be reliably employed
as a basis for studying the electronic and transport properties
of Na3Bi. From the calculated electronic band structure and
the Fermi energy, we have discussed why the anomalous effect
induced by chiral anomalies and the Berry curvature in the
electronic energy band can be observed experimentally in
magnetotransport experiments for both low- and high-density
samples. By taking into account electronic screening induced
by electron-electron interaction and electron-impurity scatter-
ing, we have calculated the quantum and transport mobilities
in Na3Bi as a function of electron density for different im-
purity concentrations. The quantum and transport mobilities
obtained from this study agree both qualitatively and quanti-
tatively with those measured experimentally by Xiong et al.
[16,17]. The electron mobilities along different crystal direc-
tions exhibit large anisotropy. The most significant conclusion
we draw from this study is that for high-density Na3Bi sam-
ples with electron density Ne ∼ 1019 cm−3, the Fermi level
is still not too far away from the Dirac points and from the
top of the Berry curvature. Therefore, the electronic transport
in relatively high density Na3Bi samples can still exhibit the
features of a 3D Dirac electronic system. We hope the results
and discussions presented in this work can be helpful for the
understanding of some of the basic electronic and transport
properties of newly developed 3D Dirac electronic systems.
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