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We propose a tight-binding (TB) model, that includes spin-orbit coupling (SOC), to describe the electronic
properties of methyl-substituted germanane (GeCH3). This model gives an electronic spectrum in agreement
with first principle results close to the Fermi level. Using the Z2 formalism, we show that a topological phase
transition from a normal insulator (NI) to a quantum spin Hall (QSH) phase occurs at 11.6% biaxial tensile strain.
The sensitivity of the electronic properties of this system on strain, in particular its transition to the topological
insulating phase, makes it very attractive for applications in strain sensors and other microelectronic applications.
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I. INTRODUCTION

Topological insulators (TIs) are a new state of matter that
have attracted a lot of interest within the condensed matter
physics community [1–6]. It is now well established that
TIs are promising candidates for future advanced electronic
devices. They possess a bulk insulating gap and conducting
edge states. The edge states are protected by time-reversal
symmetry (TRS) against backscattering and this property
makes them robust against disorder and nonmagnetic defects.
Consequently, the edge channels normally possess very high
carrier mobility.

Among TI materials two-dimensional (2D) van der Waals
systems have attracted a lot of attention during the past
decade [7]. The interest in these systems originates from the
discovery of graphene, which has a very high carrier mobility
[200 000 cm2/(V s)], thermal conductivity, and mechanical
strength [8,9]; however, its zero electronic band gap has
severely limited its applicability in electronic devices. Also,
the proposal for the existence of a topological insulating phase
in graphene by Kane and Mele was shown to be unrealistic,
because of its extremely small SOC strength [10,11]. Hence,
extensive efforts have been devoted to open a band gap and
increase the effective SOC in graphene or find other 2D
systems with favorable SOC, carrier mobility, and appropriate
band gap.

Other 2D materials such as single- or few-layer transi-
tion metal dichalcogenides (TMDs), boron nitride, silicene,
germanene, phosphorene, stanene, and MXene, have been
extensively explored [7,12–15].

Another important issue for applications in electronic
industry is the compatibility of the material with current
silicon-based electronic technology. Therefore, the group IV
elements with honeycomb structure are more favorable for this
purpose.

One method for tuning the electronic band structure of 2D
systems is the use of surface functionalization. Functional-
ization of graphene with hydrogen, the so-called hydrogen-
terminated graphene or graphane, opens a sizable band gap,
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but its carrier mobility decreases dramatically to 10 cm2/(V s)
[16]. Silicene and germanene the other analogs of graphene
have also attracted much attention. However, the small band
gap of these systems and mobility issues have limited their
application for electronics. Functionalized germanene provide
enhanced stability and tunable properties [17]. Compared
with bulk Ge, surface functionalized germanene possess a
direct and large band gap depending on the surface lig-
and. These materials can be synthesized via the topotactic
deintercalation of layered Zintl phase precursors [17,18]. In
contrast to TMDs, the weaker interlayer interaction allows
for direct band gap single layer properties such as strong
photoluminescence that are readily present without the need
to exfoliate down to a single layer. Bianco et al. [19] produced
experimentally hydrogen-terminated germanene, GeH (also
called germanane). Recently the new material GeCH3 was
synthesized [17], that exhibits an enhanced thermal stability.
GeCH3 is thermally stable up to 250 ◦C which compares to
75 ◦C for GeH. The electronic structure of GeCH3 has been
shown to be very sensitive to strain, which makes it very
attractive for strain sensor applications [20–22]. It has also
a high carrier mobility and pronounced light absorption which
makes it attractive for light harvesting applications [21,22].

At present there exist already a few first-principle studies
of GeCH3 that also include the effect of SOC [17,20–22].
To fully understand the physics behind the electronic band
structure close to the Fermi level, we propose a TB model.
Our TB model is fitted to the density functional theory (DFT)
results both for the case with and without SOC. In the next part
of this work we applied biaxial tensile strain to examine the
effect of strain on the electronic properties of this system and
compare our results with DFT calculations. The possibility of
a topological phase transition in GeCH3 under biaxial tensile
strain is also examined. Our finding that there is a transition to
the QSH phase is further corroborated by the fact that we find
TRS protected edge states in nanoribbons made out of GeCH3.

This paper is organized as follows. In Sec. II, we introduce
the crystal structure and lattice constants of monolayer GeCH3.
Our TB model with and without SOC is introduced in
Sec. III, and the effect of strain on the electronic properties
of monolayer GeCH3 is examined. In Sec. IV, using the Z2

formalism we demonstrate the existence of a topological phase
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FIG. 1. Schematic top (a) and side (b) views of the monolayer
GeCH3 structure. Blue, black, and gray balls indicate Ge, C, and H
atoms, respectively. Ge atoms are sandwiched between two sheets
of methyl groups. h is the buckling of the structure. (c) Top view of
the system eliminating the methyl group. a1 and a2 are the lattice
vectors. (d) First Brillouin zone of the system with the reciprocal
lattice vectors b1 and b2.

transition in the electronic properties of monolayer GeCH3

when biaxial tensile strain is applied. The paper is summarized
in Sec.V.

II. LATTICE STRUCTURE OF MONOLAYER GeCH3

The hexagonal atomic structure of monolayer GeCH3 and
its geometrical parameters are shown in Figs. 1(a)–1(c). As
shown in Figs. 1(a) and 1(b) it consists of three atomic layers
where a buckled honeycomb sheet of Ge atoms is sandwiched
between two outer methyl group layers. Each unit cell of
monolayer GeCH3 consists of two Ge atoms and two CH3

groups. Previous DFT calculations gave for the lattice constant
a = 3.954 Å, and the Ge-Ge and Ge-C bond lengths are
2.415 Å and 1.972 Å, respectively [20]. The buckling height h,
indicating the distance between two different Ge sublattices,
is 0.788 Å.

We have chosen the x and y axes along the armchair
and zigzag directions, respectively. The z axis is in the
normal direction to the plane of the monolayer GeCH3.
With this definition of coordinates, the lattice vectors are
written as a1 = a/2(1,

√
3), a2 = a/2(−1,

√
3), where the

corresponding hexagonal Brillouin zone of the structure [see
Fig. 1(d)] is determined by the reciprocal vectors b1 =
2π/a(1,

√
3/3), b2 = 2π/a(−1,

√
3/3).

III. TIGHT-BINDING MODEL HAMILTONIAN

Electronic structure of monolayer GeCH3 has been obtained
by using DFT calculations in Ref. [20]. It is shown that the
low-energy electronic properties of this system are dominated
by s, px , and py atomic orbitals of Ge atoms. DFT calculations
including SOC interaction have shown that applying an

in-plane biaxial tensile strain induces a topological phase
transition in the electronic properties of monolayer GeCH3

[20]. Although such a DFT approach provides valuable
information regarding the electronic properties of such a
system, it is limited to small computational unit cells. For
example, large nanoribbons consisting of hundreds of atoms
and including disorder require very large supercells which
go beyond present day computational DFT capability. This
motivated us to derive a TB model for monolayer GeCH3 that
is sufficiently accurate to describe the low-energy spectrum
and the electronic properties of this system.

In the following we will propose a low-energy TB model
Hamiltonian that includes SOC for monolayer GeCH3. We
show that our model is able to predict accurately the effect of
strain on the electronic properties of the system.

A. Model Hamiltonian without SOC

We propose a TB model including s, px , and py atomic
orbitals with principal quantum number n = 4 of Ge atoms to
describe the low-energy spectrum of this system. The nearest-
neighbor effective TB Hamiltonian without SOC in the basis of
|s,px,py〉 and in the second quantized representation is given
by

H0 =
∑
i,μ

Eiμc
†
iμciμ +

∑
〈i,j〉,μ,ν

tiμ,jν(c†iμcjν + H.c.), (1)

where c
†
iμ and ciμ represent the creation and annihilation

operators for an electron in the μth orbital of the ith atom,
Eiμ is the onsite energy of the μth orbital of the ith atom, and
tiμ,jν is the nearest-neighbor hopping amplitude between the
μth orbital of the ith atom and νth orbital of the j th atom. We
will show that this effective model is sufficiently accurate to
describe the low-energy spectrum of this system.

Note that the above Hamiltonian is quite different from
the effective Hamiltonian that describes the electronic prop-
erties of pristine germanene [23]. In the pristine honeycomb
structures of the group IV elements, the effective low-energy
spectrum is described by the outer pz atomic orbitals. However,
in monolayer GeCH3, the pz orbitals mainly contribute to the
σ bonding between Ge and C atoms to form the energy bands
that are far from the Fermi level. Therefore, we will neglect the
contribution of the pz orbitals of the Ge atoms and the other
orbitals of the CH3 molecule in our TB model.

With the above description, the hopping parameters of
Eq. (1) can be expressed in terms of the standard Slater-Koster
parameters as listed in the middle column of Table I, where l =
cos θ cos φ0 and m = sin θ cos φ0 are, respectively, functions
of the cosine of the angles between the bond connecting two
neighboring atoms with respect to x and y axes.

Using the Fourier transform of Eq. (1), and numerically
diagonalizing the resulting Hamiltonian in k space, one can fit
to the ab initio results in order to obtain the numerical values
of the mentioned Slater-Koster parameters. The density func-
tional calculation results [24] including the Heyd-Scuseria-
Ernzerhof (HSE) functional approximation [25] are used to
parametrize the TB model given by Eq. (1). We have listed the
obtained numerical values of these parameters in Table II. The
numerically calculated TB energy bands of monolayer GeCH3

in the absence of strain, as shown in Fig. 2(a), are in excellent

085441-2



TIGHT-BINDING MODEL INVESTIGATION OF THE . . . PHYSICAL REVIEW B 96, 085441 (2017)

TABLE I. The nearest-neighbor hopping parameters between s and p orbitals are listed in the first column. The second column represents
the hopping integrals as a function of the standard Slater-Koster parameters with direction-dependent quantities. The third column shows the
nearest hopping parameters with the inclusion of applied strain.

Hopping parameters Without strain With biaxial strain

tss Vssσ t0
ss

[
1 − 2ε cos φ2

0

]
tspx

lVspσ t0
spx

[
1 − 2ε cos φ2

0 + ηε tan φ0

]
tspy

mVspσ t0
spy

[
1 − 2ε cos φ2

0 + ηε tan φ0

]
tpxpx

l2Vppσ + (1 − l2)Vppπ t0
pxpx

[
1 − 2ε cos φ2

0 + 2ηε tan φ0

] − 2ηε tan φ0Vppπ

tpypy
m2Vppσ + (1 − m2)Vppπ t0

pypy

[
1 − 2ε cos φ2

0 + 2ηε tan φ0

] − 2ηε tan φ0Vppπ

tpxpy
lm(Vppσ − Vppπ ) t0

pxpy

[
1 − 2ε cos φ2

0 + 2ηε tan φ0

]

agreement with the ab initio results. The direct band gap of
monolayer GeCH3 at the 	 point is 1.82 eV.

B. Strain effects

Applying strain to a system modifies its electronic prop-
erties [26]. This is due to the fact that it changes both the
bond lengths and bond angles leading to a modulation of the
hopping parameters that determine the electronic properties of
the system.

An accurate prediction of the electronic properties of
the system in the presence of different types of strain, is
a stringent test of the accuracy of our TB model. To this
end, we now first calculate the modification of the hopping
parameters when biaxial tensile strain is applied to the plane
of monolayer GeCH3. Then we will study the modification
of the energy spectrum in the presence of such a strain
to show that our results agree very well with the DFT
calculations. This particular type of strain noticeably simplifies
our calculations. When biaxial tensile strain is applied in
the plane of monolayer GeCH3 leaves the honeycomb nature
of its lattice intact and the initial lattice vectors a0

1 and a0
2

evolve to the deformed ones a1 and a2. Therefore, the vector
r0 = (x0,y0,z0), in the presence of in-plane strain is deformed
into r = (x,y,z) = [(1 + εx)x0,(1 + εy)y0,z0], where εx and
εy are the strain in the direction of the x and y axes,
respectively. In the following, for simplicity we assume that
the strengths of the applied biaxial strains in the two directions
are equal, i.e., εx = εy = ε. In the linear deformation regime,
one can perform an expansion of the norm of r to first order in
εx and εy which results in

r � (1 + αxεx + αyεy)r0 = [1 + (αx + αy)ε]r0, (2)

where αx = (x0/r0)2 and αy = (y0/r0)2 are coefficients related
to the geometrical structure of GeCH3. For the three nearest
neighbor Ge atoms, one can write αx + αy = cos2 φ0, where
φ0 is the initial buckling angle. We note that in the presence of
biaxial strain, the bond lengths and buckling angles are both

TABLE II. The values of the Slater-Koster parameters in units of
eV as obtained from a fitting to the ab-initio results.

Vssσ Vspσ Vppσ Vppπ Es Ep

−2.20 2.62 2.85 −0.85 −5.09 2.1

altered. Thus, we consider their effects on the modification of
the hopping parameters, simultaneously. Based on elasticity
theory, we know that the main features of the mechanical
properties in a covalent material are determined by the
structure of the system and the strength of the covalent bonds.
Therefore, one can expect that the change of the buckling angle
in germanene [23] and GeCH3 be akin. The variation of the
buckling angle [23] as a function of biaxial strain can be fit to
the linear form φ = φ0 − ηε (see Fig. 3), where η = −30.
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FIG. 2. The TB band structure of the GeCH3 isolated monolayer
without SOC in the presence of (a) 0%, (b) 4%, (c) 8%, and
(d) 12% biaxial tensile strain. Symbols represent the HSE data taken
from [24].
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FIG. 3. Variation of the buckling angle as a function of biaxial
tensile strain. Symbols represent the DFT data for germanene [23]
and the solid line is the fit to this data.

According to the Harrison rule [27], the standard Slater-
Koster parameters related to s and p orbitals are proportional to
the bond length r as Vαβγ ∝ 1/r2. Using Eq. (2), the modified
parameters are given by

Vαβγ = (1 − 2ε cos2 φ0)V 0
αβγ . (3)

One can then use the change of the buckling angle and
the Slater-Koster parameters to obtain the modified hopping
parameters as listed in the last column of Table I, where t0

αβ

represents the unstrained hopping parameters. For instance,
the new hopping parameter tspx

can be approximated by

tspx
= t0

spx
+

(
∂tspx

∂r

)
r0

�r +
(

∂tspx

∂φ

)
φ0

�φ

= t0
spx

− 2 cos θ cos φ0V
0
spσ

�r

r0
− cos θ sin φ0V

0
spσ �φ.

(4)

Substituting �r/r0 = ε cos2 φ0 and �φ = −ηε into the above
equation gives

tspx
= t0

spx
[1 − ε(2 cos2 φ0 − η tan φ0)]. (5)

In a similar way, one can obtain the other modified hopping
parameters in order to study the evolution of the energy
spectrum of monolayer GeCH3 as a function of applied biaxial
tensile strain.

Straightforward substitution of the new hopping parameters
in the Hamiltonian, Eq. (1), gives the Hamiltonian for the
strained system. The calculated TB energy spectrum in the
presence of biaxial tensile strain with strengths of 4%, 8%,
and 12% are shown in Figs. 2(b), 2(c) and 2(d), which are in
excellent agreement with the DFT results [20,24]. We show in
Fig. 4 the dependence of the band gap of GeCH3 as a function
of biaxial tensile strain. Notice the good agreement between
both DFT and TB approaches demonstrating the validity of
our proposed TB model.

FIG. 4. Comparison of the variation of energy band gap vs biaxial
strain between TB model and HSE calculations [20].

C. Spin-orbit coupling

Spin-orbit interaction is a relativistic correction to the
Schrödinger equation. It can significantly affect the electronic
properties of systems that consist of heavier elements. In
such systems, the major part of SOC originates from the
orbital motion of electrons close to the atomic nuclei. In
the Slater-Koster approximation, one can assume an effective
spherical atomic potential Vi(r), at least in the region near the
nucleus. Therefore, one can substitute ∇Vi(r) = (dVi/dr)r/r

and s = h̄/2σ into the general form for the SOC term [28,29],

HSOC = − h̄

4m2
0c

2
(∇V × p) · σσσ , (6)

to obtain the SOC in the form of

HSOC = λ(r)L · σσσ , (7)

where λ(r) = 1/2m2
0c

2r(dV/dr) is a radial function whose
value depends on the type of atomic species. In the above
equations, h̄,m0,c, and p, are Plank constant, free mass of
electron, speed of light, and momentum, respectively; and
σσσ ,L, and s represent the Pauli matrices, angular momentum
operator, and electron spin operator, respectively.

Using the well-known ladder operators L± and S±, one can
obtain the matrix representation of the SOC Hamiltonian in
the basis set of |↑,↓〉 ⊗ |s1,px1,py1,s2,px2,py2〉 for monolayer
GeCH3 with matrix elements,

〈αi |HSOC|βi〉 = λi〈L · σσσ 〉αβ, (8)

where αi and βi represent the atomic orbitals of the ith
atom. Note that since the two atom bases in the unit cell of
the monolayer GeCH3 are the same, we have λ1 = λ2 = λ.
There is no matrix element between s and p orbitals for the
SOC interaction. Therefore, the resulting Hamiltonian can be
written in the form,

H =
∑
i,μ,σ

Eiμc
†
iμσ ciμσ +

∑
〈i,j〉,μ,ν,σ

tiμ,jν(c†iμσ cjνσ + H.c.)

+ λ
∑

i,α,β,γ,σ,σ ′
c
†
ipασ cipβσ ′

(−iεαβγ σ
γ

σσ ′
)
, (9)
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FIG. 5. The multiorbital TB spectrum of the GeCH3 monolayer
with SOC. Symbols represent the LDA data taken from [20].

where μ and ν are either s, px , or py orbitals; α and β run over
x, y, and z; and ε is the Levi-Civita symbol. σ

γ

σσ ′ are Pauli
matrices.

The value of the strength λ of the SOC should be chosen
either in agreement with experiment or by fitting the TB bands
to the ab initio results near some k points such that it gives
the correct band gap. In order to evaluate the strength of
the SOC for Ge atoms in monolayer GeCH3, we fitted the
spectrum obtained from our multiorbital TB model to the one
from density functional calculations within the local density
approximation (LDA) for the exchange correlation in Ref. [20].
As shown in Fig. 5, there is excellent agreement between
the TB spectrum and the DFT results for the SOC strength
λ = 0.096 eV. We adopt this SOC strength in the following
calculations of the TB spectrum when we use the hopping
parameters from Table II.

The TB energy spectrum of monolayer GeCH3 are shown
in Figs. 6(a) and 6(b) for 0% and 12.5% strain, respectively.
Note that due to the presence of time reversal and inversion
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FIG. 6. The TB band structure of GeCH3 isolated monolayer with
SOC in the presence of (a) 0%, and (b) 12.5% biaxial tensile strain.
(c) Zoomed-in view of (b).

FIG. 7. The calculated band gaps of monolayer GeCH3 as a
function of biaxial strain at the 	 point E	 , and the global gap Eg .
The two distinct colored regions show the different trivial and band
inverted phases.

symmetry, each band in the energy spectrum of monolayer
GeCH3 is doubly degenerate. As shown in Fig. 7, by applying
biaxial tensile strain, the global band gap located at 	 gradually
decreases and eventually a band inversion occurs at 11.6%
strain. By further increasing strain, the induced band gap
due to SOC [see Figs. 6(b), and 6(c)] becomes indirect,
and at a reasonable strength of 12.8% reaches the value of
115 meV.

One can use the TB spectrum of Fig. 6 to calculate the
effective masses of electrons and holes near the conduction
band minimum (CBM) and the valence band maximum
(VBM). The results, in unit of free electron mass m0, are
listed in Table III for 0%, 6%, 9%, and 12.5% biaxial tensile
strain. Note that the electron and hole effective masses near
the CBM and VBM along the two directions of 	-K and 	-M
are the same.

Another way to test the validity of our TB model is its
ability to predict a possible topological phase transition in
the electronic properties of monolayer GeCH3. In the next
section we will study the strain-induced topological phase in
monolayer GeCH3 using our TB model.

IV. TOPOLOGICAL PHASE TRANSITION
OF MONOLAYER GeCH3 UNDER STRAIN

In the previous section, using the TB model including
SOC, we showed that the monolayer GeCH3 is a NI. We also

TABLE III. The effective mass of electron and hole near the
CBM and VBM in unit of free electron mass m0. The electron and
hole effective masses along the two directions of 	-K and 	-M are
the same.

Strain (ε)\Effective mass (m/m0) Electron Hole

0% 0.135 0.157
6% 0.074 0.105
9% 0.045 0.058
12.5% 0.033 0.316
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showed that one can manipulate its electronic properties by
applying in-plane biaxial strain. It is clear from Eq. (8) that
SOC preserves the TRS. Thus, the monolayer GeCH3 can
exhibit a QSH phase when its energy spectrum is manipulated
by an external parameter that does not break TRS. The Z2

classification is a well-known approach to distinguish between
the two different NI and TI phases [1,2]. In the following, we
briefly introduce the lattice version of the Fu-Kane formula
[30] to calculate the Z2 invariant. Then, we show numerically
that by applying biaxial tensile strain, a change in the bulk
topology of the monolayer GeCH3 occurs.

A. Calculation of the Z2 invariant

The Fu-Kane formula [30] for the calculation of the Z2

invariant is given by

Z2 = 1

2πi

[∮
∂HBZ

dk·A(k) −
∫

HBZ
d2kF(k)]

]
(mod 2),

(10)
where the integral is taken over half the Brillouin zone as
denoted by HBZ. Here, the Berry gauge potential A(k) and
the Berry field strength F(k) are given by

∑
n〈un(k)|∇nun(k)〉

and ∇k × A(k) |z, respectively; un(k) represents the periodic
part of the Bloch wave function with band index n, and the
summation in A(k) runs over all occupied states.

Note that, in this approach, one has to do some gauge
fixing procedure [31] to fulfill the TRS constraints and the
periodicity of the k points which are related by a reciprocal
lattice vector G. Moreover, due to the TRS and the inversion
symmetry in the monolayer GeCH3, each band is at least
doubly degenerate. Therefore, one needs to generalize the
definition of A and F to non-Abelian gauge field analo-
gies [32] constructed from the 2M-dimensional ground-state
multiplet |ψ(k)〉 = (|u1(k)〉, . . . ,|u2M (k)〉), associated with the
Hamiltonian H(k)|un(k)〉 = En(k)|un(k)〉 [31,32].

In order to compute the Z2 invariant, a lattice version of
Eq. (10) is more favorable for numerical calculations. To this
end, one can simply convert the equivalent rhombus shape
of the honeycomb Brillouin zone in k space as shown in
Figs. 8(a) and 8(b), into a unit square in q space by the
following change of variables:

kx = 2π

a
(qx − qy), ky = 2π√

3a
(qx + qy). (11)

FIG. 8. Conversion of the equivalent (a) rhombus shape of the
honeycomb Brillouin zone in k space into a (b) unit square in q

space.

This allows us to use the more simple lattice version of
Eq. (10) [31],

Z2 = 1

2πi

⎡
⎣ ∑

q
l
∈∂HBZ

Ax(ql) −
∑

q
l
∈HBZ

Fxy(ql)

⎤
⎦(mod 2), (12)

where the lattice sites of the Brillouin zone are labeled by ql .
Thus the above-mentioned gauge fixing procedure and TRS
constraints are applied on the equivalent q points. Using the
so-called unimodular link variable [31],

Uμ̂(ql) = detψ†(ql)ψ(ql + μ̂)

|detψ†(ql)ψ(ql + μ̂)| , (13)

where μ̂ denotes a unit vector in the qx-qy plane, one can
define the Berry potential and Berry field in Eq. (12) as

Ax(ql) = ln Ux(ql), (14)

Fxy(ql) = ln
Ux(ql)Uy(ql + x̂)

Uy(ql)Ux(ql + ŷ)
. (15)

Note that both the Berry potential and the Berry field strength
are defined within the branch of Ax(ql)/i ∈ (−π,π ) and
Fxy(ql)/i ∈ (−π,π ).

The numerical results of the Z2 invariant are shown in
Fig. 9. As seen, for ε < 11.6%, the monolayer GeCH3 is an
NI and at the critical value of ε = 11.6%, the Z2 invariant
jumps from 0 to 1, indicating a strain-induced TI phase
transition in the electronic properties of the system. The
topologically protected global bulk gap for a strain of 12.8%
is 115 meV, which is much larger than the thermal energy at
room temperature and therefore the monolayer GeCH3 is an
excellent candidate for strain related applications.

In the next subsection we examine the formation of
topologically protected edge states in a typical nanoribbon
with zigzag edges when the system is driven into the TI phase
by applying biaxial tensile strain.

NI TI

FIG. 9. Calculation of the Z2 invariant for the monolayer GeCH3

in the presence of biaxial strain. The two NI and TI phases are
represented by regions of different colors and delimited by a black
line at the critical value of 11.6%.
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B. Electronic properties of GeCH3 nanoribbons under strain

The appearance of helical gapless states at the edge of a 2D
topological insulator is a crucial consequence of its nontrivial
bulk topology. In the previous section, we showed that a jump
from 0 to 1 in the Z2 invariant for biaxial strain at ε > 11.6%
takes place, demonstrating a topological phase transition in
the electronic properties of the monolayer GeCH3. As an
example, in this subsection, we study the 1D energy bands
of GeCH3 nanoribbons with zigzag edges in the presence of
biaxial tensile strain. Our TB model predicts the appearance of
topologically protected edge states with increasing strain when
the Z2 invariant becomes 1. We denote the width of the zigzag
GeCH3 nanoribbon (z-GeCH3-NR) by N, which is the number
of zigzag chains across the ribbon width. To calculate the
energy spectrum of a z-GeCH3-NR with width N, we construct
its supercell Hamiltonian (H SC) in the basis of |ψ〉 ≡ |↑,↓〉 ⊗
|sH0 ,s1,px1,py1, . . . ,s2N,px2N,py2N,sH1〉 where si , pxi , and
pyi represent the s, px , and py orbitals of Ge atoms along
the nanoribbon width. |sH0〉 and |sH1〉 represent the atomic
orbitals of H atoms that are introduced to passivate the Ge
atoms on each edge, respectively. We assume that the width
of the nanoribbon is large enough that the interaction between
the two edges is negligible, and one can safely neglect the
tiny change of the hopping parameters due to the passivation
procedure. Therefore, one can write the matrix elements of the
nanoribbon Hamiltonian H SC = H SC

0 + H SC
SOC as

Mσσ ′
iμ,jν = 〈ψ |H SC|ψ〉σσ ′

iμ,jν

= Eiμδij δμνδσσ ′

+ δσσ ′
∑

n

tiμ,jνe
ik·R0n + λiδij 〈L · σσσ 〉σσ ′

μν ,

(16)

where i,j are the basis site indices in a supercell; μ,ν denote
the atomic orbitals; σ,σ ′ denote the spin degrees of freedom;
and R0n is the translational vector of the nth supercell. The
corresponding onsite energy of Ge atoms and the hopping
parameters pertinent to the Ge-Ge bonds are substituted from
Tables I and II. Moreover, one has to define the onsite energy
Es

H , and the hopping parameters t ssH,Ge and t
spy

H,Ge in the above
equation corresponding to the matrix elements related to the
H-Ge bond. We adopt from the fitting procedure the numer-
ical values Es

H = −2.54 eV, t ssH,Ge = V ss
H,Ge = −4.54 eV, and

t
spy

H,Ge = ±V
sp

H,Ge with V
sp

H,Ge = 0.5 eV where +(−) denotes
the lower (upper) H-Ge edge bonds. One can diagonalize the
corresponding TB Hamiltonian, Eq. (16), in order to obtain the
energy spectrum. By applying biaxial tensile strain we found
that the band gap of the nanoribbon gradually decreases and
eventually the metallic edge states protected by TRS appear
for a strain value where a band inversion takes place in the TB
energy spectrum of bulk monolayer GeCH3. The numerically
calculated energy bands of z-GeCH3-NR with N = 40 in the
presence of 9%, 11%, and 13% biaxial tensile strain are shown
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FIG. 10. The 1D energy bands of z-GeCH3-NR for N = 40 in
the presence of (a) 9%, (b) 11%, and (c) 13% biaxial tensile strain.

in Figs. 10(a), 10(b) and 10(c), respectively. This demonstrates
a topological phase transition from the NI to the QSH phase
in the electronic properties of monolayer GeCH3.

V. CONCLUSIONS

To conclude, we have proposed an effective TB model
with and without SOC for monolayer GeCH3 including s,
px , and py orbitals per atomic site. Our model reproduces
the low-energy spectrum of monolayer GeCH3 in excellent
agreement with ab initio results. It also predicts accurately
the evolution of the band gap in the presence of biaxial tensile
strain. By including the SOC, this band gap manipulation leads
to a band inversion in the electronic properties of monolayer
GeCH3, giving rise to a topological phase transition from NI
to QSH. Our model predicts that this phase transition takes
place for 11.6% biaxial tensile strain as verified by the Z2

formalism. The topologically protected global bulk gap at a
strain of 12.8% is 115 meV, which is much larger than the
thermal energy at room temperature and makes monolayer
GeCH3 a promising candidate for future applications. We
also showed the emergence of topologically protected edge
states in a typical z-GeCH3-NR in the presence of biaxial
strain larger than 11.6%. This is an additional confirmation of
the existence of the TI phase in the electronic properties of
monolayer GeCH3.

M.R. and E.T.S. contributed equally to this work.
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