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Artificial molecular states of double quantum dots defined in bilayer graphene are studied with the atomistic
tight-binding method and its low-energy continuum approximation. We indicate that the extended electron wave
functions have opposite parities on sublattices of the layers and that the ground-state wave-function components
change from bonding to antibonding with the interdot distance. In the weak-coupling limit, the one most relevant
for quantum dots defined electrostatically, the signatures of the interdot coupling include, for the two-electron
ground state, formation of states with symmetric or antisymmetric spatial wave functions split by the exchange
energy. In the high-energy part of the spectrum the states with both electrons in the same dot are found with the
splitting of energy levels corresponding to simultaneous tunneling of the electron pair from one dot to the other.
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I. INTRODUCTION

Studies of artificial molecules formed by carrier orbitals
extended over double quantum dots (DQDs) focus on carrier
tunneling and interactions [1–5,7]. Particular attention is paid
to the spin-related phenomena in the context of quantum
information processing [8] using exchange interaction due
to the interdot coupling [7,9]. The coupling with nuclear
spins [10–13] which limits the electron-spin-coherence times
motivated studies of DQDs with holes as spin carriers [14,15]
as well as on systems based on silicon [16] and carbon,
including nanotubes [17] and graphene [18]. In graphene the
carrier storage is hampered by the Klein tunneling [19], but
for nanoribbons the lateral confinement opens the transport
gap [20] that makes the carrier storage possible [21]. Quantum
dots in ribbons are influenced by edge effects and disorder
[22]. An alternative medium is the bilayer graphene [23] for
which the perpendicular electric field opens the band gap [24]
in the energy spectrum and allows for carrier confinement by
lateral fields [25–30].

In this work we consider bilayer graphene [23] and the
formation of extended orbitals within the DQDs. In the low-
energy continuum approach Hamiltonian eigenstates possess
a definite total angular momentum [25] with a different orbital
angular momentum for each of the four sublattices described
by the wave-function components.

As we discuss below for a lower point symmetry of the DQD
system, the Hamiltonian eigenstate components correspond
to opposite spatial parities for each of the sublattices. Thus
the wave function can be bonding on one sublattice and
antibonding on the other. The effect induces a complex
dependence of the spectrum on the DQD distance that is similar
to the antibonding heavy-hole ground state found for vertical
self-assembled quantum dots [3–6].

In the low-energy part of the two-electron spectrum for the
weak-coupling case, the typical one for electrostatic quantum
dots, the electrons are localized in separate QDs, and the
ground state at zero magnetic field B is nearly 16 times
degenerate with respect to the valley and the spin. For nonzero
magnetic field the energy levels correspond to a wave function
that can be approximately described by a product of the spatial,

valley, and spin components. Only the symmetry of the spatial
part against the electron interchange influences the energy of
the states, and we find that the energy levels shift in pairs
with B that correspond to the opposite symmetry split by the
exchange integral. In the high-energy part of the spectrum
the states corresponding to both electrons in the same dot are
found. These energy levels also shift in B in pairs, which is
a manifestation of collective two-electron interdot tunneling
that forms bonding and antibonding two-electron orbitals. For
stronger interdot coupling the DQD spectrum resembles that
of a single quantum dot with a ground-state triplet [31].

This paper is organized as follows. In Sec. II we describe the
model system, the atomistic and continuum approaches, and
the configuration-interaction method for the electron pair. In
Sec. III we discuss the formation of the extended orbitals and
their nature as artificial molecular states, and then we discuss
the spatial, spin, and orbital symmetries of the two-electron
states. A summary and conclusions are given in Sec. IV.

II. THEORY

A. Model structure

We consider a flake in the form of a stretched hexagon
(see Fig. 1) with the bilayers in Bernal stacking [23] and two
quantum dots defined by the external potential. We consider
two sizes of flakes. The smaller flake has a length of L =
64.6 nm and height h = 27.6 nm, with a horizontal edge length
of L′ = 48.8 nm, and the total number of carbon atoms is
119 928. The larger flake is characterized by L = 89.46 nm,
L′ = 63.9 nm, and h = 44.51 nm and contains 261 000 atoms.
Two different sizes of flakes for a fixed external potential
defining the quantum dots are introduced for the discussion of
the effects of the coupling between the dot-confined states and
the edge of the flake.

We consider a flake with an armchair boundary for which
no edge-localized energy levels appear in the spectrum at the
neutrality point [30,32,33]. The quantum dots for electrons
of the conduction band are defined by the external potential
which takes the form

VQD(x,y) = −V exp{−[(|x| − d)2 + y2]/R2}, (1)
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D. P. ŻEBROWSKI, F. M. PEETERS, AND B. SZAFRAN PHYSICAL REVIEW B 96, 035434 (2017)

z

x

y W
B

B

′

FIG. 1. Schematic drawing of the considered system. A bilayer
graphene flake in a hexagonal shape is stretched in the x direction
with quantum dots separated by 2d represented by blue circles. We
consider flakes of two sizes. The length of the smaller system is
L = 64.6 nm, the height is h = 27.6 nm, and the longer edge has
a length of L′ = 48.8 nm; the parameters for the larger system are
L = 89.46 nm, L′ = 63.9 nm, and h = 44.51 nm.

where the origin (x = y = 0) is placed in the center of the
flake, V is the quantum dot depth, R is the effective radius,
and 2d is the distance between the centers of the QDs. In this
work, we fix R at 4 nm; for this value the wave functions
localized in the dots vanish off the edges of the larger flake,
for which the valley mixing effect of the armchair edge is
negligible. For the smaller flake the effect of the edge for the
confined states is still present, and we use this fact below for
the description of the valley mixing effects on the single- and
the two-electron spectra.

B. Tight-binding model

For most of the calculations we use the atomistic tight-
binding Hamiltonian [23] given by

Ĥ1e =
∑
i,σ

Wσ
i ĉ

†
i,σ ĉi,σ +

∑
ij,σσ ′

(ĉ†i,σ ĉj,σ ′ tij + H.c.), (2)

where ĉ
†
i,σ (ĉi,σ ) creates (annihilates) an electron with spin σ

at ion i and tij is the hopping parameter. At zero magnetic
field the hopping parameter takes the value tij = −2.6 eV for
the in-plane nearest-neighbor atoms and tij = 0.3 eV for the
vertical dimers between the layers [23]. In order to account for
the magnetic field perpendicular to the layers we include the
Peierls phase in the hopping parameters,

tij → tij e
i e

h̄

∫ rj
ri A·dl, (3)

where B = ∇ × A, with A = (0,Bzx,0). The potential Wσ
i in

Eq. (2) has the form

Wσ (x,y) = VQD(x,y) + WB

2
τz + 1

2
μBgσzBz, (4)

where the first term is given by Eq. (1) and the second one is
the potential difference between the layers with τz = ±1, with
+ (−) for the upper (lower) layer. This difference opens the
energy gap in the bilayer flake by the asymmetry introduced
between the layers [23]. In our calculations we set WB =
300 meV, which is equivalent to applying the vertical electric
field F ≈ 0.9 V/nm. For this value we obtain a gap of about

Eg ≈ 141 meV. The last term in Eq. (4) introduces the Zeeman
interaction, where g = 2 is the Landé factor and σz stands for
the Pauli matrix.

C. Continuum approximation

For analysis of the single-electron envelope wave functions,
we also consider the low-energy approximation in the contin-
uum model. Near a single valley the electron wave functions
are written in the form of the four-component spinor [23],

�(r) = (φA(r),φB(r),φB ′(r),φA′(r))T , (5)

where A and B (B ′ and A′) represent the A and B sublattices of
the upper (lower) layer, respectively. The Dirac Hamiltonian
[23] around the K valley takes the form

ĤD =

⎛
⎜⎜⎜⎝

VQD π t⊥ 0

π † VQD 0 0

t⊥ 0 VQD π †

0 0 π VQD

⎞
⎟⎟⎟⎠ + WB

2
τz, (6)

where π = vF (px + ipy), (px,py) is the momentum operator,
vF = 3ta

2 = 0.84 × 106 m
s

is the Fermi velocity, and t⊥ =
0.3 eV is the interlayer coupling term. The τz operator defined
as

τz =
(
I2 0
0 −I2

)
, (7)

which assigns +1 (−1) for the upper (lower) layer, opens the
gap by applying the voltage difference WB between the layers.

The quantum dot potential (1) is symmetric with respect
to the point inversion at the origin. For this potential the
Hamiltonian commutes with a generalized parity operator

ÛP =
(−σz 0

0 −σz

)
P̂ , (8)

where P̂ changes the sign of the spatial coordinates of scalar
functions P̂ φ(r) = ±φ(−r) and In is the n × n identity matrix.

For a single circular quantum dot the total angular momen-
tum operator

Ĵz = L̂zI4 + h̄

2
τz − h̄

2

(
σz 0
0 −σz

)
(9)

commutes with the Hamiltonian [25], where L̂z is the angular
momentum operator. The second term is the layer index
operator with τz defined by (7). The last term corresponds
to the pseudospin [23].

In order to find the eigenstates of the Hamiltonian (6) we use
the finite-element method with triangular elements and cubic
shape functions. The fermion-doubling fast-varying spurious
solutions [34] are eliminated with the additional Wilson [34]
term introduced to the Hamiltonian (6),

ĤW = WP h̄vF aD

(−σz 0
0 −σz

)
∇2, (10)

where WP = 0.015 is the dimensionless Wilson parameter
[34] and aD = 1.32 nm is the discretization constant. The WP

parameter was fine-tuned to remove the spurious solutions
from the discussed energy range, leaving the actual states
nearly unaffected.
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D. Configuration-interaction method

The wave functions obtained with the tight-binding
approach are used in the configuration-interaction method
[35,36]. The atomistic approach when applied to the exact
diagonalization method naturally accounts for the intervalley
scattering induced by the short-range component of the
Coulomb interaction [37–39].

For the description of the two-electron states we use the
solution of the one-electron eigenproblem (2). Then, we
expand the two-electron wave function in the basis of M Slater
determinants,

� =
M∑
i=1

di[ψi1(x1) ⊗ ψi2(x2) − ψi2(x1) ⊗ ψi1(x2)], (11)

with spin orbitals ψi(x), i = 1,2, . . . ,M,i1,i2 ∈ [1,K], where
x = (r,σ ) represents the orbital and spin coordinates. The
number of Slater determinants M is

(
K

2

)
, where K is

the number of dot-localized single-electron spin orbitals. The
two-electron Hamiltonian is

Ĥ2e(x1,x2) =
2∑

i=1

Ĥ1e(xi) + κ

|r12| , (12)

where κ = e2/(4πεε0). The dielectric constant ε = 6 is taken
from Ref. [40] for graphene grown on SiC. Using the form of
the wave function given by (11), we arrive at the Hamiltonian
of the form

Ĥ2e =
∑
ij

d̂
†
i 〈ψi |Ĥψj 〉d̂j + 1

2

∑
ijkl

d̂
†
i d̂

†
j d̂kd̂lVijkl, (13)

where d̂
†
i creates an electron in the ith spin orbital. The one-

electron energy is taken into account with the matrix elements
〈ψi |Ĥψj 〉. The Coulomb matrix element

Vijkl = κ〈ψi(x1)ψj (x2)
1

|r12|ψk(x1)ψl(x2)〉 (14)

for the single-electron wave functions given by linear combi-
nations of atomic orbitals pz gives

Vijkl = κ〈ψi(x1)ψj (x2)| 1

|r12| |ψk(x1)ψl(x2)〉

= κ
∑

a,σa ; b,σb ;
c,σc ; d,σd

βi∗
a,σa

β
j∗
b,σb

βk
c,σc

βl
d,σd

δσa ;σd
δσb ;σc

×〈pa
z (r1)pb

z (r2)| 1

|r12| |p
c
z(r1)pd

z (r2)〉. (15)

For the Coulomb integral we apply the two-center approxi-
mation [41] 〈pa

z (r1)pb
z (r2)| 1

|r12| |pc
z(r1)pd

z (r2)〉 = 1
rab

δacδbd for
a �= b, and for the single-center integral a = b we take
16.522 eV [36].

III. RESULTS

A. Single-electron energy levels

The single-electron spectrum obtained with the atomistic
tight-binding method is displayed in Fig. 2 as a function of the
depth of the dots for the interdot distance 2d = 20 nm for zero
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FIG. 2. The energy spectrum as a function of the quantum dot
depth V for an interdot distance of 2d = 20 nm at zero magnetic field.
The red (gray) curves indicate the localization of electron density
inside (outside) the quantum dots. The dashed line shows the potential
depth chosen for further calculations.

magnetic field. The color of the lines indicates the extent of the
electron localization within QDs: the red ones are localized in
the QD potentials, and the gray energy levels correspond to
the states which are localized outside the dots. Figure 2 shows
that the latter ignore the QD potential. The vertical line in
Fig. 2 indicates the potential value V = 250 meV that is taken
for further calculations. Each of the energy levels plotted in
Fig. 2 is nearly fourfold degenerate with respect to the spin
and valley.

For identical quantum dots the splitting between the two
lowest energy levels is a result of the interdot coupling. These
energy levels tend to a further degeneracy at large d (see Fig. 3).
Typically, in coupled quantum dots for small d the bonding
and antibonding electron orbitals are formed, and the splitting
energy in III–V systems is a monotonic function of d [9]. That
is not the case that we observe in Fig. 3(a), where crossings of
the two lowest energy levels are seen.

The energy spectrum obtained with the continuum approx-
imation of Figs. 3(c) and 3(d) is similar to the exact results
of Figs. 3(a) and 3(b). In Fig. 3(c) we plot with the color
of the line the average value of the total angular momentum
(9) calculated for the envelope function of the continuum
Hamiltonian. At large d, where the interdot tunneling is
negligible, and for d = 0, where the potential has a rotational
symmetry, the Ĵz eigenvalue is a good quantum number.
The separate components of the envelope wave function
correspond then to the angular momentum quantum number
[25] of (m,m + 1,m,m − 1) for sublattices A, B, B ′, and A′,
respectively. The ground state for the circular QD corresponds
to m = 1, and the lowest excited state corresponds to m = 0,
in accordance with Ref. [25].

For a general interdot distance d the total angular momen-
tum is no longer quantized. However, each of the components
has strict symmetry with respect to the point inversion through
the center between the dots. The total wave function is an
eigenstate of ÛP , and the eigenvalues ±1 are marked in
Fig. 3(d) with the color of the line.

In order to analyze in more detail the formation of
the extended orbitals by the single-dot wave functions we
constructed the localized (ionic) orbitals of the left l and

035434-3



D. P. ŻEBROWSKI, F. M. PEETERS, AND B. SZAFRAN PHYSICAL REVIEW B 96, 035434 (2017)

(a)

-40

-20

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25

E
 (

m
eV

)

2d (nm)

 0

 0.2

 0.4

 0.6

 0.8

 1

el
ec

tr
on

 lo
ca

li
za

ti
on

(b)

-15

-10

-5

0

5

10

15

20

25

30

8 12 16 20 24

E
 (

m
eV

)

2d (nm)

φl-φr)/√2(

(φl+φr)/√2

(c)

-40

-20

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25

E
 (

m
eV

)

2d (nm)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0
<

J z
>

 (
h/

2π
)

(d)

-10

-5

0

5

10

15

20

25

30

35

8 12 16 20 24

E
 (

m
eV

)

2d (nm)

a

b

c

d
e

f

(e)

90

100

110

120

130

140

150

8 12 16 20 24

T
in

-p
la

ne
(m

eV
)

2d (nm)

<U >=+1p

<U >=-1p

(f)

3
4
5
6
7
8
9

10
11
12
13
14

8 12 16 20 24

T
 (

m
eV

)

2d (nm)

<U >=-1p

<U >=+1p

FIG. 3. Single-electron spectrum as a function of the interdot
distance as obtained (a) and (b) with the atomistic tight-binding
method and (c) and (d) with the low-energy continuum approxi-
mation. (a) The color of the lines indicates the electron localization,
with the charge density integrated within the distance of 2R from
the centers of the dots. (b) Zoom of (a). The red lines are the
same as in (a), while the orange and blue ones have been obtained
as the sum or difference of the wave functions localized in single
dots (see text). (c) The energy levels obtained with the low-energy
approximation, with the color indicating the average value of the
total angular momentum (9). (d) Same as (c), but with the color of
the line indicating the eigenvalue of the ÛP operator: the green one
is +1, and the black one is −1. (e) The in-plane kinetic energy for
the lowest-energy ÛP eigenstates, showing the average value of the
off-diagonal part of Hamiltonian (6) with t⊥ excluded. (f) The kinetic
energy for the ÛP eigenstates with both intralayer (π ) and interlayer
(t⊥) hopping, showing the average value of the entire off-diagonal
part of Hamiltonian (6).

right r quantum dots using the tight-binding approach. The
wave functions l and r were constructed separately from
(1) the two lowest energy states φ1 and φ2 and (2) the
third and fourth states φ3 and φ4. The ionic functions were
taken as a superposition of the Hamiltonian eigenstates, l1,2 =
[φ1 + exp(iα)φ2], r1,2 = {φ1 + exp[i(α + π )]φ2}, where the
phase α was taken to maximize the electron localization at
the left or right side of the origin. Then for Fig. 3(b) the
extended states were produced as constructive and destructive

interference of the l and r functions, φ1,2
c = 1√

2
(l1,2 + r1,2)

and φ
1,2
d = 1√

2
(l1,2 − r1,2), respectively. A similar operation

was performed starting from the third and fourth energy-level
wave functions φ3 and φ4. The mean values of the energy
calculated for φc and φd wave functions are plotted by blue and
orange lines in Fig. 3(b), respectively. The red line shows the
exact result, which is the same as in Fig. 3(a). Note that there is
a one-to-one correspondence between the ÛP eigenvalue and
the superposition sign taken in Fig. 3(b).

For the scalar electron envelope function in a III–V material
φc and φd would correspond simply to the bonding and
antibonding orbitals. For multicomponent wave functions of
opposite symmetry the situation is more complex. In particular,
for holes in the artificial molecules formed by vertical quantum
dots [3–6] the wave functions need to be described by
multicomponent wave functions for each of the valence bands
that become degenerate at the  point. In these systems the
parity of the heavy-hole component is opposite the light hole
component. For large interdot distances the interdot tunneling
is carried by the light-hole component, and a bonding state
at the light-hole component is formed, which triggers an
antibonding heavy-hole ground state [3–6]. In III–V materials
the crossing of the states of opposite parities is observed only
for the vertical coupling [3–5] and not the lateral coupling of
the quantum dots [6].

For the lateral DQD studied here the origin of the nonmono-
tonic behavior of the spacing between the lowest energy levels
in Figs. 3(c) and 3(d) can be understood by inspecting the wave
function. In Fig. 4 we plot the real part of the wave functions
for energy levels and d values marked by the corresponding
letters in Fig. 3(d). For the plots at large interdot distances
[see Figs. 4(c), 4(e) and 4(f)], each of the wave-function
components depends on the azimuthal angle as Re[exp(iL�)]
like for the angular momentum z-component eigenfunctions
with quantum number L. In particular, in the lowest-energy
state that is twofold degenerate at large d [see Figs. 4(e) and
4(f)] the total angular momentum quantum number is m = 1,
and the ÛP eigenvalue is +1 in Fig. 4(e) and −1 in Fig. 4(f). As
the interdot distance is varied [see Fig. 3(d)], the energies of the
states change but in a complex manner since two components
of the wave functions are even in terms of the ÛP operator,
while the other two are odd, and the two parities have opposite
consequences for energies as d is modified. Moreover, the
contributions of the components change. For instance, the state
with the wave function given in Fig. 4(f) has a dominant A′

component which is antibonding. For lower d the A and B

components [Fig. 4(d)] are increased at the expense of A′ one.
The black energy level in Fig. 3(d) becomes the ground-state
level between interdot distances of 8 and 16 nm. The varied
contributions of the components involve avoided crossings
between the energy levels of the same ÛP parity, and the
identity of the lines that avoided crossing can be traced by the
average angular momentum [Fig. 3(c)]. At d = 0 the sequence
of Jz eigenvalues in the order of the energy is the same as in
the large d limit.

In order to analyze the effect of the molecular coupling on
the energy levels and the crossing observed in Figs. 3(a)–3(d)
we plot in Fig. 3(e) the contribution of the in-plane kinetic
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FIG. 4. Real part of the wave functions for the energy levels indicated by the corresponding letters in Fig. 3(d) at the sublattices of both
layers. The states labeled (a) and (d) correspond to 2d = 8 nm, and the rest of the plots correspond to 2d = 20 nm. The deepest red (blue) color
indicates the most positive (negative) value of the real part of the wave function, and white indicates its vanishing value.

energy for hopping between A-B and A′-B ′ sublattices within
each layer that is due to the π operator in the Hamiltonian
given by Eq. (6). Figures 4(d), 4(e) and 4(f) indicate that
for the ground state the coupling of the single-dot energy
levels, each corresponding to m = 1, appears for the largest
interdot distances at the B component which corresponds to
orbital angular momentum quantum number L = m + 1 = 2.
The state that forms a bonding component there [Fig. 4(e)]
with a positive eigenvalue of the ÛP operator decreases in
energy [Fig. 3(e)] due to the interdot coupling. When the dots
get closer, the components with orbital angular momentum
L = m = 1 at the A and B ′ sublattices form a molecular orbital
which is antibonding (bonding) for the ÛP eigenstate with an
eigenvalue of +1 (−1). Due to the inverse contribution to the
energy the first crossing at the ground-state energy level is
observed near 2d = 18 nm [Figs. 3(a) and 3(d)].

The in-plane kinetic energies for the two states cross for
an even larger distance [Fig. 3(e)] of 2d = 21 nm. For the
interlayer hopping between the A and B ′ sublattices included,
the crossing of kinetic energies occurs closer [Fig. 3(f)] to the
intersection of the energy levels [Fig. 3(d)].

The second crossing of the ground-state energy levels near
2d = 8 nm results from the activation of the interdot tunnel
coupling for the A′ component of the angular momentum
L = m − 1 = 0 [Figs. 4(d)–4(f)]. In conclusion, the ground-
state energy-level crossings for states with opposite ÛP parity
result from the subsequent switching of the interdot tunnel
coupling for separate components of the wave function at the
sublattices.

The magnetic field dependence of the energy spectrum is
given in Fig. 5. At this energy scale the results for the smaller
[Fig. 5(a)] and larger [Fig. 5(b)] flakes become distinguishable.
For the smaller flake we notice avoided crossings between the
energy levels of opposite valleys which result from the valley
mixing effect of the armchair edge of the flake (at B � 0
and B � 0.4 T). The valley mixing opens an avoided crossing
between the states of the same spin and ÛP eigenvalue, and
outside of the avoided crossings the energy levels in Fig. 5(a)
can be attributed to the valley and spin quantum numbers. For
the larger flake the valley mixing effects are not resolved on
this scale.
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FIG. 5. Eight lowest eigenvalues localized in the dot as a function
of perpendicular magnetic field for 2d = 20 nm as obtained by the
tight-binding method. (a) and (b) correspond to smaller and larger
flakes, respectively. The avoided crossings in (a) result from the valley
mixing by the armchair edge.
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FIG. 6. (a) The low-energy spectrum of the DQD potential for
2d = 6 nm. (b) Same as (a), but for a single QD defined within the
flake. Both results are obtained for the smaller flake.

B. Two-electron spectra

1. Low-d limit

The energy spectrum taken for a small interdot distance
of 2d = 6 nm is displayed in Fig. 6(a). At B = 0 the ground
state is threefold degenerate. One of the electrons occupies
the K valley, and the other occupies the K ′ valley. The valley
degree of freedom allows the electrons to acquire the same
spatial distribution with the three possible components of
the total spin. From the dominant contributions to the wave
function one concludes that the approximate form of the
wave function for the threefold-degenerate ground state can
be put in the separable form (normalization skipped) �gs =
ψ(1)ψ(2)[K(1)K ′(2) − K ′(1)K(2)]�T , where ψ is the spatial
orbital for the positive ÛP eigenvalue and �T is one of the spin-
triplet wave functions for Sz = −h̄, 0, or h̄. The triplet ground
state at B �= 0 is split only by the Zeeman effect. The first
excited state is a nondegenerate spin singlet that corresponds
to electrons in opposite valleys, �4 = ψ(1)ψ(2)[K(1)K ′(2) +
K ′(1)K(2)]�S , where �S = (↑1↓2 − ↑2↓1). The second ex-
cited state at B = 0 is twofold degenerate. Both the electrons

occupy either the K ′ valley (the energy level that goes down in
B), �5 = ψ(1)ψ(2)K ′(1)K ′(2)�S , or the K valley (the energy
that goes up). Still, the spatial orbital is the same for both
electrons, which is possible only due to the opposite spins of
the states: they are both spin singlets.

For the strong-coupling case in Fig. 6(a) the two dots
effectively form a single system, and the spectrum resembles
the one calculated for a single dot in Fig. 6(b). The difference
for the circular dot is that the valley unpolarized singlet goes
higher in the energy at B = 0. The avoided crossing with the
KK energy level as well as the avoided crossing between the
two lower singlets at B = 0 is due to the valley mixing effects
of the armchair boundary condition. The ground state is still
the triplet, which was previously found for a single-dot study
in Ref. [31].

2. Weak coupling

For electrostatic quantum dots the coupling between the
dots is usually weak, so this case deserves closer inspection
as the one which is the most likely to be encountered in an
experimental situation. For a weak coupling of 2d = 20 nm
the states can be separated into subgroups with both electrons
in separate dots or with both electrons in the same dot. The
latter states appear higher in the energy spectrum, and they
are characterized by a stronger electron-electron interaction.
The right panel in Fig. 7 displays the energy spectrum in a
wider energy range as a function of the external field, and
the color of the lines displays the average electron-electron
interaction energy. In Figs. 7(a) and 7(b) we display a zoom of
the spectrum at the energy levels with the electrons in the same
dots for the smaller flake and for the larger one, respectively.
The spectrum in Fig. 7(a) is very close to the one displayed
in Fig. 6(b) for a single dot in a smaller flake. In Fig. 7(b) the
spectrum is similar, except the avoided crossing for opposite
valleys is closed. The closing of the avoided crossing in the
two-electron spectra in Figs. 7(b) and 7(d) (for the larger flake)
with respect to Figs. 7(a) and 7(c) (for the small flake) has
the same origin as the closing of the avoided crossing of the
single-electron spectra in Fig. 5(b) with respect to Fig. 5(a);
that is, it results from the removed coupling of the quantum dot
confined energy levels with the edge. The considered armchair
edge of the flake is not equivalent with respect to A and B

and, respectively, the A and B sublattices. The result of this
nonequivalence is intervalley mixing of the states coupled to
the edge. For a larger distance between the dots and the edge,
the valley mixing disappears, and the states of opposite valleys
change their order in a crossing instead of an avoided crossing.

The difference between the single QD [Fig. 6(b)] result
and the DQD [Fig. 7(a)] is that for the latter, the energy levels
shift in pairs. The electron couple can be stored by the left l

or the right r dot, and the factor of the spatial wave function
can be put in one of the forms {l(1)l(2) ± r(1)r(2)}/√2.
The tunnel coupling between the dots leads to splitting of
the energy levels into bonding and antibonding pairs that are
observed in Fig. 7(a).

The ground state of the two-electron spectrum of Fig. 7 cor-
responds to separated electrons and is displayed in Figs. 7(c)
and 7(d) for the smaller and larger flakes, respectively. Here,
the two electrons occupy different spatial orbitals, l or r .
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FIG. 7. The two-electron energy spectrum for 2d = 20 nm. The panel on the right shows the groups of energy levels, with the color of the
line indicating the expectation value of the electron-electron interaction energy. (a) and (b) Zoom of the high-energy spectrum with electrons
in the same dot; (c) and (d) zoom of the ground state. In (a) and (c) the smaller flake was used, while in (b) and (d) the larger one was used for
calculations.

For that reason the Pauli exclusion does not forbid them to
occupy any of the spin-valley combinations; hence the ground
state at B = 0 is nearly 16 times degenerate for the larger
flake [Fig. 7(d)]. For the smaller flake [Fig. 7(c)] at B = 0
the energy levels split into four quadruples. In the lowest
(highest) quadruple both electron levels occupy the lower
(higher) energy level: they have four spin states to occupy,
hence the number of nearly degenerate states. In both the
lowest and highest quadruples a spin singlet has slightly lower
energy than the spin triplet.

For the larger flake as well as for the smaller one at higher
B the single-electron energy levels shift away from the valley
mixing avoided crossing, and the two-electron spectrum forms
groups depending on the valley configurations. By analysis
of the configuration-interaction (CI) components of the wave
function we found that the wave functions at high B are
approximately separable into the product of spatial, valley, and
spin factors �(1,2) = �s�v�σ , which are listed in Table I
for the energy order that is found in Fig. 7(b) for B = 0.3T.
In the group labeled 1 (3) both electrons occupy the K ′ (K)
valley. Each group is formed by four energy levels with the
splitting that is due to the Zeeman interaction. Since the valley
degree of freedom is frozen, the structure of each of the groups
is identical to the one found for two-electron quantum dots
in III–V materials, with the spin-singlet (S) and spin-triplet

energy level of zero z component of the spin (T0) split by
the exchange energy. Here, the splitting due to the exchange
energy is of the order of 9 μeV.

In the central group of energy levels, labeled 2 in Fig. 7(b),
the electrons occupy opposite valleys, hence a nearly constant
dependence on B, which here is only due to the Zeeman
interaction. Each of the Sz = 0 states is twofold degenerate
(energy levels 7–10 in Table I): only the symmetry of the spatial
wave function with respect to the interchange of electrons
influences the energy of the state via the interdot tunneling
effect, and there are two spin and valley factors for both
symmetric and antisymmetric states. For each pair of energy
levels of group 2 at high B the one that is lower in energy
corresponds to a symmetric spatial wave function. The splitting
energy is nearly the same as that between the red energy levels
of groups 1 and 3. For all the energy levels that shift in pairs in
Fig. 7(d) the splitting is due to a difference in the expectation
value of the electron-electron interaction energy calculated for
symmetric and antisymmetric spatial wave functions, i.e., to
the exchange integral [9].

IV. ASYMMETRIC DQD

For the symmetric system of quantum dots we described
above, the splitting of the energy levels is uniquely due to the
interdot tunnel coupling. In an experimental situation deviation
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D. P. ŻEBROWSKI, F. M. PEETERS, AND B. SZAFRAN PHYSICAL REVIEW B 96, 035434 (2017)

TABLE I. The symmetries of the two-electron states, including the spatial (�s), the valley (�v), and the spin (�σ ) factors, where the total
wave function �(1,2) = �s�v�σ . This table corresponds to Fig. 7(d), and the first column orders the state in increasing energy order. Levels
7–8 and 9–10 are degenerate. The list corresponds to the dominant contribution to the CI wave functions.

Level �s �v �σ

16 l(1)r(2) − r(1)l(2) K(1)K(2) ↑ (1) ↑ (2)
15 l(1)r(2) − r(1)l(2) K(1)K(2) ↑ (1) ↓ (2)+ ↓ (1) ↑ (2)
14 l(1)r(2) + r(1)l(2) K(1)K(2) ↓ (1) ↑ (2)− ↑ (1) ↓ (2)
13 l(1)r(2) − r(1)l(2) K(1)K(2) ↓ (1) ↓ (2)

12 l(1)r(2) − r(1)l(2) K(1)K ′(2) + K ′(1)K(2) ↑ (1) ↑ (2)
11 l(1)r(2) + r(1)l(2) K(1)K ′(2) − K ′(1)K(2) ↑ (1) ↑ (2)
9–10 l(1)r(2) − r(1)l(2) K(1)K ′(2) + K ′(1)K(2) ↓ (1) ↑ (2)+ ↑ (1) ↓ (2)
9–10 l(1)r(2) − r(1)l(2) K(1)K ′(2) − K ′(1)K(2) ↓ (1) ↑ (2)− ↑ (1) ↓ (2)
7–8 l(1)r(2) + r(1)l(2) K(1)K ′(2) − K ′(1)K(2) ↓ (1) ↑ (2)+ ↑ (1) ↓ (2)
7–8 l(1)r(2) + r(1)l(2) K(1)K ′(2) + K ′(1)K(2) ↓ (1) ↑ (2)− ↑ (1) ↓ (2)
6 l(1)r(2) − r(1)l(2) K(1)K ′(2) + K ′(1)K(2) ↓ (1) ↓ (2)
5 l(1)r(2) + r(1)l(2) K(1)K ′(2) − K ′(1)K(2) ↓ (1) ↓ (2)

4 l(1)r(2) − r(1)l(2) K ′(1)K ′(2) ↑ (1) ↑ (2)
3 l(1)r(2) − r(1)l(2) K ′(1)K ′(2) ↑ (1) ↓ (2)+ ↓ (1) ↑ (2)
2 l(1)r(2) + r(1)l(2) K ′(1)K ′(2) ↓ (1) ↑ (2)− ↑ (1) ↓ (2)
1 l(1)r(2) − r(1)l(2) K ′(1)K ′(2) ↓ (1) ↓ (2)

from the ideal symmetry is inevitable. For a generalization we
consider the case of asymmetric quantum dots. The asymmetry
is introduced with the confinement potential that includes an
in-plane electric field

VQD(x,y) = −V exp{−[(|x| − d)2 + y2]/R2}
(

1 − φ
x

d

)
,

(16)

with V and R kept unchanged. The value of the electric
field is controlled by a dimensionless φ parameter, and d

in the denominator of the expression in parentheses keeps
the potential of the left and right dots in a fixed offset as
the interdot distance 2d is varied. The in-plane field in an
experimental situation corresponds to a bias between the dots
that is introduced to induce the flow of the current.

The single-electron spectrum presented in Fig. 8(a) in-
dicates that the in-plane electric field splits the degeneracy
of the energy levels at B = 0. For large interdot distance
[Fig. 8(b)] the single-electron states are localized either in
the left or right quantum dot. In the presence of the in-plane
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FIG. 8. Single-electron spectrum as a function of (a) the asym-
metry parameter φ for interdot distance 2d = 25 nm and (b) interdot
distance for φ = 0.03. Results were obtained with the low-energy
continuum approximation. The color of the lines indicates the average
value of the total angular momentum operator.

field the angular momentum is no longer quantized, but
the quantum-mechanical expectation values are preserved in
the weak-coupling limit with respect to the symmetric case
[compare Figs. 8(b) and 3(c)]. Moreover, the parity symmetry
of the external potential is broken by the in-plane electric
field. In consequence avoided crossings are opened between
the energy levels as the interdot distance is varies [Fig. 8(b)].
Nevertheless, for a small interdot distance the tunnel coupling
prevails over the interdot asymmetry, and the results for both
the energy levels and the angular momenta are similar to the
ideal case [compare Figs. 8(b) and 3(c)].

Figure 9 shows the spectrum in the external magnetic field.
The asymmetry of the confinement potential increases the
energy spacing between the degenerate doublets at B = 0,
displacing the crossing of the K and K ′ valley energy levels
to higher values of the magnetic field (compare with Fig. 5).

For the low-energy states of the two-electron system at
d � 20 nm the electrons occupy separate dots. The energy
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FIG. 9. The same as Fig. 5(b), but for the asymmetric quantum
dots with φ = 0.03.
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level in one of the dots is shifted up, and the other is shifted
down, so no change to the ground-state energy level structure
is observed unless the offset of the quantum dot potentials
exceeds 60 meV, where states with electrons in the same dot
occupy the same dot with the energy spectrum presented in
Fig. 6(b).

V. SUMMARY AND CONCLUSIONS

We have considered the formation of extended orbitals in
bilayer graphene quantum dots using atomistic tight-binding
and continuum approaches. The various angular momenta in
each of the four sublattices for the total angular momentum
eigenstates of a circular quantum dot evolve into various
spatial parities for each of the wave-function components
for the double quantum dot system. The symmetry leads to
mixed bonding and antibonding character of wave functions on
separate sublattices and a complex dependence of the energy
spectrum on the interdot distance. Both a flake large enough
to be considered infinite for the dot-localized states and a

smaller flake with valley mixing effects of the boundary were
described.

For the electron pair we used the configuration-interaction
method based on the atomistic single-electron wave functions.
We have reproduced the limit result of the spectrum for a single
quantum dot when the DQDs are close to one another and
identified the effects of the interdot tunnel coupling between
the dots for the more realistic weaker interdot tunnel coupling.
The effects include the splitting of energy levels in the high-
energy part of the spectrum where the electron pair forms
bonding and antibonding two-electron orbitals and near the
ground-state and the exchange energy that splits the symmetric
and antisymmetric pairs of energy levels that shift parallel in
the external magnetic field.
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