toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liu, R.; Hao, Y.; Wang, T.; Wang, L.; Bogaerts, A.; Guo, H.; Yi, Y. pdf  url
doi  openurl
  Title Hybrid plasma-thermal system for methane conversion to ethylene and hydrogen Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 463 Issue (down) Pages 142442  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By combining dielectric barrier discharge plasma and external heating, we exploit a two-stage hybrid plasmathermal

system (HPTS), i.e., a plasma stage followed by a thermal stage, for direct non-oxidative coupling of

CH4 to C2H4 and H2, yielding a CH4 conversion of ca. 17 %. In the two-stage HPTS, the plasma first converts CH4

into C2H6 and C3H8, which in the thermal stage leads to a high C2H4 selectivity of ca. 63 % by pyrolysis, with H2

selectivity of ca. 64 %.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953890500001 Publication Date 2023-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This work was supported by the National Natural Science Foundation of China [22272015, 21503032], the Fundamental Research Funds for the Central Universities of China [DUT21JC40]. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195888 Serial 7253  
Permanent link to this record
 

 
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 462 Issue (down) Pages 142217  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962382600001 Publication Date 2023-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7259  
Permanent link to this record
 

 
Author Manaigo, F.; Rouwenhorst, K.; Bogaerts, A.; Snyders, R. pdf  url
doi  openurl
  Title Feasibility study of a small-scale fertilizer production facility based on plasma nitrogen fixation Type A1 Journal Article
  Year 2024 Publication Energy Conversion and Management Abbreviated Journal Energy Conversion and Management  
  Volume 302 Issue (down) Pages 118124  
  Keywords A1 Journal Article; Plasma-based nitrogen fixation Haber-Bosch Feasibility study Fertilizer production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001171038200001 Publication Date 2024-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-8904 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 10.4 Times cited Open Access Not_Open_Access  
  Notes This research is supported by the FNRS-FWO project ‘‘NITROPLASM’’, EOS O005118F. The authors thank Dr. L. Hollevoet (KU Leuven) for the draft reviewing and for providing additional information on the lean NO???? trap. Approved Most recent IF: 10.4; 2024 IF: 5.589  
  Call Number PLASMANT @ plasmant @c:irua:204351 Serial 8992  
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A. pdf  url
doi  openurl
  Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 481 Issue (down) Pages 148684  
  Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001168999200001 Publication Date 2024-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access  
  Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993  
Permanent link to this record
 

 
Author Bogaerts, A.; Centi, G.; Hessel, V.; Rebrov, E. pdf  url
doi  openurl
  Title Challenges in unconventional catalysis Type A1 Journal article
  Year 2023 Publication Catalysis today Abbreviated Journal  
  Volume 420 Issue (down) Pages 114180  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Catalysis science and technology increased efforts recently to progress beyond conventional “thermal” catalysis and face the challenges of net-zero emissions and electrification of production. Nevertheless, a better gaps and opportunities analysis is necessary. This review analyses four emerging areas of unconventional or less- conventional catalysis which share the common aspect of using directly renewable energy sources: (i) plasma catalysis, (ii) catalysis for flow chemistry and process intensification, (iii) application of electromagnetic (EM) fields to modulate catalytic activity and (iv) nanoscale generation at the catalyst interface of a strong local EM by plasmonic effect. Plasma catalysis has demonstrated synergistic effects, where the outcome is higher than the sum of both processes alone. Still, the underlying mechanisms are complex, and synergy is not always obtained. There is a crucial need for a better understanding to (i) design catalysts tailored to the plasma environment, (ii) design plasma reactors with optimal transport of plasma species to the catalyst surface, and (iii) tune the plasma conditions so they work in optimal synergy with the catalyst. Microfluidic reactors (flow chemistry) is another emerging sector leading to the intensification of catalytic syntheses, particularly in organic chemistry. New unconventional catalysts must be designed to exploit in full the novel possibilities. With a focus on (a) continuous-flow photocatalysis, (b) electrochemical flow catalysis, (c) microwave flow catalysis and (d) ultra­ sound flow activation, a series of examples are discussed, with also indications on scale-up and process indus­ trialisation. The third area discussed regards the effect on catalytic performances of applying oriented EM fields spanning several orders of magnitude. Under well-defined conditions, gas breakdown and, in some cases, plasma formation generates activated gas phase species. The EM field-driven chemical conversion processes depend further on structured electric/magnetic catalysts, which shape the EM field in strength and direction. Different effects influencing chemical conversion have been reported, including reduced activation energy, surface charging, hot spot generation, and selective local heating. The last topic discussed is complementary to the third, focusing on the possibility of tuning the photo- and electro-catalytic properties by creating a strong localised electrical field with a plasmonic effect. The novel possibilities of hot carriers generated by the plasmonic effect are also discussed. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001004623300001 Publication Date 2023-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access OpenAccess  
  Notes The EU ERC Synergy SCOPE project supported this work (project ID 810182) “ Surface-COnfined fast-modulated Plasma for process and Energy intensification in small molecules conversion”. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number PLASMANT @ plasmant @c:irua:196446 Serial 7380  
Permanent link to this record
 

 
Author Tampieri, F.; Espona-Noguera, A.; Labay, C.; Ginebra, M.-P.; Yusupov, M.; Bogaerts, A.; Canal, C. pdf  url
doi  openurl
  Title Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Type A1 Journal Article
  Year 2023 Publication Biomaterials Science Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract In the last decades, non-thermal plasma has been extensively investigated as a relevant tool for various biomedical applications, ranging from tissue decontamination to regeneration and from skin treatment to tumor therapies. This high versatility is due to the different kinds and amount of reactive oxygen and nitrogen species that can be generated during a plasma treatment and put in contact with the biological target. Some recent studies report that solutions of biopolymers with the ability to generate hydrogels, when treated with plasma, can enhance the generation of reactive species and influence their stability, resulting thus in the ideal media for indirect treatments of biological targets. The direct effects of the plasma treatment on the structure of biopolymers in water solution, as well as the chemical mechanisms responsible for the enhanced generation of RONS, are not yet fully understood. In this study, we aim at filling this gap by investigating, on the one hand, the nature and extent of the modifications induced by plasma treatment in alginate solutions, and, on the other hand, at using this information to explain the mechanisms responsible for the enhanced generation of reactive species as a consequence of the treatment. The approach we use is twofold: (i) investigating the effects of plasma treatment on alginate solutions, by size exclusion chromatography, rheology and scanning electron microscopy and (ii) study of a molecular model (glucuronate) sharing its chemical structure, by chromatography coupled with mass spectrometry and by molecular dynamics simulations. Our results point out the active role of the biopolymer chemistry during direct plasma treatment. Short-lived reactive species, such as OH radicals and O atoms, can modify the polymer structure, affecting its functional groups and causing partial fragmentation. Some of these chemical modifications, like the generation of organic peroxide, are likely responsible for the secondary generation of long-lived reactive species such as hydrogen peroxide and nitrite ions. This is relevant in view of using biocompatible hydrogels as vehicles for storage and delivery reactive species for targeted therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000973699000001 Publication Date 2023-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2047-4830 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access Not_Open_Access  
  Notes Agència de Gestió d’Ajuts Universitaris i de Recerca, SGR2022-1368 ; H2020 European Research Council, 714793 ; European Cooperation in Science and Technology, CA19110 CA20114 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; We thank Gonzalo Rodríguez Cañada and Xavier Solé-Martí (Universitat Politècnica de Catalunya) for help in collecting some of the experimental data and for the useful discussions. This work has been primarily funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 714793). The authors acknowledge MINECO for PID2019103892RB-I00/AEI/10.13039/501100011033 project (CC). The authors belong to SGR2022-1368 (FT, AEN, CL, MPG, CC) and acknowledge Generalitat de Catalunya for the ICREA Academia Award for Excellence in Research of CC. We thank also COST Actions CA20114 (Therapeutical Applications of Cold Plasmas) and CA19110 (Plasma Applications for Smart and Sustainable Agriculture) for the stimulating environment provided. Approved Most recent IF: 6.6; 2023 IF: 4.21  
  Call Number PLASMANT @ plasmant @c:irua:196773 Serial 8794  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue (down) Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue (down) Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798  
Permanent link to this record
 

 
Author Vertongen, R.; Bogaerts, A. url  doi
openurl 
  Title How important is reactor design for CO2 conversion in warm plasmas? Type A1 Journal Article
  Year 2023 Publication Journal of CO2 Utilization Abbreviated Journal  
  Volume 72 Issue (down) Pages 102510  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract In this work, we evaluated several new electrode configurations for CO2 conversion in a gliding arc plasmatron

(GAP) reactor. Although the reactor design influences the performance, the best results give only slightly higher

CO2 conversion than the basic GAP reactor design, which indicates that this reactor may have reached its performance

limits. Moreover, we compared our results to those of four completely different plasma reactors, also

operating at atmospheric pressure and with contact between the plasma and the electrodes. Surprisingly, the

performance of all these warm plasmas is very similar (CO2 conversion around 10 % for an energy efficiency

around 30 %). In view of these apparent performance limits regarding the reactor design, we believe further

improvements should focus on other aspects, such as the post-plasma-region where the implementation of

nozzles or a carbon bed are promising. We summarize the performance of our GAP reactor by comparing the

energy efficiency and CO2 conversion for all different plasma reactors reported in literature. We can conclude

that the GAP is not the best plasma reactor, but its operation at atmospheric pressure makes it appealing for

industrial application. We believe that future efforts should focus on process design, techno-economic assessments

and large-scale demonstrations: these will be crucial to assess the real industrial potential of this warm

plasma technology
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001024970900001 Publication Date 2023-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access Not_Open_Access  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 810182 – SCOPE ERC Synergy project and No. 101081162 — “PREPARE” ERC Proof of Concept project). We also thank I. Tsonev, P. Heirman, F. Girard-Sahun and G. Trenchev for the interesting discussions and practical help with the experiments, as well as J. Creel for his ideas on the inserted anode designs. Approved Most recent IF: 7.7; 2023 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:197044 Serial 8799  
Permanent link to this record
 

 
Author Loenders, B.; Michiels, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions Type A1 Journal Article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 85 Issue (down) Pages 501-533  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-catalytic dry reforming of CH4 (DRM) is promising to convert the greenhouse gasses CH4 and CO2 into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock for the chemical industry. However, while many experiments have been dedicated to plasma-catalytic DRM, there is no consensus yet in literature on the optimal choice of catalyst for targeted products, because the underlying mechanisms are far from understood. Indeed, plasma catalysis is very complex, as it encompasses various chemical and physical interactions between plasma and catalyst, which depend on many parameters. This complexity hampers the comparison of experimental results from different studies, which, in our opinion, is an important bottleneck in the further development of this promising research field. Hence, in this perspective paper, we describe the important physical and chemical effects that should be accounted for when designing plasma-catalytic experiments in general, highlighting the need for standardized experimental setups, as well as careful documentation of packing properties and reaction conditions, to further advance this research field. On the other hand, many parameters also create many windows of opportunity for further optimizing plasma-catalytic systems. Finally, various experiments also reveal the lack of improvement in plasma catalysis compared to plasma-only, specifically for DRM, but the underlying mechanisms are unclear. Therefore, we present our newly developed coupled plasma-surface kinetics model for DRM, to provide more insight in the underlying reasons. Our model illustrates that transition metal catalysts can adversely affect plasmacatalytic DRM, if radicals dominate the plasma-catalyst interactions. Thus, we demonstrate that a good understanding of the plasma-catalyst interactions is crucial to avoiding conditions at which these interactions negatively affect the results, and we provide some recommendations for improvement. For instance, we believe that plasma-catalytic DRM may benefit more from higher reaction temperatures, at which vibrational excitation can enhance the surface reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the FWO-SBO project PlasMa- CatDESIGN (FWO grant ID S001619N), the FWO fellowship of R. Michiels (FWO grant ID 1114921N), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198159 Serial 8806  
Permanent link to this record
 

 
Author Kelly, S.; Mercer, E.; De Meyer, R.; Ciocarlan, R.-G.; Bals, S.; Bogaerts, A. url  doi
openurl 
  Title Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation Type A1 Journal article
  Year 2023 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization  
  Volume 75 Issue (down) Pages 102564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract e investigate atmospheric pressure microwave (MW) plasma (2.45 GHz) conversion in CO2 and CH4 mixtures (i.e., dry reforming of methane, DRM) focusing on reaction performance and carbon formation. Promising energy costs of ~2.8–3.0 eV/molecule or ~11.1–11.9 kJ/L are amongst the best performance to date considering the current state-of-the-art for plasma-based DRM for all types of plasma. The conversion is in the range of ~46–49% and ~55–67% for CO2 and CH4, respectively, producing primarily syngas (i.e., H2 and CO) with H2/CO ratios of ~0.6–1 at CH4 fractions ranging from 30% to 45%. Water is the largest byproduct with levels ranging ~7–14% in the exhaust. Carbon particles visibly impact the plasma at higher CH4 fractions (> 30%), where they become heated and incandescent. Particle luminosity increases with increasing CH4 fractions, with the plasma becoming unstable near a 1:1 mixture (i.e., > 45% CH4). Electron microscopy of the carbon material reveals an agglomerated morphology of pure carbon nanoparticles. The mean particle size is determined as ~20 nm, free of any metal contamination, consistent with the electrode-less MW design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001065310000001 Publication Date 2023-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited 6 Open Access OpenAccess  
  Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp Approved Most recent IF: 7.7; 2023 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:198155 Serial 8807  
Permanent link to this record
 

 
Author Wanten, B.; Vertongen, R.; De Meyer, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based CO2 conversion: How to correctly analyze the performance? Type A1 journal article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 86 Issue (down) Pages 180-196  
  Keywords A1 journal article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001070885000001 Publication Date 2023-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No 810182 – SCOPE ERC Synergy project), and the Methusalem funding of the University of Antwerp. We acknowledge the icons from the graphical abstract made by dDara, geotatah, Spashicons and Freepik on www.flaticon.com. We also thank Stein Maerivoet, Joachim Slaets, Elizabeth Mercer, Colín Ó’Modráin, Joran Van Turnhout, Pepijn Heirman, dr. Yury Gorbanev, dr. Fanny Girard-Sahun and dr. Sean Kelly for the interesting discussions and feedback. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198709 Serial 8816  
Permanent link to this record
 

 
Author Ndayirinde, C.; Gorbanev, Y.; Ciocarlan, R.-G.; De Meyer, R.; Smets, A.; Vlasov, E.; Bals, S.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic ammonia synthesis : packed catalysts act as plasma modifiers Type A1 Journal article
  Year 2023 Publication Catalysis today Abbreviated Journal  
  Volume 419 Issue (down) Pages 114156-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the plasma-catalytic production of NH3 from H2 and N2 in a dielectric barrier discharge plasma reactor using five different Co-based catalysts supported on Al2O3, namely Co/Al2O3, CoCe/Al2O3, CoLa/Al2O3, CoCeLa/Al2O3 and CoCeMg/Al2O3. The catalysts were characterized via several techniques, including SEM-EDX, and their performance was compared. The best performing catalyst was found to be CoLa/Al2O3, but the dif-ferences in NH3 concentration, energy consumption and production rate between the different catalysts were limited under the same conditions (i.e. feed gas, flow rate and ratio, and applied power). At the same time, the plasma properties, such as the plasma power and current profile, varied significantly depending on the catalyst. Taken together, these findings suggest that in the production of NH3 by plasma catalysis, our catalysts act as plasma modifiers, i.e., they change the discharge properties and hence the gas phase plasma chemistry. Importantly, this effect dominates over the direct catalytic effect (as e.g. in thermal catalysis) defined by the chemistry on the catalyst surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000987221300001 Publication Date 2023-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the Methusalem project of the University of Antwerp. We also gratefully acknowledge the NH3-TPD analysis performed by Sander Bossier. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number UA @ admin @ c:irua:197268 Serial 8917  
Permanent link to this record
 

 
Author Meng, S.; Li, S.; Sun, S.; Bogaerts, A.; Liu, Y.; Yi, Y. pdf  url
doi  openurl
  Title NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts Type A1 Journal article
  Year 2024 Publication Chemical engineering science Abbreviated Journal Chemical Engineering Science  
  Volume 283 Issue (down) Pages 119449  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis has emerged as a promising approach for driving thermodynamically unfavorable chemical

reactions. Nevertheless, comprehending the mechanisms involved remains a challenge, leading to uncertainty

about whether the optimal catalyst in plasma catalysis aligns with that in thermal catalysis. In this research, we

explore this question by studying monometallic catalysts (Fe, Co, Ni and Mo) and bimetallic catalysts (Fe-Co, Mo-

Co, Fe-Ni and Mo-Ni) in both thermal catalytic and plasma catalytic NH3 decomposition. Our findings reveal that

the Fe-Co bimetallic catalyst exhibits the highest activity in thermal catalysis, the Fe-Ni bimetallic catalyst

outperforms others in plasma catalysis, indicating a discrepancy between the optimal catalysts for the two

catalytic modes in NH3 decomposition. Comprehensive catalyst characterization, kinetic analysis, temperature

program surface reaction experiments and plasma diagnosis are employed to discuss the key factors influencing

NH3 decomposition performance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105312500001 Publication Date 2023-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access Not_Open_Access  
  Notes Universiteit Antwerpen, 32249 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; Approved Most recent IF: 4.7; 2024 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:201009 Serial 8967  
Permanent link to this record
 

 
Author Slaets, J.; Loenders, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion Type A1 Journal article
  Year 2024 Publication Fuel Abbreviated Journal Fuel  
  Volume 360 Issue (down) Pages 130650  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work we evaluate the chemical kinetics of dry reforming of methane in warm plasmas (1000–4000 K) using modelling with a newly developed chemistry set, for a broad range of parameters (temperature, power density and CO2/CH4 ratio). We compare the model against thermodynamic equilibrium concentrations, serving as validation of the thermal chemical kinetics. Our model reveals that plasma-specific reactions (i.e., electron impact collisions) accelerate the kinetics compared to thermal conversion, rather than altering the overall kinetics pathways and intermediate products, for gas temperatures below 2000 K. For higher temperatures, the kinetics are dominated by heavy species collisions and are strictly thermal, with negligible influence of the electrons and ions on the overall kinetics. When studying the effects of different gas mixtures on the kinetics, we identify important intermediate species, side reactions and side products. The use of excess CO2 leads to H2O formation, at the expense of H2 formation, and the CO2 conversion itself is limited, only approaching full conversion near 4000 K. In contrast, full conversion of both reactants is only kinetically limited for mixtures with excess CH4, which also gives rise to the formation of C2H2, alongside syngas. Within the given parameter space, our model predicts the 30/70 ratio of CO2/CH4 to be the most optimal for syngas formation with a H2/CO ratio of 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001138077700001 Publication Date 2023-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project), the Catalisti-ICON project BluePlasma (Project No. HBC.2022.0445), the FWO-SBO project PlasMaCatDESIGN (FWO Grant ID S001619N), the Independent Research Fund Denmark (Project No. 0217-00231B) and through long-term structural funding (Methusalem). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. We also thank Bart Wanten, Roel Michiels, Pepijn Heirman, Claudia Verheyen, dr. Senne Van Alphen, dr. Elise Vervloessem, dr. Kevin van ’t Veer, dr. Joshua Boothroyd, dr. Omar Biondo and dr. Eduardo Morais for their expertise and feedback regarding the kinetics scheme. Approved Most recent IF: 7.4; 2024 IF: 4.601  
  Call Number PLASMANT @ plasmant @c:irua:201669 Serial 8973  
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J. pdf  url
doi  openurl
  Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal article
  Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies  
  Volume Issue (down) Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001168639900001 Publication Date 2024-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-709X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.8 Times cited Open Access OpenAccess  
  Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA  
  Call Number EMAT @ emat @c:irua:204363 Serial 8995  
Permanent link to this record
 

 
Author De Meyer, R.; Gorbanev, Y.; Ciocarlan, R.-G.; Cool, P.; Bals, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis Type A1 Journal article
  Year 2024 Publication Chemical engineering journal Abbreviated Journal Chemical Engineering Journal  
  Volume 488 Issue (down) Pages 150838  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is a rapidly growing field, often employing a packed-bed dielectric barrier discharge plasma reactor. Such dielectric barrier discharges are complex, especially when a packing material (e.g., a catalyst) is introduced in the discharge volume. Catalysts are known to affect the plasma discharge, though the underlying mechanisms influencing the plasma physics are not fully understood. Moreover, the effect of the catalysts on the plasma discharge and its subsequent effect on the overall performance is often overlooked. In this work, we deliberately design and synthesize catalysts to affect the plasma discharge in different ways. These Ni or Co alumina-based catalysts are used in plasma-catalytic dry reforming of methane and ammonia synthesis. Our work shows that introducing a metal to the dielectric packing can affect the plasma discharge, and that the distribution of the metal is crucial in this regard. Further, the altered discharge can greatly influence the overall performance. In an atmospheric pressure dielectric barrier discharge reactor, this apparently more uniform plasma yields a significantly better performance for ammonia synthesis compared to the more conventional filamentary discharge, while it underperforms in dry reforming of methane. This study stresses the importance of analyzing the plasma discharge in plasma catalysis experiments. We hope this work encourages a more critical view on the plasma discharge characteristics when studying various catalysts in a plasma reactor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001221606600001 Publication Date 2024-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access  
  Notes This research was supported through long-term structural funding (Methusalem FFB15001C) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with grant agreement No 810182 (SCOPE ERC Synergy project) and with grant agreement No 815128 (REALNANO). We acknowledge the practical contribution of Senne Van Doorslaer. Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:205154 Serial 9115  
Permanent link to this record
 

 
Author Gorbanev, Y.; Fedirchyk, I.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma catalysis in ammonia production and decomposition: Use it, or lose it? Type A1 Journal Article
  Year 2024 Publication Current Opinion in Green and Sustainable Chemistry Abbreviated Journal Current Opinion in Green and Sustainable Chemistry  
  Volume 47 Issue (down) Pages 100916  
  Keywords A1 Journal Article; Plasma Nitrogen fixation Ammonia Plasma catalysis Production and decomposition; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The combination of plasma with catalysis for the synthesis and decomposition of NH3 is an attractive route to the production of carbon-neutral fertiliser and energy carriers and its conversion into H2. Recent years have seen fast developments in the field of plasma-catalytic NH3 life cycle. This work summarises the most recent advances in plasma-catalytic and related NH3-focussed processes, identifies some of the most important discoveries, and addresses plausible strategies for future developments in plasma-based NH3 technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links  
  Impact Factor 9.3 Times cited Open Access  
  Notes The work was supported by the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant G0G2322N) funded by the European Union-NextGe- nerationEU, the HyPACT project funded by the Belgian Energy Transition Fund, and the MSCA4Ukraine project 1233629 funded by the European Union. Approved Most recent IF: 9.3; 2024 IF: NA  
  Call Number PLASMANT @ plasmant @ Serial 9117  
Permanent link to this record
 

 
Author Cai, Y.; Mei, D.; Chen, Y.; Bogaerts, A.; Tu, X. url  doi
openurl 
  Title Machine learning-driven optimization of plasma-catalytic dry reforming of methane Type A1 Journal Article
  Year 2024 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 96 Issue (down) Pages 153-163  
  Keywords A1 Journal Article; Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study investigates the dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) non-thermal plasma reactor. A novel hybrid machine learning (ML) model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data. To address the non-linear and complex nature of the plasma-catalytic DRM process, the hybrid ML model integrates three well-established algorithms: regression trees, support vector regression, and artificial neural networks. A genetic algorithm (GA) is then used to optimize the hyperparameters of each algorithm within the hybrid ML model. The ML model achieved excellent agreement with the experimental data, demonstrating its efficacy in accurately predicting and optimizing the DRM process. The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance. We found that the optimal discharge power (20 W), CO2/CH4 molar ratio (1.5), and Ni loading (7.8 wt%) resulted in the maximum energy yield at a total flow rate of 51 mL/min. Furthermore, we investigated the relative significance of each operating parameter on the performance of the plasmacatalytic DRM process. The results show that the total flow rate had the greatest influence on the conversion, with a significance exceeding 35% for each output, while the Ni loading had the least impact on the overall reaction performance. This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets, enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links  
  Impact Factor 13.1 Times cited Open Access  
  Notes This project received funding from the European Union’s Hori- zon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393. Approved Most recent IF: 13.1; 2024 IF: 2.594  
  Call Number PLASMANT @ plasmant @ Serial 9124  
Permanent link to this record
 

 
Author Xu, W.; Van Alphen, S.; Galvita, V.V.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation Type A1 Journal Article
  Year 2024 Publication ChemSusChem Abbreviated Journal ChemSusChem  
  Volume Issue (down) Pages  
  Keywords A1 Journal Article; CO2 conversion · Plasma · Gliding arc plasmatron · Temperature profiles · Computational modelling; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma‐based CO<sub>2</sub>conversion has attracted increasing interest. However, to understand the impact of plasma operation on post‐plasma processes, we studied the effect of adding N<sub>2</sub>, N<sub>2</sub>/CH<sub>4</sub>and N<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O to a CO<sub>2</sub>gliding arc plasmatron (GAP) to obtain valuable insights into their impact on exhaust stream composition and temperature, which will serve as feed gas and heat for post‐plasma catalysis (PPC). Adding N<sub>2</sub>improves the CO<sub>2</sub>conversion from 4 % to 13 %, and CH<sub>4</sub>addition further promotes it to 44 %, and even to 61 % at lower gas flow rate (6 L/min), allowing a higher yield of CO and hydrogen for PPC. The addition of H<sub>2</sub>O, however, reduces the CO<sub>2</sub>conversion from 55 % to 22 %, but it also lowers the energy cost, from 5.8 to 3 kJ/L. Regarding the temperature at 4.9 cm post‐plasma, N<sub>2</sub>addition increases the temperature, while the CO<sub>2</sub>/CH<sub>4</sub>ratio has no significant effect on temperature. We also calculated the temperature distribution with computational fluid dynamics simulations. The obtained temperature profiles (both experimental and calculated) show a decreasing trend with distance to the exhaust and provide insights in where to position a PPC bed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200297300001 Publication Date 2024-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access  
  Notes We acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692) for financial support. We acknowledge Gilles Van Loon for his help to make the quartz and steel devices for the reactor. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). Approved Most recent IF: 8.4; 2024 IF: 7.226  
  Call Number PLASMANT @ plasmant @c:irua:205101 Serial 9128  
Permanent link to this record
 

 
Author Xu, W.; Buelens, L.C.; Galvita, V.V.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Improving the performance of gliding arc plasma-catalytic dry reforming via a new post-plasma tubular catalyst bed Type A1 Journal Article
  Year 2024 Publication Journal of CO2 Utilization Abbreviated Journal Journal of CO2 Utilization  
  Volume 83 Issue (down) Pages 102820  
  Keywords A1 Journal Article; Dry reforming Gliding arc plasma Plasma catalytic DRM Ni-based mixed oxide Post-plasma catalysis; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract A combination of a gliding arc plasmatron (GAP) reactor and a newly designed tubular catalyst bed (N-bed) was applied to investigate the post-plasma catalytic (PPC) effect for dry reforming of methane (DRM). As comparison, a traditional plasma catalyst bed (T-bed) was also utilized. The post-plasma catalytic effect of a Ni-based mixed oxide (Ni/MO) catalyst with a thermal catalytic performance of 77% CO2 and 86% CH4 conversion at 700 ℃ was studied. Although applying the T-bed had little effect on plasma based CO2 and CH4 conversion, an increase in selectivity to H2 was obtained with a maximum value of 89% at a distance of 2 cm. However, even when only α-Al2O3 packing material was used in the N-bed configuration, compared to the plasma alone and the T-bed, an increase of the CO2 and CH4 conversion from 53% and 53% to 69% and 69% to 83% was achieved. Addition of the Ni/MO catalyst further enhanced the DRM reaction, resulting in conversions of 79% for CO2 and 91% for

CH4. Hence, although no insulation nor external heating was applied to the N-bed post plasma, it provides a slightly better conversion than the thermal catalytic performance with the same catalyst, while being fully electrically driven. In addition, an enhanced CO selectivity to 96% was obtained and the energy cost was reduced from ~ 6 kJ/L (plasma alone) to 4.3 kJ/L. To our knowledge, it is the first time that a post-plasma catalytic system achieves this excellent catalytic performance for DRM without extra external heating or insulation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links  
  Impact Factor 7.7 Times cited Open Access  
  Notes Wencong Xu, Vladimir V. Galvita, Annemie Bogaerts, and Vera Meynen would like to acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). Lukas C. Buelens acknowledges financial support from the Fund for Scientific Research Flanders (FWO Flanders) through a postdoctoral fellowship grant 12E5623N. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). Approved Most recent IF: 7.7; 2024 IF: 4.292  
  Call Number PLASMANT @ plasmant @ Serial 9131  
Permanent link to this record
 

 
Author Maerivoet, S.; Tsonev, I.; Slaets, J.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2 Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 492 Issue (down) Pages 152006  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract To support experimental research into gas conversion by warm plasmas, models should be developed to explain the experimental observations. These models need to describe all physical and chemical plasma properties in a coupled way. In this paper, we present a modelling approach to solve the complete set of assumed relevant equations, including gas flow, heat balance and species transport, coupled with a rather extensive chemistry set, consisting of 21 species, obtained by reduction of a more detailed chemistry set, consisting of 41 species. We apply this model to study the combined CO2 and CH4 conversion in the presence of O2, in a direct current atmospheric pressure glow discharge. Our model can predict the experimental trends, and can explain why higher O2 fractions result in higher CH4 conversion, namely due to the higher gas temperature, rather than just by additional chemical reactions. Indeed, our model predicts that when more O2 is added, the energy required to reach any set temperature (i.e., the enthalpy) drops, allowing the system to reach higher temperatures with similar amounts of energy. This is in turn related to the higher H2O fraction and lower H2 fraction formed in the plasma, as demonstrated by our model. Altogether, our new self-consistent model can capture the main physics and chemistry occurring in this warm plasma, which is an important step towards predictive modelling for plasma-based gas conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID G0I1822N; EOS ID 40007511) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182–SCOPE ERC Synergy project, and grant agreement No. 101081162–PREPARE ERC Proof of Concept project). computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9132  
Permanent link to this record
 

 
Author Wanten, B.; Gorbanev, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based conversion of CO2 and CH4 into syngas: A dive into the effect of adding water Type A1 Journal Article
  Year 2024 Publication Fuel Abbreviated Journal Fuel  
  Volume 374 Issue (down) Pages 132355  
  Keywords A1 Journal Article; Plasma Bi-reforming of methane Atmospheric pressure glow discharge Hydrogen-rich syngas; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma technology can play a vital role in the electrification and decarbonization of chemical processes. In this work, we carried out the bi-reforming of methane (BRM), producing syngas out of H2O vapor and the greenhouse gases CO2 and CH4, in an atmospheric pressure glow discharge reactor. Compared to dry reforming of methane (DRM), the addition of H2O helps in counteracting soot formation, and thus avoids severe destabilization of the generated plasma. A mixture of 14–41-45 vol% (CO2-CH4-H2O) leads to the overall best results in terms of stable plasma and performance metrics. We obtained a CO2 and CH4 conversion of 49 % and 74 %, respectively, at a SEI of 210 kJ/mol. The energy cost is 390 kJ/mol converted reactants, which is below the target defined for plasmabased syngas production to be competitive with other technologies. Moreover, we reached CO and H2 yields of

59 % and 49 %, and a syngas ratio (SR) of 2, which is ideal for further methanol synthesis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links  
  Impact Factor 7.4 Times cited Open Access  
  Notes This project has received funding from the BlueApp Proof-of-Concept project “Optanic”, the VLAIO-Catalisti ICON project “BluePlasma” (grant ID HBC.2022.0445), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182─SCOPE ERC Synergy project). Approved Most recent IF: 7.4; 2024 IF: 4.601  
  Call Number PLASMANT @ plasmant @ Serial 9254  
Permanent link to this record
 

 
Author Lv, H.; Meng, S.; Cui, Z.; Li, S.; Li, D.; Gao, X.; Guo, H.; Bogaerts, A.; Yi, Y. pdf  url
doi  openurl
  Title Plasma-catalytic direct oxidation of methane to methanol over Cu-MOR: Revealing the zeolite-confined Cu2+ active sites Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 496 Issue (down) Pages 154337  
  Keywords A1 Journal Article; Direct oxidation Methanol production Plasma catalysis Copper-mordenite catalysts; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Efficient methane conversion to methanol remains a significant challenge in chemical industry. This study investigates the direct oxidation of methane to methanol under mild conditions, employing a synergy of nonthermal plasma and Cu-MOR (Copper-Mordenite) catalysts. Catalytic tests demonstrate that the Cu-MOR IE-3 catalyst (i.e., prepared by three cycles of ion exchange) exhibits superior catalytic performance (with 51 % methanol selectivity and 7.9 % methane conversion). Conversely, the Cu-MOR catalysts prepared via wetness impregnation tend to over-oxidize CH4 to CO and CO2. Through systematic catalyst characterizations (XRD, TPR, UV–Vis, HRTEM, XPS), we elucidate that ion exchange mainly leads to the formation of zeolite-confined Cu2+ species, while wetness impregnation predominantly results in CuO particles. Based on the catalytic performance, catalyst characterizations and in-situ FTIR spectra, we conclude that zeolite-confined Cu2+ species serve as the active sites for plasma-catalytic direct oxidation of methane to methanol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes PetroChina Innovation Foundation, 2018D-5007-0501 ; Fundamental Research Funds for the Central Universities, DUT21JC40 ; Fundamental Research Funds for the Central Universities; China Scholarship Council; National Natural Science Foundation of China, 22272015 ; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9260  
Permanent link to this record
 

 
Author Espona‐Noguera, A.; Živanić, M.; Smits, E.; Bogaerts, A.; Privat‐Maldonado, A.; Canal, C. url  doi
openurl 
  Title Unlocking Novel Anticancer Strategies: Bioactive Hydrogels for Local Delivery of Plasma‐Derived Oxidants in an In Ovo Cancer Model Type A1 Journal Article
  Year 2024 Publication Macromolecular Bioscience Abbreviated Journal Macromolecular Bioscience  
  Volume Issue (down) Pages  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Cold atmospheric plasma (CAP) is a tool with the ability to generate reactive oxygen and nitrogen species (RONS), which can induce therapeutic effects like disinfection, wound healing, and cancer treatment. In the plasma oncology field, CAP‐treated hydrogels (PTHs) are being explored for the local administration of CAP‐derived RONS as a novel anticancer approach. PTHs have shown anticancer effects in vitro, however, they have not yet been studied in more relevant cancer models. In this context, the present study explores for the first time the therapeutic potential of PTHs using an advanced in ovo cancer model. PTHs composed of alginate (Alg), gelatin (Gel), Alg/Gel combination, or Alg/hyaluronic acid (HA) combination are investigated. All embryos survived the PTHs treatment, suggesting that the in ovo model could become a time‐ and cost‐effective tool for developing hydrogel‐based anticancer approaches. Results revealed a notable reduction in CD44+ cell population and their proliferative state for the CAP‐treated Alg‐HA condition. Moreover, the CAP‐treated Alg‐HA formulation alters the extracellular matrix composition, which may help combat drug‐resistance. In conclusion, the present study validates the utility of in ovo cancer model for PTHs exploration and highlights the promising potential of Alg‐based PTHs containing HA and CAP‐derived RONS for cancer treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-5187 ISBN Additional Links  
  Impact Factor 4.6 Times cited Open Access  
  Notes Generalitat de Catalunya, SGR2022‐1368 ; European Cooperation in Science and Technology, COSTActionCA20114(TherapeuticalApplicationsofColdPlasmas) ; Approved Most recent IF: 4.6; 2024 IF: 3.238  
  Call Number PLASMANT @ plasmant @ Serial 9263  
Permanent link to this record
 

 
Author Sun, J.; Chen, Q.; Qin, W.; Wu, H.; Liu, B.; Li, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic dry reforming of CH4: Effects of plasma-generated species on the surface chemistry Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 498 Issue (down) Pages 155847  
  Keywords A1 Journal Article; Dry reforming of methane Plasma catalysis Plasma-enhanced surface chemistry Path flux and sensitivity analysis Coking kinetics; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract By means of steady-state experiments and a global model, we studied the effects of plasma-generated reactive species on the surface chemistry and coking in plasma-catalytic CH4/CO2 reforming at reduced pressure (8–40 kPa). We used a hybrid ZDPlasKin-CHEMKIN model to predict the species densities over time. The detailed plasma-catalytic mechanism consists of the plasma discharge scheme, a gas-phase chemistry set and a surface mechanism. Our experimental results show that the coupling of Ni/SiO2 catalyst with plasma is more effective in CH4/CO2 activation and conversion than unpacked DBD plasma, with syngas being the main products. The

highest total conversion of 16 % was achieved at 8000 V and 473 K, with corresponding CO and H2 yields of 15 % and 12 %, respectively. The reactants conversion and product selectivity are well captured by the kinetic model. Our simulation results suggest that vibrational species and radicals can accelerate the dissociative adsorption and Eley-Rideal (E-R) reactions. Path flux analysis shows that E-R reactions dominate the surface reaction pathways, which differs from thermal catalysis, indicating that the coupling of non-equilibrium plasma and catalysis can effectively shift the formation and consumption pathways of important adsorbates. For instance, our model suggests that HCOO(s) is primarily generated through the E-R reaction CO2(v) + H(s) → HCOO(s), while the hydrogenation reaction HCOO(s) + H → HCOOH(s) is the main source of HCOOH(s). Carbon deposition on the

catalyst surface is primarily formed through the stepwise dehydrogenation of CH4, while the E-R reactions enhanced by plasma-generated H and O atoms dominate the consumption of carbon deposition. This work provides new insights into the effects of reactive species on the surface chemistry in plasma-catalytic CH4/CO2 reforming.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes National Natural Science Foundation of China; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9266  
Permanent link to this record
 

 
Author Fedirchyk, I.; Tsonev, I.; Quiroz Marnef, R.; Bogaerts, A. url  doi
openurl 
  Title Plasma-assisted NH3 cracking in warm plasma reactors for green H2 production Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 499 Issue (down) Pages 155946  
  Keywords A1 Journal Article; Plasma-assisted NH3 cracking Plasma reactors Warm plasma H2 production from NH3; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract renewable energy. Plasma technology is promising for this purpose, as it can crack NH3 without the need for a catalyst and is highly compatible with renewable electricity, reducing the environmental footprint of the cracking process. This work investigates the NH3 cracking performance of four different warm plasma reactors with different configurations and operating in a wide range of conditions. We show that the NH3 conversion in warm plasma reactors is primarily determined by the specific energy input, with the main difference observed in the energy cost (EC) of cracking. The lowest EC obtained is 146 kJ/mol but at a conversion of only 8 %. A more reasonable conversion of around 50 % yields an EC of around 200 kJ/mol in two of the reactors investigated. Plasma reactors operating at higher feed flow rates are more efficient and yield a higher H2 production rate. Our data indicate that NH3 cracking in these warm plasma reactors occurs mainly via thermal chemistry, with nonthermal plasma chemistry playing a less prominent role. NH3 decomposes not only inside the plasma core but also in a hot volume around it, which reduces the EC. Our study shows that warm plasmas are significantly more efficient for NH3 cracking than cold plasmas, even when the latter are combined with catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes Belgian Federal Government; European Commission Marie Sklodowska-Curie Actions; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9267  
Permanent link to this record
 

 
Author Heirman, P.; Verswyvel, H.; Bauwens, M.; Yusupov, M.; De Waele, J.; Lin, A.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Effect of plasma-induced oxidation on NK cell immune checkpoint ligands: A computational-experimental approach Type A1 Journal Article
  Year 2024 Publication Redox Biology Abbreviated Journal Redox Biology  
  Volume 77 Issue (down) Pages 103381  
  Keywords A1 Journal Article; Non-thermal plasma Natural killer cells Immune checkpoints Cancer immunotherapy Umbrella sampling Oxidative stress; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Non-thermal plasma (NTP) shows promise as a potent anti-cancer therapy with both cytotoxic and immunomodulatory effects. In this study, we investigate the chemical and biological effects of NTP-induced oxidation on several key, determinant immune checkpoints of natural killer (NK) cell function. We used molecular dynamics (MD) and umbrella sampling simulations to investigate the effect of NTP-induced oxidative changes on the MHCI complexes HLA-Cw4 and HLA-E. Our simulations indicate that these chemical alterations do not significantly affect the binding affinity of these markers to their corresponding NK cell receptor, which is supported with

experimental read-outs of ligand expression on human head and neck squamous cell carcinoma cells after NTP application. Broadening our scope to other key ligands for NK cell reactivity, we demonstrate rapid reduction in CD155 and CD112, target ligands of the inhibitory TIGIT axis, and in immune checkpoint CD73 immediately after treatment. Besides these transient chemical alterations, the reactive species in NTP cause a cascade of downstream cellular reactions. This is underlined by the upregulation of the stress proteins MICA/B, potent ligands for NK cell activation, 24 h post treatment. Taken together, this work corroborates the immunomodulatory potential of NTP, and sheds light on the interaction mechanisms between NTP and cancer cells.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links  
  Impact Factor 11.4 Times cited Open Access  
  Notes This research was funded by the Impuls project of the University of Antwerp, grant number 46381. We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 1100421N (Pepijn Heirman), 1S67621N (Hanne Verswyvel), G044420N (Abraham Lin) and G033020N (Pepijn Heirman, Annemie Bogaerts)). M.Y. ac knowledges the Agency for Innovative Development of the Republic of Uzbekistan, grant number AL-4821012320. The computational sources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish percomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. This article is based upon work from COST Action CA20114 PlasTHER “Therapeutical Applications of Cold Plasmas”, supported by COST (European Cooperation in Science and Technology). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Finally, we thank Robin De Meyer, Rani Vertongen and Louize Brants for their valuable input. Approved Most recent IF: 11.4; 2024 IF: 6.337  
  Call Number PLASMANT @ plasmant @ Serial 9331  
Permanent link to this record
 

 
Author Herrebout, D.; Bogaerts, A.; Yan, M.; Goedheer, W.; Dekempeneer, E.; Gijbels, R. doi  openurl
  Title 1D fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers Type A1 Journal article
  Year 2001 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 90 Issue (down) Pages 570-579  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000169660000007 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 83 Open Access  
  Notes Approved Most recent IF: 2.068; 2001 IF: 2.128  
  Call Number UA @ lucian @ c:irua:37250 c:irua:37250 c:irua:37250 c:irua:37250 Serial 2  
Permanent link to this record
 

 
Author Bogaerts, A. url  doi
openurl 
  Title The afterglow mystery of pulsed glow discharges and the role of dissociative electron-ion recombination Type A1 Journal article
  Year 2007 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 22 Issue (down) Pages 502-512  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000246889200012 Publication Date 2007-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 56 Open Access  
  Notes Approved Most recent IF: 3.379; 2007 IF: 3.269  
  Call Number UA @ lucian @ c:irua:63859 Serial 81  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: