|
Record |
Links |
|
Author |
Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. |
|
|
Title |
Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance |
Type |
A1 Journal Article |
|
Year |
2023 |
Publication |
APPLIED CATALYSIS B-ENVIRONMENTAL |
Abbreviated Journal |
|
|
|
Volume |
337 |
Issue |
|
Pages |
122977 |
|
|
Keywords |
A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-
CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying
particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter
particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first
increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%
Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,
respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the
first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of
selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased
reactions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001056527600001 |
Publication Date |
2023-06-09 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0926-3373 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
22.1 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). |
Approved |
Most recent IF: 22.1; 2023 IF: 9.446 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:196955 |
Serial |
8797 |
|
Permanent link to this record |