|
Record |
Links |
|
Author |
Xu, W.; Van Alphen, S.; Galvita, V.V.; Meynen, V.; Bogaerts, A. |
|
|
Title |
Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation |
Type |
A1 Journal Article |
|
Year |
2024 |
Publication |
ChemSusChem |
Abbreviated Journal |
ChemSusChem |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
A1 Journal Article; CO2 conversion · Plasma · Gliding arc plasmatron · Temperature profiles · Computational modelling; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
Plasma‐based CO<sub>2</sub>conversion has attracted increasing interest. However, to understand the impact of plasma operation on post‐plasma processes, we studied the effect of adding N<sub>2</sub>, N<sub>2</sub>/CH<sub>4</sub>and N<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O to a CO<sub>2</sub>gliding arc plasmatron (GAP) to obtain valuable insights into their impact on exhaust stream composition and temperature, which will serve as feed gas and heat for post‐plasma catalysis (PPC). Adding N<sub>2</sub>improves the CO<sub>2</sub>conversion from 4 % to 13 %, and CH<sub>4</sub>addition further promotes it to 44 %, and even to 61 % at lower gas flow rate (6 L/min), allowing a higher yield of CO and hydrogen for PPC. The addition of H<sub>2</sub>O, however, reduces the CO<sub>2</sub>conversion from 55 % to 22 %, but it also lowers the energy cost, from 5.8 to 3 kJ/L. Regarding the temperature at 4.9 cm post‐plasma, N<sub>2</sub>addition increases the temperature, while the CO<sub>2</sub>/CH<sub>4</sub>ratio has no significant effect on temperature. We also calculated the temperature distribution with computational fluid dynamics simulations. The obtained temperature profiles (both experimental and calculated) show a decreasing trend with distance to the exhaust and provide insights in where to position a PPC bed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001200297300001 |
Publication Date |
2024-04-11 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1864-5631 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.4 |
Times cited |
|
Open Access |
|
|
|
Notes |
We acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692) for financial support. We acknowledge Gilles Van Loon for his help to make the quartz and steel devices for the reactor. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). |
Approved |
Most recent IF: 8.4; 2024 IF: 7.226 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:205101 |
Serial |
9128 |
|
Permanent link to this record |