|
Record |
Links |
|
Author |
Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J. |
|
|
Title |
In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Advanced Materials Technologies |
Abbreviated Journal |
Adv Materials Technologies |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001168 |
Publication Date |
2024-02-25 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2365-709X |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS full record |
|
|
Impact Factor |
6.8 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. |
Approved |
Most recent IF: 6.8; 2024 IF: NA |
|
|
Call Number |
EMAT @ emat @c:irua:204363 |
Serial |
8995 |
|
Permanent link to this record |