|
Record |
Links |
|
Author |
De Meyer, R.; Gorbanev, Y.; Ciocarlan, R.-G.; Cool, P.; Bals, S.; Bogaerts, A. |
|
|
Title |
Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Chemical engineering journal |
Abbreviated Journal |
Chemical Engineering Journal |
|
|
Volume |
488 |
Issue |
|
Pages |
150838 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma catalysis is a rapidly growing field, often employing a packed-bed dielectric barrier discharge plasma reactor. Such dielectric barrier discharges are complex, especially when a packing material (e.g., a catalyst) is introduced in the discharge volume. Catalysts are known to affect the plasma discharge, though the underlying mechanisms influencing the plasma physics are not fully understood. Moreover, the effect of the catalysts on the plasma discharge and its subsequent effect on the overall performance is often overlooked. In this work, we deliberately design and synthesize catalysts to affect the plasma discharge in different ways. These Ni or Co alumina-based catalysts are used in plasma-catalytic dry reforming of methane and ammonia synthesis. Our work shows that introducing a metal to the dielectric packing can affect the plasma discharge, and that the distribution of the metal is crucial in this regard. Further, the altered discharge can greatly influence the overall performance. In an atmospheric pressure dielectric barrier discharge reactor, this apparently more uniform plasma yields a significantly better performance for ammonia synthesis compared to the more conventional filamentary discharge, while it underperforms in dry reforming of methane. This study stresses the importance of analyzing the plasma discharge in plasma catalysis experiments. We hope this work encourages a more critical view on the plasma discharge characteristics when studying various catalysts in a plasma reactor. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001221 |
Publication Date |
2024-03-30 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1385-8947 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles; WoS full record |
|
|
Impact Factor |
15.1 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This research was supported through long-term structural funding (Methusalem FFB15001C) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with grant agreement No 810182 (SCOPE ERC Synergy project) and with grant agreement No 815128 (REALNANO). We acknowledge the practical contribution of Senne Van Doorslaer.; sygma_SB |
Approved |
Most recent IF: 15.1; 2024 IF: 6.216 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:205154 |
Serial |
9115 |
|
Permanent link to this record |