|
Abstract |
Plasma technology can play a vital role in the electrification and decarbonization of chemical processes. In this work, we carried out the bi-reforming of methane (BRM), producing syngas out of H2O vapor and the greenhouse gases CO2 and CH4, in an atmospheric pressure glow discharge reactor. Compared to dry reforming of methane (DRM), the addition of H2O helps in counteracting soot formation, and thus avoids severe destabilization of the generated plasma. A mixture of 14–41-45 vol% (CO2-CH4-H2O) leads to the overall best results in terms of stable plasma and performance metrics. We obtained a CO2 and CH4 conversion of 49 % and 74 %, respectively, at a SEI of 210 kJ/mol. The energy cost is 390 kJ/mol converted reactants, which is below the target defined for plasmabased syngas production to be competitive with other technologies. Moreover, we reached CO and H2 yields of
59 % and 49 %, and a syngas ratio (SR) of 2, which is ideal for further methanol synthesis. |
|