toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author N. Gauquelin, E. Benckiser, M. K. Kinyanjui, M. Wu, Y. Lu, G. Christiani, G. Logvenov, H.-U. Habermeier, U. Kaiser, B. Keimer, and G. A. Botton url  doi
openurl 
  Title Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices Type A1 Journal Article
  Year 2014 Publication Physical Review B Abbreviated Journal  
  Volume 90 Issue Pages 195140  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The interfacial atomic structure of a metallic LaNiO3/LaAlO3 superlattice grown on a LaSrAlO4 substrate was

investigated using a combination of atomically resolved electron energy loss spectroscopy (EELS) at the Al K,

Al L2,3, Sr L2,3, Ni L2,3, La M4,5, and O K edges as well as hybridization mapping of selected features of the O

K-edge fine structure.We observe an additional La1−xSrxAl1−yNiyO3 layer at the substrate-superlattice interface,

possibly linked to diffusion of Al and Sr into the growing film or a surface reconstruction due to Sr segregation.

The roughness of the LaNiO3/LaAlO3 interfaces is found to be on average around one pseudocubic unit cell. The

O K-edge EELS spectra revealed reduced spectral weight of the prepeak derived from Ni-O hybridized states in

the LaNiO3 layers. We rule out oxygen nonstoichiometry of the LaNiO3 layers and discuss changes in the Ni-O

hybridization due to heterostructuring as possible origin.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345467000003 Publication Date 2014-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 17 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) EMAT @ emat @ Serial 4544  
Permanent link to this record
 

 
Author M. K. Kinyanjui, N. Gauquelin, E. Benckiser, H. –U. Habermeier, B. Keimer, U. Kaiser and G.A. Botton doi  openurl
  Title Local lattice distortion and anisotropic modulation in Epitaxially Strained LaNiO3/LaAlO3 hetero-structures Type A1 Journal Article
  Year 2014 Publication Applied Physics Letters Abbreviated Journal  
  Volume 104 Issue Pages 221909  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Using a complementary combination of x-ray diffraction and atomically resolved imaging we investigated the lattice structure of epitaxial LaNiO3/LaAlO3 superlattices grown on a compressive-strain inducing LaSrAlO4 (001) substrate. A refinement of the structure obtained from the x-ray data revealed the monoclinic I 2/c 1 1 space group. The (Ni/Al)O6 octahedral rotation angle perpendicular to the superlattice plane is enhanced, and the one parallel to the plane is reduced with respect to the corresponding bulk values. High-angle annular dark field imaging was used to determine the lattice parameters within the superlattice unit cell. High-resolution electron microscopy images of the oxygen atoms are consistent with the x-ray results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000337161700029 Publication Date 2014-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 22 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) EMAT @ emat @ Serial 4545  
Permanent link to this record
 

 
Author H. Zhang, N. Gauquelin, G.A. Botton and J.Y.T. Wei doi  openurl
  Title Attenuation of superconductivity in manganite/cuprate heterostructures by epitaxially induced CuO intergrowths Type A1 Journal Article
  Year 2013 Publication Applied Physics Letters Abbreviated Journal  
  Volume 103 Issue Pages 052606  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract We examine the effect of CuO intergrowths on the superconductivity in epitaxial

La 2/3 Ca 1/3 MnO 3 / YBa 2 Cu 3 O 7−δ La2/3Ca1/3MnO3/YBa2Cu3O7−δ

(LCMO/YBCO) thin-film heterostructures. Scanning transmission electron microscopy on bilayer LCMO/YBCO thin films revealed double CuO-chain intergrowths which form regions with the 247 lattice structure in the YBCO layer. These nanoscale 247 regions do not appear in x-ray diffraction, but can physically account for the reduced critical temperature (Tc) of bilayer thin films relative to unilayer films with the same YBCO thickness, at least down to ∼25 nm. We attribute the CuO intergrowths to the bilayer heteroepitaxial mismatch and the Tc reduction to the generally lower Tc seen in bulk 247 samples. These epitaxially-induced CuO intergrowths provide a microstructural mechanism for the attenuation of superconductivity in LCMO/YBCO heterostructures.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322723000063 Publication Date 2013-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 12 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) EMAT @ emat @ Serial 4546  
Permanent link to this record
 

 
Author L. Zhang, J. Kim, J. Zhang, F. Nan, N. Gauquelin, G.A. Botton, P. He, R. Bashyam, S. Knights doi  openurl
  Title Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction Type A1 Journal Article
  Year 2013 Publication Applied Energy Abbreviated Journal  
  Volume 103 Issue March 2013 Pages 507-513  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract A new method is developed for synthesizing Ti4O7 supported Ru@Pt core–shell catalyst (Ru@Pt/Ti4O7) through pyrolysis followed by microwave irradiation. The purpose is to improve the Ru durability of PtRu from core–shell structure and strong bonding to Ti4O7 oxide. In this method, the first step is to co-reduce the mixture of ruthenium precursor and TiO2 in a H2 reducing atmosphere under heat-treatment to obtain a Ru core on Ti4O7 support, and the second step is to create a shell of platinum via microwave irradiation. Energy dispersive X-ray spectrometry, X-ray Diffraction, High-resolution Scanning Transmission Electron Microscopy with the high-angle annular dark-field method and Electron Energy-Loss Spectroscopy are used to demonstrate that this catalyst with larger particles has a core–shell structure with a Ru core and a Pt shell. Electrochemical measurements show Ru@Pt/Ti4O7 catalyst has a higher CO-tolerance capability than that of PtRu/C alloy catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314669500048 Publication Date 2012-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 33 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) EMAT @ emat @ Serial 4547  
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M. pdf  url
doi  openurl
  Title Cobalt location in p -CoO x / n -SnO 2 nanocomposites: Correlation with gas sensor performances Type A1 Journal Article
  Year 2017 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 721 Issue Pages 249-260  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405252400030 Publication Date 2017-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access Not_Open_Access  
  Notes This work was supported by ERA-Net.Plus grant N 096 FONSENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. Approved Most recent IF: 3.133  
  Call Number (down) EMAT @ emat @ Serial 4711  
Permanent link to this record
 

 
Author van der Torren, A.J.H.; Liao, Z.; Xu, C.; Gauquelin, N.; Yin, C.; Aarts, J.; van der Molen, S.J. url  doi
openurl 
  Title Formation of a conducting LaAlO3/SrTiO3 interface studied by low-energy electron reflection during growth Type A1 Journal Article
  Year 2017 Publication Physical Review Materials Abbreviated Journal Phys. Rev. Materials  
  Volume 1 Issue 7 Pages 075001  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The two-dimensional electron gas occurring between the band insulators SrTiO 3 and LaAlO 3 continues to attract considerable interest, due to the possibility of dynamic control over the carrier density, and the ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations, there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO 3 layer at the growth temperature (around 800 ◦ C) in oxygen (pressure around 5 × 10 −5 mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in-situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO 2 -rich surface and a conducting interface; or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418770200003 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links  
  Impact Factor Times cited 2 Open Access Not_Open_Access  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; European Cooperation in Science and Technology, MP 1308 ; We want to acknowledge Ruud Tromp, Daniel Gee- len, Johannes Jobst, Regina Dittmann, Gert Jan Koster, Guus Rijnders and Jo Verbeek for discussions and ad- vice and Ruud van Egmond and Marcel Hesselberth for technical assistance. This work was supported by the Netherlands Organization for Scientific Research (NWO) by means of an ”NWO Groot” grant and by the Leiden- Delft Consortium NanoFront. The work is part of the re- search programmes NWOnano and DESCO, which are fi- nanced by NWO. N.G. acknowledges funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge order- ing). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. We would also like to acknowledge networking support by the COST Action MP 1308 (COST TO-BE). Approved Most recent IF: NA  
  Call Number (down) EMAT @ emat @ Serial 4903  
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L. pdf  openurl
  Title Electron microscopy study of twinning in the Ni5Al3 bainitic phase Type A3 Journal Article
  Year 1994 Publication TMS Abbreviated Journal  
  Volume Issue Pages  
  Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract This contribution describes conventional and high resolution electron microscopy results on the different twinning arrangements in NisAl3 precipitates grown inside the B2 austenite phase. Short annealings introduce self-accommodating three-pointed star shaped precipitates consisting of twin related parts of different variants of the NisAl3 structure. Longer annealings result in plates growing separately from these wings and developing microtwinning in order to accommodate stress built-up at the interfaces with the surrounding matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) EMAT @ emat @ Serial 5055  
Permanent link to this record
 

 
Author Schryvers, D.; Van Landuyt, J. pdf  openurl
  Title Electron microscopy study of twin sequences and branching in NissAl34 3R martensite Type A3 Journal Article
  Year 1992 Publication ICOMAT Abbreviated Journal  
  Volume Issue Pages  
  Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Microtwin sequences in Ni66Al34 martensite plates of different size were investigated by electron microscopy. Although mostly irregular sequences were observed an average twin width w can be determined which increases with twin length L following the expected relation w ~ sqrt(L). High resolution electron microscopy was used to study the twin branching close to the plate boundaries and an atomic model for the branching of a microtwin and the changes in twin thickness is suggested  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) EMAT @ emat @ Serial 5054  
Permanent link to this record
 

 
Author Tanner, L.E.; Shapiro, S.M.; Krumhansl, J.A; Schryvers, D.; Noda, Y.; Yamada, Y.; Barsch, G.R.; Gooding, R.; Moss, S.C. pdf  openurl
  Title Firsto order phase transformation in the Ni-Al system Type A3 Journal Article
  Year 1992 Publication Metallurgy and Ceramics Abbreviated Journal  
  Volume Issue Pages  
  Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract First-order displacive phase transformations in alloys and compounds are of high technological importance. We have studied this class of phase transformation in the high-temperature-stable Ni-Al f32(B2) phase as a function of composition, temperature, and stress using transmission electron microscopy and neutron scattering. The results show in detail the direct relationship between the unusually low energies of the transformation-related phonon modes and the development of pre-transformation microstructures (strain-embryos, etc.) via anharmonic coupling processes that ultimately lead to the nucleation and growth of the low-temperature martensitic phases. With these results, it is now possible to develop effective models for nonclassical heterogeneous nucleation of martensite transformations in bulk materials. This tills a critical gap and sets the stage for us to proceed in developing a more global understanding of condensed matter transformations including the coupling of displacive with replacive mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) EMAT @ emat @ Serial 5053  
Permanent link to this record
 

 
Author Schryvers, D.; Tanner, L.E. pdf  doi
isbn  openurl
  Title On the phase-like nature of the 7M structure in Ni-Al Type A3 Journal Article
  Year 1994 Publication Ecomaterials Abbreviated Journal  
  Volume Issue Pages 849-852  
  Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The existence of the (52) stacking of the 7M martensite structure in Ni-Al is discussed in view of different experimental observations relating this structure to the premartensitic anomalies. It is concluded that the extreme fineness of the twinning is inherited from the wavelength of the premartensitic anomalies, while, given this dimension, the actual stacking tries to comply with stress free habit plane conditions by choosing the specific (52) stacking.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Yamamoto, R.; Furubayashi, E.; Doi, Y.; Fang, R.; Liu, B.; Otsuka, K.; Liu, C.T.; Shimizu, K.; Suzuki, Y.; Van Humbeeck, J.; Fukai, Y.; Ono, S.; Suda, S.  
  Language Wos Publication Date 2013-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4832-8381-4 Additional Links  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) EMAT @ emat @ Serial 5052  
Permanent link to this record
 

 
Author Gasparotto, A.; Maccato, C.; Carraro, G.; Sada, C.; Štangar, U.L.; Alessi, B.; Rocks, C.; Mariotti, D.; La Porta, A.; Altantzis, T.; Barreca, D. url  doi
openurl 
  Title Surface Functionalization of Grown-on-Tip ZnO Nanopyramids: From Fabrication to Light-Triggered Applications Type A1 Journal Article
  Year 2019 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 11 Issue 17 Pages 15881-15890  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract We report on a combined chemical vapor deposition (CVD)/radio frequency (RF) sputtering synthetic strategy for the controlled surface modification of ZnO nanostructures by Ti-containing species. Specifically, the proposed approach consists in the CVD of grown-on-tip ZnO nanopyramids, followed by titanium RF sputtering under mild conditions. The results obtained by a thorough characterization demonstrate the successful ZnO surface functionalization with dispersed Ti-containing species in low amounts. This phenomenon, in turn, yields a remarkable enhancement of photoactivated superhydrophilic behavior, self-cleaning ability, and photocatalytic performances in comparison to bare ZnO. The reasons accounting for such an improvement are unravelled by a multitechnique analysis, elucidating the interplay between material chemico-physical properties and the corresponding functional behavior. Overall, the proposed strategy stands as an amenable tool for the mastering of semiconductor-based functional nanoarchitectures through ad hoc engineering of the system surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466988800078 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links  
  Impact Factor 7.504 Times cited 1 Open Access Not_Open_Access  
  Notes The research leading to these results has received financial support from Padova University ACTION postdoc fellowship, DOR 2016-2018, P-DiSC #03BIRD2016-UNIPD projects, and HERALD COST Action MP1402-37831. The support from EPSRC (awards EP/R008841/1 and EP/M024938/1) as well as from the Slovenian Research Agency (research core funding No. P1-0134) is also recognized. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors are grateful to Dr. Sebastiano Pianta (Department of Chemical Sciences, Padova University, Italy) for experimental assistance. Approved Most recent IF: 7.504  
  Call Number (down) EMAT @ emat @ Serial 5185  
Permanent link to this record
 

 
Author Gasparotto, A.; Maccato, C.; Sada, C.; Carraro, G.; Kondarides, D.I.; Bebelis, S.; Petala, A.; La Porta, A.; Altantzis, T.; Barreca, D. url  doi
openurl 
  Title Controlled Surface Modification of ZnO Nanostructures with Amorphous TiO2for Photoelectrochemical Water Splitting Type A1 Journal Article
  Year 2019 Publication Advanced Sustainable Systems Abbreviated Journal Adv. Sustainable Syst.  
  Volume Issue Pages 1900046  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The utilization of solar radiation to trigger photoelectrochemical (PEC) water splitting has gained interest for sustainable energy production. In this study, attention is focused on the development of ZnO–TiO2 nanocomposite photoanodes. The target systems are obtained by growing porous arrays of highly crystalline, elongated ZnO nanostructures on indium tin oxide (ITO) by chemical vapor deposition. Subsequently, the obtained nanodeposits are functionalized with TiO2 via radio frequency-sputtering for different process durations, and subjected to final annealing in air. Characterization results demonstrate the successful formation of high purity composite systems in which the surface of ZnO nanostructures is decorated by ultra-small amounts of amorphous titania, whose content can be conveniently tailored as a function of deposition time. Photocurrent density measurements in sunlight triggered water splitting highlight a remarkable performance enhancement with respect to single-phase zinc and titanium oxides, with up to a threefold photocurrent increase compared to bare ZnO. These results, mainly traced back to the formation of ZnO/TiO2 heterojunctions yielding an improved photocarrier separation, show that the target nanocomposites are attractive photoanodes for efficient PEC water splitting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-7486 ISBN Additional Links  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes This work was financially supported by Padova University DOR 2016–2019, P-DiSC #03BIRD2016-UNIPD, and #03BIRD2018-UNIPD projects and ACTION post-doc fellowship. A.G. acknowledges AMGAFoundation and INSTM Consortium. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). Thanks are also due to Dr. Sebastiano Pianta (Department of Chemical Sciences, Padova University, Italy) for experimental assistance. Approved Most recent IF: NA  
  Call Number (down) EMAT @ emat @ Serial 5186  
Permanent link to this record
 

 
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A. url  doi
openurl 
  Title Stabilization of the Perovskite Phase in the Y-Bi-O System By Using a BaBiO3 Buffer Layer Type A1 Journal Article
  Year 2019 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R  
  Volume 13 Issue 7 Pages 1970028  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y–Bi–O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links  
  Impact Factor 3.032 Times cited Open Access  
  Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project Solarpaint of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved Most recent IF: 3.032  
  Call Number (down) EMAT @ emat @ Serial 5358  
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J. pdf  doi
openurl 
  Title Open Source Development Tools for Robust and Reproducible Electron Microscopy Data Analysis Type P3
  Year 2019 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume 25 Issue S2 Pages 138-139  
  Keywords P3; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891  
  Call Number (down) EMAT @ emat @ Serial 5378  
Permanent link to this record
 

 
Author Pramanik, G.; Kvakova, K.; Thottappali, M.A.; Rais, D.; Pfleger, J.; Greben, M.; El-Zoka, A.; Bals, S.; Dracinsky, M.; Valenta, J.; Cigler, P. url  doi
openurl 
  Title Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters Type A1 Journal Article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 23 Pages 10462-10467  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Fluorophores functionalized with heavy elements show enhanced intersystem crossing due to increased spin–orbit coupling, which in turn shortens the fluorescence decay lifetime (<italic>τ</italic><sup>PL</sup>). This phenomenon is known as the heavy-atom effect (HAE). Here, we report the observation of increased<italic>τ</italic><sup>PL</sup>upon functionalisation of near-infrared photoluminescent gold nanoclusters with iodine. The heavy atom-mediated increase in<italic>τ</italic><sup>PL</sup>is in striking contrast with the HAE and referred to as inverse HAE. Femtosecond and nanosecond transient absorption spectroscopy revealed overcompensation of a slight decrease in lifetime of the transition associated with the Au core (ps) by a large increase in the long-lived triplet state lifetime associated with the Au shell, which contributed to the observed inverse HAE. This unique observation of inverse HAE in gold nanoclusters provides the means to enhance the triplet excited state lifetime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links  
  Impact Factor 7.367 Times cited 7 Open Access OpenAccess  
  Notes The authors acknowledge support from GACR project Nr.18- 12533S. G. P. acknowledges support from EUSMI project No. E180200060; J.P. from the Ministry of Education, Youth and Sports of the Czech Republic – Program INTER-EXCELLENCE (LTAUSA19066). Approved Most recent IF: 7.367  
  Call Number (down) EMAT @ emat @ Serial 6950  
Permanent link to this record
 

 
Author de Block, T.; De Baetselier, I.; Van den Bossche, D.; Abdellati, S.; Gestels, Z.; Laumen, J.G.E.; Van Dijck, C.; Vanbaelen, T.; Claes, N.; Vandelannoote, K.; Kenyon, C.; Harrison, O.; Santhini Manoharan-Basil, S. pdf  url
doi  openurl
  Title Genomic oropharyngeal Neisseria surveillance detects MALDI-TOF MS species misidentifications and reveals a novel Neisseria cinerea clade Type A1 Journal Article
  Year 2024 Publication Journal of Medical Microbiology Abbreviated Journal  
  Volume 73 Issue 8 Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Introduction. Commensal Neisseria spp. are highly prevalent in the oropharynx as part of the healthy microbiome. N. meningitidis can colonise the oropharynx too from where it can cause invasive meningococcal disease. To identify N. meningitidis, clinical microbiology laboratories often rely on Matrix Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry (MALDI-TOF MS).

Hypothesis/Gap statement. N. meningitidis may be misidentified by MALDI-TOF MS.

Aim. To conduct genomic surveillance of oropharyngeal Neisseria spp. in order to: (i) verify MALDI-TOF MS species identification, and (ii) characterize commensal Neisseria spp. genomes.

Methodology. We analysed whole genome sequence (WGS) data from 119 Neisseria spp. isolates from a surveillance programme for oropharyngeal Neisseria spp. in Belgium. Different species identification methods were compared: (i) MALDI-TOF MS, (ii) Ribosomal Multilocus Sequence Typing (rMLST) and (iii) rplF gene species identification. WGS data were used to further characterize Neisseria species found with supplementary analyses of Neisseria cinerea genomes.

Results. Based on genomic species identification, isolates from the oropharyngeal Neisseria surveilence study were composed of the following species: N. meningitidis (n=23), N. subflava (n=61), N. mucosa (n=15), N. oralis (n=8), N. cinerea (n=5), N. elongata (n=3), N. lactamica (n=2), N. bacilliformis (n=1) and N. polysaccharea (n=1). Of these 119 isolates, four isolates identified as N. meningitidis (n=3) and N. subflava (n=1) by MALDI-TOF MS, were determined to be N. polysaccharea (n=1), N. cinerea (n=2) and N. mucosa (n=1) by rMLST. Phylogenetic analyses revealed that N. cinerea isolates from the general population (n=3, cluster one) were distinct from those obtained from men who have sex with men (MSM, n=2, cluster two). The latter contained genomes misidentified as N. meningitidis using MALDI-TOF MS. These two N. cinerea clusters persisted after the inclusion of published N. cinerea WGS (n=42). Both N. cinerea clusters were further defined through pangenome and Average Nucleotide Identity (ANI) analyses.

Conclusion. This study provides insights into the importance of genomic genus-wide Neisseria surveillance studies to improve the characterization and identification of the Neisseria genus.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2615 ISBN Additional Links  
  Impact Factor 3 Times cited Open Access  
  Notes We would like to thank all the study participants for their help in this study. This research was supported by SOFI 2021 grant—‘PReventing the Emergence of untreatable STIs via radical Prevention’ (PRESTIP). Approved Most recent IF: 3; 2024 IF: 2.159  
  Call Number (down) EMAT @ emat @ Serial 9262  
Permanent link to this record
 

 
Author Gholam, S.; Denisov, N.; Orekhov, A.; Verbeeck, J.; Hadermann, J. pdf  url
doi  openurl
  Title An Investigation on 3D Electron Diffraction and 4-Dimensional Scanning Diffraction Tomography Using a Scanning Electron Microscope Type P1 Conference Proceedings
  Year 2024 Publication Microscopy and Microanalysis Abbreviated Journal  
  Volume 30 Issue Supplement_1 Pages  
  Keywords P1 Conference Proceedings; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract During the last decade, 3D-Electron Diffraction (3D-ED) has emerged as a powerful technique for studying the structure of sub-micron particles. It is used in a variety of applications, from unit cell and space group determination to the complete solution of the structure similar to X-ray diffraction techniques. So far, this technique has been only implemented in Transmission Electron Microscopes (TEMs). Performing such an experiment in a Scanning Electron Microscope (SEM) can be challenging, mainly due to the lower acceleration voltage. This lower beam energy raises concerns about severe multiple scattering and limited transmissivity of the sample for the weakly accelerated electrons.

In this work, we show the possibilities of operating similar studies in a modified SEM. For this aim, we equipped our SEM with a custom stage and holder, a direct electron detector and a custom high-angle annular dark-field detector (HAADF). A range of samples was studied in the form of lamellas and sub-micron particles, and the quality of the diffraction data was evaluated for different purposes, such as unit cell determination and space group determination. Moreover, the ability to integrate the diffraction data for structure solution and refinement has been assessed and compared to similar data acquired in a TEM.

Finally, we also demonstrate the potential for combining diffraction tomography and 4-dimensional scanning transmission electron microscopy (4D-STEM) in our setup. This method opens an avenue to obtain multiple 3DED datasets out of 5D-STEM data. These 3DED datasets can be created using object tracking methods from several regions of a multi-domain particle or from multiple single crystals within the scanning region. This provides an attractive route to high-throughput and statistically relevant characterization of polycrystalline materials or powders of nanoparticles.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links  
  Impact Factor 2.8 Times cited Open Access  
  Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. The authors are also grateful to Amsterdam Scientific Instruments. Approved Most recent IF: 2.8; 2024 IF: 1.891  
  Call Number (down) EMAT @ emat @ Serial 9269  
Permanent link to this record
 

 
Author Stoops, T.; De Backer, A.; Lobato, I.; Van Aert, S. pdf  url
doi  openurl
  Title Obtaining 3D Atomic Reconstructions from Electron Microscopy Images Using a Bayesian Genetic Algorithm: Possibilities, Insights, and Limitations Type A1 Journal Article
  Year 2024 Publication Microscopy and Microanalysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The Bayesian genetic algorithm (BGA) is a powerful tool to reconstruct the 3D structure of mono-atomic single-crystalline metallic nanoparticles imaged using annular dark field scanning transmission electron microscopy. The number of atoms in a projected atomic column in the image is used as input to obtain an accurate and atomically precise reconstruction of the nanoparticle, taking prior knowledge and the finite precision of atom counting into account. However, as the number of parameters required to describe a nanoparticle with atomic detail rises quickly with the size of the studied particle, the computational costs of the BGA rise to prohibitively expensive levels. In this study, we investigate these computational costs and propose methods and control parameters for efficient application of the algorithm to nanoparticles of at least up to 10 nm in size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links  
  Impact Factor 2.8 Times cited Open Access  
  Notes European Research Council, 770887 ; Research Foundation Flanders, G034621N G0A7723N 40007495 ; FWO and F.R.S-FNRS; Flemish Government; Approved Most recent IF: 2.8; 2024 IF: 1.891  
  Call Number (down) EMAT @ emat @ Serial 9270  
Permanent link to this record
 

 
Author Schrenker, N.J.; Braeckevelt, T.; De Backer, A.; Livakas, N.; Yu, C.-P.; Friedrich, T.; Roeffaers, M.B.J.; Hofkens, J.; Verbeeck, J.; Manna, L.; Van Speybroeck, V.; Van Aert, S.; Bals, S. url  doi
openurl 
  Title Investigation of the Octahedral Network Structure in Formamidinium Lead Bromide Nanocrystals by Low-Dose Scanning Transmission Electron Microscopy Type A1 Journal Article
  Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume 24 Issue 35 Pages 10936-10942  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Metal halide perovskites (MHP) are highly promising semiconductors. In this study, we focus on FAPbBr3 nanocrystals, which are of great interest for green light-emitting diodes. Structural parameters significantly impact the properties of MHPs and are linked to phase instability, which hampers long-term applications. Clearly, there is a need for local and precise characterization techniques at the atomic scale, such as transmission electron microscopy. Because of the high electron beam sensitivity of MHPs, these investigations are extremely challenging. Here, we applied a low-dose method based on four-dimensional scanning transmission electron microscopy. We quantified the observed elongation of the projections of the Br atomic columns, suggesting an alternation in the position of the Br atoms perpendicular to the Pb–Br–Pb bonds. Together with molecular dynamics simulations, these results remarkably reveal local distortions in an on-average cubic structure. Additionally, this study provides an approach to prospectively investigating the fundamental degradation mechanisms of MHPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links  
  Impact Factor 10.8 Times cited Open Access  
  Notes The authors acknowledge financial support from the Research Foundation-Flanders (FWO) through project fundings (G0A7723N) and a postdoctoral fellowship to N.J.S. (FWO Grants 1238622N and V413524N). The authors acknowledge financial support from iBOF-21-085 PERSIST. S.B. and S.V.A. acknowledge financial support from the European Commission by ERC Consolidator Grant 815128 (REALNANO) and Grant 770887 (PICOMETRICS). L.M. acknowledges financial support from the European Commission by ERC Advanced Grant 101095974 (NEHA). V.V.S. furthermore acknowledges the Research Fund of Ghent University (BOF) for its financial support. The computational resources and services used in this work were provided by VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO), and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712  
  Call Number (down) EMAT @ emat @ Serial 9273  
Permanent link to this record
 

 
Author Zani, V.; Renero-Lecuna, C.; Jimenez de Aberasturi, D.; di Silvio, D.; Kavak, S.; Bals, S.; Signorini, R.; Liz-Marzán, L.M. url  doi
openurl 
  Title Core–Shell Colloidal Nanocomposites for Local Temperature Monitoring during Photothermal Heating Type A1 Journal Article
  Year 2024 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Determining temperature changes at the heating site to accurately control thermal treatments has been a major goal in the field of nanothermometry. In this study, we address the need to effectively monitor local temperature during the application of photothermal therapies, which is essential to prevent uncontrolled heating induced by nanoparticle sensitizers used in such treatments. For this purpose, we developed a synthetic protocol to produce a nanocomposite probe that allows local photothermal heating and simultaneous in situ optical nanothermometry, within the biological transparency windows. The nanocomposite material comprises gold nanorods for light-to-heat conversion and neodymium (Nd3+)-based nanoparticles for local temperature monitoring. An inert spacer made of mesoporous silica provides a core-shell structure and ensures uniform separation between both functionalities to prevent photoluminescence quenching. By using an 808 nm laser as the source for both heating and photoluminescence excitation, we demonstrate a direct correlation between local temperature and near infrared Nd3+ emission intensities, thereby providing precise local temperature monitoring. Different levels of local heating were studied by varying the incident laser power, resulting in a maximum temperature increase of 47 °C detected with the nanothermometers. Albeit presented here as a proof of concept, this concept can be translated to the design of materials for photothermal therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links  
  Impact Factor 3.7 Times cited Open Access  
  Notes L.L.L.-M. acknowledges financial support by the Spanish Agencia Estatal de Investigación and FEDER (PID2023-151281OB-I00), S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (Project numbers: 1181122N & 1181124N) and the European Research Council (CoG 815128, REALNANO). Approved Most recent IF: 3.7; 2024 IF: 4.536  
  Call Number (down) EMAT @ emat @ Serial 9328  
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Topologically protected moiré exciton at a twist-boundary in a van der Waals heterostructure Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 2 Pages 025012  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A twin boundary in one of the layers of a twisted van der Waals heterostructure separates regions with near opposite inter-layer twist angles. In a MoS<sub>2</sub>/WSe<sub>2</sub>bilayer, the regions with<inline-formula><tex-math><?CDATA $Rh^h$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>h</mi></msubsup></math><inline-graphic href=“tdmac529dieqn1.gif” type=“simple” /></inline-formula>and<inline-formula><tex-math><?CDATA $Rh^X$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>X</mi></msubsup></math><inline-graphic href=“tdmac529dieqn2.gif” type=“simple” /></inline-formula>stacking registry that defined the sub-lattices of the moiré honeycomb pattern would be mirror-reflected across such a twist boundary. In that case, we demonstrate that topologically protected chiral moiré exciton states are confined at the twist boundary. These are one-dimensional and uni-directional excitons with opposite velocities for excitons composed by electronic states with opposite valley/spin character, enabling intrinsic, guided, and far reaching valley-polarized exciton currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760518100001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 3 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; Conselho Nacional de Desenvolvimento Científico e Tecnológico, PQ ; Approved Most recent IF: 5.5  
  Call Number (down) CMT @ cmt @c:irua:187124 Serial 7046  
Permanent link to this record
 

 
Author Gonnissen, J.; De Backer, A.; den Dekker, A.J.; Sijbers, J.; Van Aert, S. pdf  url
doi  openurl
  Title Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 170 Issue 170 Pages 128-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramer-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms.  
  Address Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Electronic address: sandra.vanaert@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000386925500014 Publication Date 2016-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15, G.0369.15 and G.0374.13) and a postdoctoral research grant to A. De Backer. The research leading to these results has also received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under Grant agreement no. 312483 (ESTEEM2). The authors would also like to thank A. Rosenauer for providing access to the STEMsim software and Gerardo T. Martinez for fruitful discussions.; esteem2_jra2 Approved Most recent IF: 2.843  
  Call Number (down) c:irua:135337 c:irua:135337 Serial 4128  
Permanent link to this record
 

 
Author Gonnissen, J.; Batuk, D.; Nataf, G.F.; Jones, L.; Abakumov, A.M.; Van Aert, S.; Schryvers, D.; Salje, E.K.H. pdf  doi
openurl 
  Title Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 26 Issue 26 Pages 7599-7604  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Direct observations of the ferroelectric domain boundaries in LiNbO3 are performed using high-resolution high-angle annular dark field scanning transmission electron microscopy imaging, revealing a very narrow width of the domain wall between the 180° domains. The domain walls demonstrate local side-way meandering, which results in inclinations even when the overall wall orientation follows the ferroelectric polarization. These local meanders contain kinks with “head-to-head” and “tail-to-tail” dipolar configurations and are therefore locally charged. The charged meanders are confined to a few cation layers along the polarization direction and are separated by longer stretches of straight domain walls.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388166700006 Publication Date 2016-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 23 Open Access  
  Notes J.G. acknowledges the support from the Research Foundation Flanders (FWO, Belgium) through various project fundings (G.0368.15N, G.0369.15N, and G.0374.13N), as well as the financial support from the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement no. 312483 (ESTEEM2). The authors thank J. Hadermann for useful suggestions on the interpretation of the HAADFSTEM images. E.K.H.S. thanks the EPSRC (EP/K009702/1) and the Leverhulme Trust (EM-2016-004) for support. G.F.N. thanks the National Research Fund, Luxembourg (FNR/P12/4853155/Kreisel) for support.; esteem2_jra2 Approved Most recent IF: 12.124  
  Call Number (down) c:irua:135336 c:irua:135336 Serial 4129  
Permanent link to this record
 

 
Author Goris, B.; Meledina, M.; Turner, S.; Zhong, Z.; Batenburg, K.J.; Bals, S. pdf  url
doi  openurl
  Title Three dimensional mapping of Fe dopants in ceria nanocrystals using direct spectroscopic electron tomography Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 171 Issue 171 Pages 55-62  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography is a powerful technique for the 3D characterization of the morphology of nanostructures. Nevertheless, resolving the chemical composition of complex nanostructures in 3D remains challenging and the number of studies in which electron energy loss spectroscopy (EELS) is combined with tomography is limited. During the last decade, dedicated reconstruction algorithms have been developed for HAADF-STEM tomography using prior knowledge about the investigated sample. Here, we will use the prior knowledge that the experimental spectrum of each reconstructed voxel is a linear combination of a well-known set of references spectra in a so-called direct spectroscopic tomography technique. Based on a simulation experiment, it is shown that this technique provides superior results in comparison to conventional reconstruction methods for spectroscopic data, especially for spectrum images containing a relatively low signal to noise ratio. Next, this technique is used to investigate the spatial distribution of Fe dopants in Fe:Ceria nanoparticles in 3D. It is shown that the presence of the Fe2+ dopants is correlated with a reduction of the Ce atoms from Ce4+ towards Ce3+. In addition, it is demonstrated that most of the Fe dopants are located near the voids inside the nanoparticle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389106200007 Publication Date 2016-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 13 Open Access OpenAccess  
  Notes The work was supported by the Research Foundation Flanders (FWO Vlaanderen) by project funding (G038116N, 3G004613) and by a post-doctoral research grants to B.G. S.B. acknowledges funding from the European Research Council (Starting Grant no. COLOURATOMS 335078). K.J.B. acknowledges funding from The Netherlands Organization for Scientific Research (NWO) (program 639.072.005.). We would like to thank Dr. Hilde Poelman, Dr. Vladimir Galvita and Prof. Dr. Guy B. Marin for the synthesis of the investigated sample.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843  
  Call Number (down) c:irua:135185 c:irua:135185 Serial 4123  
Permanent link to this record
 

 
Author Hill, E.H.; Claes, N.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Layered Silicate Clays as Templates for Anisotropic Gold Nanoparticle Growth Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 5131-5139  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Clay minerals are abundant natural materials arising in the presence of water and are composed of small particles of different sizes and shapes. The interlamellar space between layered silicate clays can also be used to host a variety of different organic and inorganic guest molecules or particles. Recent studies of clay−metal hybrids formed by impregnation of nanoparticles into the interlayer spaces of the clays have not demonstrated the ability for templated growth following the shape of the particles. Following this line of interest, a method for the synthesis of gold nanoparticles on the synthetic layered silicate clay laponite was developed. This approach can be used to make metal−clay nanoparticles with a variety of morphologies while retaining the molecular adsorption properties of the clay. The surface enhanced Raman scattering enhancement of these particles was also found to be greater than that obtained from other metal nanoparticles of a similar morphology, likely due to increased dye adsorption by the presence of the clay. The hybrid particles presented herein will contribute to further study of plasmonic

sensing, catalysis, dye aggregation, and novel composite materials.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380576700031 Publication Date 2016-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes This work has been supported by the European Research Council (ERC Advanced Grant No. 267867, PLASMAQUO). E.H.H. thanks the Spanish Ministry of Economy and Competitiveness for providing a Juan de la Cierva Fellowship (FJCI-2014-22598). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). We gratefully acknowledge A. B. Serrano-Montes for providing the seed-mediated Au nanostars.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number (down) c:irua:135178 c:irua:135178 Serial 4117  
Permanent link to this record
 

 
Author Kinnear, C.; Rodriguez-Lorenzo, L.; Clift, M.J.D.; Goris, B.; Bals, S.; Rothen, B.; Fink, A.S. url  doi
openurl 
  Title Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells Type A1 Journal article
  Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 8 Issue 8 Pages 16416-16426  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The impact of nanoparticles (NPs) upon biological systems can be fundamentally associated with their physicochemical parameters. A further often-stated tenet is the importance of NP shape on rates of endocytosis. However, given the convoluted parameters concerning the NP-cell interaction, it is experimentally challenging to attribute any findings to shape alone. Herein we demonstrate that shape, below a certain limit, which is specific to nanomedicine, is not important for the endocytosis of spherocylinders by either epithelial or macrophage cells in vitro. Through a systematic approach, we reshaped a single batch of gold nanorods into different aspect ratios resulting in near-spheres and studied their cytotoxicity, (pro-)inflammatory status, and endocytosis/exocytosis. It was found that on a length scale of ~10-90 nm and at aspect ratios less than 5, NP shape has little impact upon their entry into either macrophages or epithelial cells. Conversely, nanorods with an aspect ratio above 5 were preferentially endocytosed by epithelial cells, whereas there was a lack of shape dependent uptake following exposure to macrophages in vitro. These findings have implications both in the understanding of nanoparticle reshaping mechanisms, as well as in the future rational design of nanomaterials for biomedical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384531600036 Publication Date 2016-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 23 Open Access OpenAccess  
  Notes The authors would like to thank C. Endes for her help and technical assistance with all cell culture experiments. The work was supported by the Adolphe Merkle Foundation, the Swiss National Science Foundation (PP00P2123373), the Swiss National Science Foundation through the National Centre of Competence in Research Bio-Inspired Materials, the Flemish Fund for Scientific Research (FWO Vlaanderen) through a postdoctoral research grant, and the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI).; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367  
  Call Number (down) c:irua:135087 c:irua:135087 Serial 4109  
Permanent link to this record
 

 
Author Ying, J.; Hu, Z.-Y.; Yang, X.-Y.; Wei, H.; Xiao, Y.-X.; Janiak, C.; Mu, S.-C.; Tian, G.; Pan, M.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability Type A1 Journal article
  Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 52 Issue 52 Pages 8219-8222  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A facile high-viscosity-solvent method is presented to synthesize PtPd bimetallic nanocrystals highly dispersed in different mesostructures (2D and 3D structures), porosities (large and small pore sizes), and compositions (silica and carbon). Further, highly catalytic activity, stability and durability of the nanometals have been proven in different catalytic reactions.  
  Address State Key Laboratory Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122, Luoshi Road, Wuhan, 430070, China. xyyang@whut.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000378715400006 Publication Date 2016-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 19 Open Access  
  Notes This work was supported by NFSC (51472190 and 51503166), ISTCP (2015DFE52870), PCSIRT (IRT15R52) of China, and the Integrated Infrastructure Initiative of EU (312483-ESTEEM2).; esteem2jra4 Approved Most recent IF: 6.319  
  Call Number (down) c:irua:134660 c:irua:134660 Serial 4110  
Permanent link to this record
 

 
Author Sankaran, K.J.; Hoang, D.Q.; Kunuku, S.; Korneychuk, S.; Turner, S.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D' Haen, J.; Verbeeck, J.; Leou, K.-C.; Lin, I.-N.; Haenen, K. url  doi
openurl 
  Title Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 29444  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/mum, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/mum with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.  
  Address IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000379391000001 Publication Date 2016-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 15 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Project G.0456.12, G0044.13N and the Methusalem “NANO” network. Kamatchi Jothiramalingam Sankaran, Stuart Turner, and Paulius Pobedinskas are Postdoctoral Fellows of the Research Foundations Flanders (FWO). Approved Most recent IF: 4.259  
  Call Number (down) c:irua:134643 c:irua:134643UA @ admin @ c:irua:134643 Serial 4119  
Permanent link to this record
 

 
Author Altantzis, T.; Coutino-Gonzalez, E.; Baekelant, W.; Martinez, G.T.; Abakumov, A.M.; Van Tendeloo, G.; Roeffaers, M.B.J.; Bals, S.; Hofkens, J. pdf  url
doi  openurl
  Title Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites Type A1 Journal article
  Year 2016 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 10 Issue 10 Pages 7604-7611  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the different characterization techniques. We present direct evidence of the structural arrangement, at an atomic level, of luminescent silver species stabilized in faujasite (FAU) zeolites using aberration-corrected scanning transmission electron microscopy. Two different silver clusters were identified in Ag-FAU zeolites, a trinuclear silver species associated with green emission and a tetranuclear silver species related to yellow emission. By combining direct imaging with complementary information obtained from X-ray powder diffraction and Rietveld analysis, we were able to elucidate the main differences at an atomic scale between luminescent (heat-treated) and nonluminescent (cation-exchanged) Ag-FAU zeolites. It is expected that such insights will trigger the directed synthesis of functional metal nanocluster-zeolite composites with tailored luminescent properties.  
  Address RIES, Hokkaido University , N20W10, Kita-Ward Sapporo 001-0020, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000381959100043 Publication Date 2016-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 57 Open Access OpenAccess  
  Notes The authors gratefully acknowledge financial support from the Belgian Federal government (Belspo through the IAP-VI/27 and IAP-VII/05 programs), the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 310651 SACS and no. 312483-ESTEEM2), the Flemish government in the form of long-term structural funding “Methusalem” grant METH/15/04 CASAS2, the Hercules foundation (HER/11/14), the “Strategisch Initiatief Materialen” SoPPoM program, and the Fund for Scientific Research Flanders (FWO) grants G.0349.12 and G.0B39.15. S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). The authors thank Prof. S. Van Aert for helpful discussions, Dr. T. De Baerdemaeker for XRD measurements, Mr. B. Dieu for the preparation of graphical material, and UOP Antwerp for the kind donation of zeolite samples.; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942  
  Call Number (down) c:irua:134576 c:irua:134576 Serial 4102  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 200 Issue 200 Pages 31-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384775600004 Publication Date 2016-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 45 Open Access OpenAccess  
  Notes CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446  
  Call Number (down) c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 Serial 4104  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: