|
Record |
Links |
|
Author |
Tanner, L.E.; Shapiro, S.M.; Krumhansl, J.A; Schryvers, D.; Noda, Y.; Yamada, Y.; Barsch, G.R.; Gooding, R.; Moss, S.C. |
|
|
Title |
Firsto order phase transformation in the Ni-Al system |
Type |
A3 Journal Article |
|
Year |
1992 |
Publication |
Metallurgy and Ceramics |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ; |
|
|
Abstract |
First-order displacive phase transformations in alloys and compounds are of high technological importance. We have studied this class of phase transformation in the high-temperature-stable Ni-Al f32(B2) phase as a function of composition, temperature, and stress using transmission electron microscopy and neutron scattering. The results show in detail the direct relationship between the unusually low energies of the transformation-related phonon modes and the development of pre-transformation microstructures (strain-embryos, etc.) via anharmonic coupling processes that ultimately lead to the nucleation and growth of the low-temperature martensitic phases. With these results, it is now possible to develop effective models for nonclassical heterogeneous nucleation of martensite transformations in bulk materials. This tills a critical gap and sets the stage for us to proceed in developing a more global understanding of condensed matter transformations including the coupling of displacive with replacive mechanisms. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
|
Publication Date |
0000-00-00 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Additional Links |
|
|
|
Impact Factor |
|
Times cited |
|
Open Access |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
EMAT @ emat @ |
Serial |
5053 |
|
Permanent link to this record |