|
Record |
Links |
|
Author |
Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. |
|
|
Title |
Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Applied catalysis : B : environmental |
Abbreviated Journal |
Appl Catal B-Environ |
|
|
Volume |
200 |
Issue |
200 |
Pages |
31-38 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL) |
|
|
Abstract |
Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000384775600004 |
Publication Date |
2016-06-28 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0926-3373 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.446 |
Times cited |
45 |
Open Access |
OpenAccess |
|
|
Notes |
CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); |
Approved |
Most recent IF: 9.446 |
|
|
Call Number |
c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 |
Serial |
4104 |
|
Permanent link to this record |