|
Record |
Links |
|
Author |
Hill, E.H.; Claes, N.; Bals, S.; Liz-Marzán, L.M. |
|
|
Title |
Layered Silicate Clays as Templates for Anisotropic Gold Nanoparticle Growth |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Chemistry of materials |
Abbreviated Journal |
Chem Mater |
|
|
Volume |
28 |
Issue |
28 |
Pages |
5131-5139 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Clay minerals are abundant natural materials arising in the presence of water and are composed of small particles of different sizes and shapes. The interlamellar space between layered silicate clays can also be used to host a variety of different organic and inorganic guest molecules or particles. Recent studies of clay−metal hybrids formed by impregnation of nanoparticles into the interlayer spaces of the clays have not demonstrated the ability for templated growth following the shape of the particles. Following this line of interest, a method for the synthesis of gold nanoparticles on the synthetic layered silicate clay laponite was developed. This approach can be used to make metal−clay nanoparticles with a variety of morphologies while retaining the molecular adsorption properties of the clay. The surface enhanced Raman scattering enhancement of these particles was also found to be greater than that obtained from other metal nanoparticles of a similar morphology, likely due to increased dye adsorption by the presence of the clay. The hybrid particles presented herein will contribute to further study of plasmonic
sensing, catalysis, dye aggregation, and novel composite materials. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000380576700031 |
Publication Date |
2016-07-02 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0897-4756 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.466 |
Times cited |
13 |
Open Access |
OpenAccess |
|
|
Notes |
This work has been supported by the European Research Council (ERC Advanced Grant No. 267867, PLASMAQUO). E.H.H. thanks the Spanish Ministry of Economy and Competitiveness for providing a Juan de la Cierva Fellowship (FJCI-2014-22598). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). We gratefully acknowledge A. B. Serrano-Montes for providing the seed-mediated Au nanostars.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); |
Approved |
Most recent IF: 9.466 |
|
|
Call Number |
c:irua:135178 c:irua:135178 |
Serial |
4117 |
|
Permanent link to this record |