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Abstract

The Bayesian genetic algorithm is a powerful tool to reconstruct the three-dimensional structure of mono-atomic single-
crystalline metallic nanoparticles imaged using annular dark field scanning transmission electron microscopy. The number
of atoms in a projected atomic column in the image is used as input to obtain an accurate and atomically precise
reconstruction of the nanoparticle, taking prior knowledge and the finite precision of atom-counting into account. However,
as the number of parameters required to describe a nanoparticle with atomic detail rises quickly with the size of the studied
particle, the computational costs of the Bayesian genetic algorithm rise to prohibitively expensive levels. In this study,
we investigate these computational costs and propose methods and control parameters for efficient application of the
algorithm to nanoparticles of at least up to 10 nm in size.

Key words: Quantitative electron microscopy, scanning transmission electron microscopy, statistical parameter estima-
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Introduction

It is widely accepted that an accurate description of the mor-

phology and structure of metallic nanoparticles is necessary

to understand the unique properties that nanoparticles exhibit

(Miyazaki et al. [2003], Narayanan and El-Sayed [2004], Hvol-

bæk et al. [2007], Long et al. [2009], Calle-Vallejo et al. [2014],

McCrum et al. [2017], Altantzis et al. [2019], Yang et al. [2019],

Liu et al. [2021], Irmak et al. [2021]). Through atomic resolution

annular dark field scanning transmission electron microscopy

(ADF-STEM) it becomes possible to extract structural in-

formation from the nanoparticles. For small or beam-sensitive

particles 3D imaging procedures such as electron tomography

(Bals et al. [2014], Miao et al. [2016], Altantzis et al. [2019]) re-

quire electron doses that are too large. The Z-contrast allows for

the extraction of elemental and thickness information through

atom counting using a single 2D projection. The atom counting

results from the ADF-STEM image may be used in combination

with prior knowledge of the crystalline structure to estimate the

three-dimensional shape of the imaged nanoparticle.

In past studies, various methods have been proposed to re-

fine the initial model into an accurate representation of the

nanoparticle. The structure may be refined through energy min-

imisation schemes such as ab initio calculations (Bals et al.

[2012]) or molecular dynamics-based approaches (Backer et al.

[2017], Altantzis et al. [2019]). These methods have been shown

to result in qualitatively good reconstructions by comparison

with electron tomography (Backer et al. [2017], Altantzis et al.

[2019]). Though, in some cases these results may deviate from

the experimental observations by trending unrestrained towards

a global minimum.

Alternatively, more structural information from the ADF-

STEM image can be taken into account to constrain the

reconstruction process. Jones et al. [2014] proposed a Monte

Carlo method which optimises the energy through shifting the

atomic columns along the beam direction, thereby conserving

the atom-counts. Irmak et al. [2021] constructed a local minima

search algorithm which combines Monte Carlo with molecular

dynamics to scan the energy landscape for suitable meta-stable

states. Yu et al. [2016] used a genetic algorithm to optimise

the structure of a nanoparticle by matching forward modelling

of the experimental images and simultaneously minimising the

energy. De Backer et al. [2022] used a genetic algorithm and

incorporated the prior knowledge and finite precision of the

atom-counting results to balance the energy optimisation and

correspondence to the experimental observations.

In this study, we focus on the Bayesian genetic algorithm

(BGA) proposed by De Backer et al. [2022], as this method

was reported to accurately reconstruct the surface of small nan-

oparticles at low doses. Although genetic algorithms are used

© The Author 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

1

https://doi.org/10.1093/mam/ozae090
https://orcid.org/0009-0002-9842-4778
https://orcid.org/0000-0002-8592-4776
https://orcid.org/https://orcid.org/0000-0003-4088-6398
https://orcid.org/0000-0001-9603-8764
email:sandra.vanaert@uantwerpen.be


2 Author Name et al.

Figure 1. Ten nanoparticles generated for an approximately linearly increasing number of atomic columns along the [110] direction to study the

behaviour of the computational costs of the Bayesian genetic algorithm. The colouring of the atoms corresponds to the coordination number ranging

from 1 in red to 12 in dark blue. The smallest nanoparticle contains 369 atoms in 67 columns and measures approximately 2 nm, the largest nanoparticle

depicted contains 5257 atoms in 383 columns and measures approximately 5 nm.

to solve large and complex optimisation problems where direct

solutions cannot be found, the number of parameters needed

to accurately describe the three-dimensional shape of a nano-

particle rises quickly and thus an upper limit to the size of the

nanoparticle which can be studied through the BGA is set by

the computational requirements. Here we will investigate the

computational costs of the BGA and propose control paramet-

ers which allow us to scale up the capacity of the algorithm.

This enables us to reconstruct a nanoparticle of at least up to

10 nanometres in size.

To investigate the computational cost of the BGA, we use

10 single-crystal single-element convex metallic nanoparticles of

different sizes as presented in Figure 1, in the range of 2-5 nm

in size. Through reconstructing these particles, we can gauge

the effectiveness of the proposed genetic control parameters and

the computational effort required to reconstruct a nanoparticle.

In the last section, we will demonstrate the reconstruction of

a larger nanoparticle of 10 nm, made possible by the optimisa-

tions introduced in this work. Note that the methodology may

be applied to a broader range of particles than studied in this

paper. Grain boundaries parallel to the beam can be accounted

for, and particles do not need to be strictly convex in order to

apply the Bayesian genetic algorithm. It suffices that all atomic

columns consist of a single unbroken sequence of atoms, without

cavities inside those columns.

In this paper, we revisit dose-dependent atom counting, ex-

pand on the current techniques of representing atom-counting

uncertainty, improve the Bayesian genetic algorithm, and study

the computational cost of the reconstruction method in more

detail.

Methods

STEM simulation
Platinum Wulff structures were chosen for the 11 nanoparticles

and were generated using a specialized Python package designed

to create Wulff structures in an atomistic representation (Rahm

and Erhart [2020]). This shape was chosen for the simulated

nanoparticles to create a representative sample of nanoparticles

with sufficient thickness variation.

ADF-STEM image simulations were performed using the

MULTEM package (Lobato and Van Dyck [2015], Lobato et al.

[2016]). The full simulation settings can be found in the Ap-

pendix. To reflect realistic experimental conditions, averaging

over 30 frozen phonon configurations was performed and a

source size with Gaussian profile with a FWHM of 1Å was

used to mimic general experimental conditions. Additionally,

shot noise on the ADF detector was simulated through 30 noise

realisations for a dose of 1e3 e/Å2.

Dose-dependent atom counting
In this section, we will introduce the atom counting proced-

ure as illustrated in Figure 2, including the dose-dependent

contribution as demonstrated by De Backer et al. [2023].

First, a parametric model (Figure 2b) is fitted to the sim-

ulated ADF-STEM image (Figure 2a) using the StatSTEM

software (De Backer et al. [2016]). This model describes the in-

tensity at pixel (k, l) at location (xk, yl) in the image containing

N atomic columns using a superposition of N 2D-Gaussians

fkl(θ) = ζ +
N∑

n=1

ηn exp

(
−

(xk − βxn
)2 + (yl − βyn

)2

2ρ2

)
, (1)

where ρ represents the width of the 2D-Gaussians, ηn the in-

tensity of the nth peak, βxn
and βyn

the x- and y-positions of

the nth atomic column, and ζ a constant background which is

set to zero in this simulation study. The unknown parameters

to be estimated using a least-squares procedure are given by

the parameter vector

θ =
(
βx1

, . . . , βxN
, βy1

, . . . , βyN
, η1, . . . , ηN , ρ

)
. (2)

From the obtained estimated parameters θ̂, the estimated scat-

tering cross-sections (SCSs) can be calculated from the volumes
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Figure 2. Dose dependent atom counting and the construction of the probability matrix for particle 3 (shown in Figure 1). (a) Simulated ADF-STEM

image of a Pt nanoparticle along the [110] zone axis for a dose of 1e3 electrons per squared Ångström. (b) The fitted parametric model of the image

shown in (a). (c) Estimated number of atoms in each atomic column for the image shown in (a). (d) Histograms of the observed scattering cross-sections

of the image shown in (a). The estimated Gaussian mixture model is shown in black, the decomposition into the normal components is shown in colours

corresponding to the number of atoms in the column. (e) The probability matrix indicating the probability for a column n to contain g atoms. The

column labels n are assigned by sorting the scattering cross-sections in ascending order.

under the 2D-Gaussian peaks above the background (De Backer

et al. [2016])

SCSn = 2πη̂nρ̂
2
. (3)

Figure 2d shows the histogram of the calculated SCSs, which

are interpreted as independent statistical draws from a Gaus-

sian mixture model (GMM). This model represents a linear

combination of Gaussian components which describe the prob-

ability of observing a specific value of the SCS. The probability

density function of the GMM is described by

fmix(SCSn;ψG) =
G∑

g=1

πg

σg

√
2π

exp

(
−

(SCSn − µg)
2

2σ2
g

)
, (4)

wherein µg describes the locations of the normal distributions

corresponding to the expected value for the SCS of a column

containing g atoms. These locations were determined by sim-

ulating a Pt crystal in the [110] orientation up to a thickness

of 60 atoms. The simulation settings determining the detector,

probe, and frozen phonon configurations are chosen identically

to the simulation settings of the simulated images, summar-

ised in Table 3. The width of the Gaussian components in

the mixture model σg is determined by both dose-dependent

(σdd,g) and dose-independent (σdi) contributions (Van Aert

et al. [2019], De Backer et al. [2023])

σg =
√

σ2
di + σ2

dd,g with σdd,g =

√
µg

d
. (5)

The object ψG represents a vector containing all unknown

parameters in the mixture model and contains G elements

ψG =
(
π1, . . . , πG−1, σdi

)
. (6)

Note that the locations µg are known and that the additional

constraint on the mixing proportions
∑G

g=1 πg = 1 ensures that

only G − 1 proportions need to be estimated.

Inherent uncertainty in the Gaussian mixture model
As described by De Backer et al. [2022] and De wael et al. [2023],

the finite precision of the atom counting procedure is determ-

ined by the width of the Gaussian components, as described in

equation (5). Each component represents the probability that

the scattering cross-section of column n, SCSn, is generated by

the gth component p(SCSn|g). Using Bayes’ theorem, the prob-

ability that the observed scattering cross-section has a thickness

of g atoms can be inferred from

p(g|SCSn) =
p(SCSn|g)p(g)

p(SCSn)
=

p(SCSn|g)p(g)∑
k p(SCSn|k)p(k)

. (7)

Under the assumption that all column thicknesses are equally

likely, equal probabilities are assigned to the probability p(g) of

a column having g atoms. The probabilities p(g|SCSn) are visu-

alised in the probability matrix in Figure 2e. The relationship

to the width of components in the Gaussian mixture models in

Figure 2d, is clearly visible. The ambiguity in assigning a num-

ber of atoms to a given column is shown in the vertical spread.

When the precision of the atom counting is high, the probabil-

ity matrix will have sharp and defined features. Conversely, at

low doses where the precision of the atom counting is low, the

probability matrix will appear more diffused.

Determining the uncertainty by sampling the
distribution of the atom counts
For the larger nanoparticle (which will be discussed in section

“Reconstruction of a larger nanoparticle”), a comparison of the

atom counting results on the noise realised image to the ground

truth thickness of the nanoparticle shows that the probability

matrix constructed using equation (7) might be too narrow and

thus fails to account for the true uncertainty on the counting

results. Additional sources of uncertainty must be taken into

account.

De wael et al. [2023] suggests an alternative approach to

complement the probability matrix in order to quantify the un-

certainty by sampling the actual distribution of atom counts

through noise realisations of the observed GMM. Here we ex-

tend this method to capture the uncertainty in the estimation of

the fitted parametric model of the image as well. If the source of

the noise on the images is understood, noise realisations can be

performed on the fitted parametric model, thereby generating

a new image which can be analysed. By performing this boot-

strapping procedure, the probability matrix can be determined

for each noise realisation of the fitted parametric model us-

ing equation (7). Averaging these probability matrices for each

noise realisation, gives a more accurate representation of the

atom counting uncertainty.

Figure 3 shows the probability matrices for the larger nan-

oparticle for calculated using the inherent uncertainty in the

GMM and the bootstrapping procedure which samples the dis-

tribution of the atom counts through noise realisations of the

parametric model. We see that performing 50 noise realisations
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Figure 3. The probability matrix determined through the first approach discussed in section “Inherent uncertainty in the Gaussian mixture model.”

Determining the probability matrix through equation (7) based on the Gaussian mixture model results in the matrix shown in panel (a). On the right,

Panel (b) shows the probability matrix is determined through extending the methodology and performing 50 noise realisations on the fitted parametric

model of the ADF-STEM image.

of shot noise for a dose of 1e3 e/Å2 on the fitted paramet-

ric model results in a more diffuse probability matrix, which

accounts for the additional variance on the counting results

caused by the finite precision of the estimated parameters of

the parametric model of the image (equation (2)) and the GMM

(equation (6)).

Taking neighbouring columns into account
At low electron doses, when the overlap of Gaussian compon-

ents is large, and thus the precision is small, De Backer et al.

[2022] propose incorporating more prior knowledge in the form

of neighbour-mass relations to further improve the quality of

the reconstructions. For the convex-shaped particles considered

in this work, abrupt changes in column thicknesses are unlikely.

The mass or number of atoms in the nth column can be pre-

dicted by the average mass of neighbouring columns (NBn).

Therefore, a diagonal neighbour-mass matrix is proposed where

the probabilities are described by a Gaussian profile such that

the interval ±1 atom corresponds to 80% of the probability

in the matrix column, shown in Figure 4. The neighbour-mass

probability can then be combined with the probability mat-

rix to obtain p(g|SCSn ∩ NBn), the probability that column n

contains g atoms given SCSn and the average neighbour-mass

NBn

p(g|SCSn ∩ NBn) =
p(SCSn|g)p(g|NBn)∑
k p(SCSn|k)p(k|NBn)

. (8)

Figure 4. A visualisation of the neighbour-mass probability matrix for

particle 3 (shown in Figure 1). The probability of the nth column contain-

ing g atoms is determined by the average mass of neighbouring columns

NBn.

The Bayesian genetic algorithm
The Bayesian genetic algorithm (BGA), proposed by De Backer

et al. [2022], is employed to reconstruct the three-dimensional

shape of the imaged nanoparticle with atomic precision.

Using prior knowledge of the composition and the structure

of the material, the atom counting results are converted into

the initial model for the 3D structure of the nanoparticle by

placing the columns symmetrically around a central plane at

appropriate lattice positions. From this reference, we create a

gene sequence consisting of two major sections describing the

difference for each column in

1. the height offset from the central plane,

2. the number of atoms in the column.

These strings of genetic information span the entire solution

space for the 3D structures that can generate the observed im-

age. By construction, this requires the use of signed integers as

bases for the genetic traits. This large span of bases may affect

the convergence rate of the genetic algorithm negatively.

The structure of the BGA is shown in Figure 5. For every ini-

tialisation of the BGA, the algorithm will generate a population
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Figure 5. A Flowchart representing the order of processes in the BGA.

Starting at ‘Initialise population’ and ending in a final solution in ‘Final

3D reconstruction.’

Parameter Value

Population size 5N

Recombination fraction 50%

Mutation density 1/N

Height mutation range ±1 lattice step

Count mutation range ±1 atom
Table 1. Control parameters chosen for the BGA as a function of

the number of columns N .

of members, where each member represents a 3D reconstruction

of the nanoparticle. Next, members undergo mutation using

random number generation to create genetic diversity. In gen-

erations after the first, a crossover will occur where the parents

randomly mix traits to generate a population of children, also

known as bitwise independent mating (Rabinovich and Wig-

derson [1999]). After the population is established, the fitness

is evaluated for each new member in the current population

by calculating the cost-function. This function, X, balances

the energy per atom with the column probabilities (De Backer

et al. [2022]) and should be minimal for optimal fitness

X =

N∑
ℓ=1

gℓ∑
k=1

Ek

N∑
m=1

gm

·

1 + N

√√√√ N∏
n=1

p (gn|SCSn ∩ NBn)

 . (9)

In the next step the population is sorted according to des-

cending fitness (ascending cost) and selects the fittest fraction

(recombination fraction) to become the parents in the next gen-

eration. When the population converges, which is interpreted

as the stage where for a duration of generations no significant

improvement in the cost-function is made, the simulation stops

and the best member (with the lowest cost-function) is saved.

However, a population converging on a solution may not

result in the best possible reconstruction due to the complex

nature of the cost-function landscape and the dependence on

random events for the creation of members. To treat this, we

run the so-called initialisations multiple times. Afterwards,

the best members of all initialisations are put into a ‘super’-

population as the start of a new initialisation which is called

the supermodel.

Additionally, effective use of genetic algorithms requires

well-chosen control parameters. Although genetic algorithms

have been used for several decades since the primary investiga-

tion by De Jong [1975], there is no consensus on effective control

Figure 6. Probable members are generated by considering the best mem-

bers of each initialisation and calculating the frequency at which each

atom is reconstructed. These probabilities are visualised in a colour scale

for a noise realisation of particle 3 (shown in Figure 1). The population

of probable members is generated by setting thresholds for the minimal

probability in the construction shown in this figure.

parameter choice in genetic algorithms (Mills et al. [2015]).

De Jong [2007] suggests researchers should explore different

control settings to find the most effective ones for particular

classes of problems rather than relying on general-case con-

trol parameters. Arenas et al. [2010] and Kapoor [2011] suggest

that both mutation and crossover are needed to converge on

good results. Mutation creates diversity in the population, pre-

venting premature convergence (Pandey et al. [2014]). However,

too much mutation will lead to a random search rather than a

structured exploration of the fitness landscape. Similarly, a high

crossover rate tends to disrupt the structures selected for repro-

duction (Grefenstette [1986]). Furthermore, the population size

should be sufficiently large since a large population increases

the parallelism and helps in solving complex problems, though

with diminishing returns (De Jong [2007], Kapoor [2011]) and

at increased computational cost. A balance must be found in

these parameters for which the Bayesian genetic algorithm will

run efficiently.

For this study, we tuned the control parameters for the BGA

as a function of the number of columns in the image, these are

listed in Table 1. A larger particle represents a more complex

problem with a larger population. Mutation scales inversely,

such that the total number of changes made in a generation will

scale linearly with the population size (and thus linear with the

number of columns). The mutation range is limited to a small

range as we assume that the final solution of the BGA will not

deviate strongly from the initial symmetrical guess.

Probable solutions

To further improve the initial population of the supermodel, we

propose the inclusion of probable reconstructions. After all ini-

tialisations are complete and the super-population is generated,

we can make more inferences about what constitutes a ‘good’

member. If a trait is present in many good members, such as the

reconstruction of specific atoms in the nanoparticle, it is likely

to be a good trait. Using this information, we may construct

additional probable-members for the initial super-population to

compete in the supermodel. If these newly constructed mem-

bers are indeed good, they compete with the other generated

solutions and may pass on their traits to the final solution.

If a constructed member is bad, it will be filtered out at
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the selection point and will have no significant impact on the

convergence of the algorithm.

We construct these probable members by taking the top

members of each initialisation, and comparing the frequency

at which each atom is reconstructed in 3D. A representation of

the atomic reconstruction frequency is shown in Figure 6. By

setting multiple thresholds for this probability, we can create a

new member for the superpopulation at each threshold value.

In this study we chose 20 threshold values uniformly spaced in

the interval [5%, 100%].

Parallelisation

The BGA lends itself to parallelisation on two distinct levels,

which we implemented in this work. Firstly, the cost-function

X needs to be evaluated for all new members in a population,

which is a costly endeavour for large nanoparticles and large

populations. This task can be distributed efficiently over mul-

tiple cores in a CPU. Additionally, the initialisations running

before the supermodel are independent of one another. These

can be run in parallel on several machines or nodes in a cluster,

which reduces the total real-time duration of the BGA to the

duration of the longest initialisation plus the duration of the

supermodel.

Naively, this parallelisation can speed up the calculations

by a factor proportional to the number of CPU cores and the

number of compute nodes (or machines) if we ignore the contri-

butions of parallel overhead and neglect the time the algorithm

spends outside of cost-function evaluation (the parallel com-

ponent of the code). More practically, while each initialisation

is accelerated by the parallelism of the cost-function evaluation,

a serial part remains. We can quantify the performance gains

by considering the speedup (Amdahl [1967], Gustafson [1988],

Eager et al. [1989]). The time a process runs on a single thread

or core T1 can be written as

T1 = TS + TP , (10)

where TS denotes the time spent on code that is executed in

series, and TP denotes the time spent on executing parallel

code. It follows that for the use of n cores in parallel, we expect

the total compute time to be

Tn = TS +
TP

n
. (11)

The speedup gained by using n cores is then defined by

S(n) =
T1

Tn

=
TS + TP

TS + TP

n

. (12)

In the limit for an infinite number of cores, the speedup ap-

proaches a constant defined by the proportion of parallel to

serial code; also known as Amdahl’s law (Gustafson [1988])

lim
n→∞

S(n) = 1 +
TP

TS

. (13)

In reality, however, communication bottlenecks will take over

and decrease the speedup for increasing number of cores n. The

shortest execution time can thus be reached by selecting the

number of cores n that maximises the speedup S.

Nevertheless, larger numbers of cores will also result in less

effective use of the cores during the serial component of the

code. In high performance computing (HPC) environments,

it is important to consider efficient use of resources rather

Parameter Value

Cluster name Vaughan

Processors dual 2.35GHz 32-core

AMD Zen 2 Rome (Epyc 7452)

Number of cores 64

(hyperthreading disabled)

Available RAM 256 GB

Table 2. Configuration of HPC nodes used for the BGA simulations.

than solely focusing on the speedup and execution time. The

efficiency (Eager et al. [1989]) can be defined as

E(n) =
T1

nTn

=
TS + TP

nTS + TP

, (14)

which should be kept as close as possible to unity for effi-

cient use of resources. To probe the speedup and efficiency of

the BGA, we have empirically calculated these quantities for a

single noise realisation and single initialisation for the 10 nano-

particles. Figure 7 shows the calculated speedup and efficiency

for the different sizes of nanoparticles as a function of the num-

ber of cores used. For this calculation, 100 generations were run

for each nanoparticle and number of cores, thereby ensuring the

simulations would not prematurely converge and influence the

measurement. However, it is important to note that the res-

ults shown in Figure 7 are based on single measurements of the

times Tn for each nanoparticle and number of cores which de-

pend heavily on the stochastic nature of the BGA. Therefore,

these results only serve to give an indication of the trends.

Results and discussion

Convergence rate
The computational costs of genetic algorithms can be studied

by two metrics: the convergence rate of the genetic algorithm,

and the computational cost of the cost-function evaluation. The

first has been a topic of research for several decades and is

sensitive to the control parameters (Table 1) which determ-

ine the genetic algorithm. The second is determined by the

type of problem considered. In this case, the computational

cost is predominantly inherited from the potential energy cal-

culation of the nanoparticle described by the member and the

calculation of the geometric mean of column probabilities. The

execution time also couples with the efficiency of the used

computational resource for a complex behaviour. Therefore we

restrict ourselves to the discussion of the convergence rate in

this section.

The convergence rate can be studied as a function of the

number of columns N in the particle along the [110] zone axis,

which serves as the parameter determining the values of the

control parameters (Table 1). Grouping the data for all 30 noise

realisations for the shot noise determines a statistical 95% con-

fidence interval on the mean number of generations required

to converge on the final solution proposed by the BGA. The

conditions for linear regression are met, and the normality of

residuals is confirmed by the Lilliefors test (p = 0.36). For the

linear regression, the 95% confidence interval is calculated and

overlaps well with the acquired data points and their respective

confidence intervals. Therefore, we conclude that for this optim-

isation problem with the control parameters set by Table 1, the

number of generations before convergence is a linear function

of the number of columns. The data and the linear regression

are shown in Figure 8.
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Figure 7. The speedup and CPU efficiency calculated for a single initialisation and noise realisation per nanoparticle, show the generally expected trend

of increasing speedup and decreasing efficiency. In these graphs, a fitted model of the ideal case of the speedup in equation (12) and the corresponding

efficiencies is shown, obtained from fitting the fraction of parallel execution time to serial execution time (TP /TS) in equations (12) and (14).

Figure 8. Convergence rate as a linear function of the number of columns

in the observed image.

Benefits of parallelisation
The speedup and efficiency were calculated for the 10 smaller

nanoparticles to probe the speedup gained by parallelisation

of the cost-function evaluation and shown in Figure 7. From

the data represented in this figure, it is evident that we must

use caution when increasing the number of cores assigned to

a job. Firstly, because for small nanoparticles the communica-

tion overhead forms a bottleneck reducing performance gains.

For the smallest nanoparticle, it decreased the speedup after

a maximum found at 16 cores. Secondly, efficient use of the

requested resources is important in HPC environments. The

CPU efficiency shown in Figure 7 drops off rapidly with in-

creasing number of cores; suggesting that the compute resources

were inefficiently used. Only for sufficiently large nanoparticles

one should consider requesting more cores than are typically

available on a desktop system.

Reconstruction of a larger nanoparticle
The BGA was shown to be a promising reconstruction method

which allows for accurate three-dimensional reconstructions of

nanoparticles at low doses, capable of resolving the particle

with atomic detail (De Backer et al. [2022]). However, the com-

putational requirements prohibited the reconstruction of large

nanoparticles. As a result of the parallelisation and optimisa-

tions discussed in this paper, we are now able to accurately

reconstruct nanoparticles of larger size. To demonstrate this,

we simulated a nanoparticle of 10 nm in all three dimensions.

Shot noise was added to the image to emulate a dose of 1e3 e/Å2

in a single noise realisation, which was then counted using the

dose dependent atom counting method.

To determine the probability matrix, a bootstrapping pro-

cedure is applied in which 50 noise realisations for the shot

noise are used on the parametric model fitted to the initial in-

put image, as discussed in section “Determining the uncertainty

by sampling the distribution of the atom counts.” Thereby

allowing us to account for the additional variance in the de-

termination of the scattering cross-sections caused by variance

in the fitted parameters of the Gaussian peaks in equation (1).

The particle was reconstructed using the BGA with the

parameters described in Table 1, resulting in a surface frac-

tion reconstruction of 84%, which is in good agreement with

the expected surface reconstructions (De Backer et al. [2022])

for this dose. The reconstruction is shown in Figure 9.

Conclusions

In this work we have optimised the Bayesian genetic algorithm

previously presented by De Backer et al. [2022] for compu-

tational efficiency through parallelisation within and between

multiple machines. A set of control parameters are sugges-

ted in Table 1 which are effective for the reconstruction of

nanoparticles. Furthermore, the addition of probable mem-

bers uses inference from the observed reconstructions in the

initialisations to further improve the initial population of the

supermodel. Through these efforts, the reconstruction of lar-

ger nanoparticles of approximately 10 nm has become possible

using HPC infrastructure.
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Figure 9. An accurate atomic resolution 3D reconstruction of a particle

approximately 10 nm in size demonstrates the ability of the BGA to

reconstruct larger nanoparticles. After the reconstructed particle has a

recovered surface fraction of 84% compared to the ground truth.
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Appendix

Multislice simulation settings
The simulation of the ADF-STEM images was performed with

the settings described in Table 3, which were selected to con-

form to realistic settings of a probe-aberration corrected JEOL

ARM200CF used in related work by De Backer et al. [2022]. The

pixel size varies slightly for the different nanoparticles around

the value of 0.15Å due to the choice of the scan field for each

particle. In Table 4 the values for the pixel sizes are listed

for each particle simulation. The slice thickness was set using

MULTEM’s autoslice option, which automatically determines

the slice thickness based on the periodicity along the beam

direction.

Reconstruction accuracy
The particles considered in this study and their reconstruc-

tions satisfy the expected fraction of correctly identified surface

atoms, indicating successful reconstruction of the nanoparticles’

surfaces (De Backer et al. [2022]). For the ten nanoparticles

shown in Figure 1, the recovered surface fractions and their

95% confidence intervals are shown in Figure 10. The re-

covered surface fraction is obtained by considering all atoms

with coordination number less than 12 for the ground truth nan-

oparticle and the reconstructed nanoparticle. The total number

Parameter Value

Acceleration voltage 200 kV

Defocus 0 nm

Spherical abberation 0 nm

Convergence angle 22.48 mrad

Inner detector angle (ADF) 51.73 mrad

Outer detector angle (ADF) 248.41 mrad or 9.9 Å−1

FWHM of the source image 1.0 Å

Root mean squared displacement 0.085 Å

Real space sampling 0.05 Å× 0.05 Å

gmax 10 Å−1

Table 3. Parameters used for the ADF-STEM simulations of the

nanoparticles and the Pt crystal in [110] and [001] zone axis up to

40 atoms thick.

Figure 10. The fraction of recovered surface atoms for the first 10 nan-

oparticles used to study the computational costs of the BGA.

of coordinate-matched atoms divided by the maximum number

of atoms in the surfaces of the nanoparticles is the recovered

surface fraction.
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