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A twin boundary in one of the layers of a twisted van der Waals heterostructure separates regions
with near opposite inter-layer twist angles. In a MoS2/WSe2 bilayer, the regions with R

h

h and R
X

h

stacking registry that defined the sub-lattices of the moiré honeycomb pattern would be mirror-
reflected across such a twist boundary. In that case, we demonstrate that topologically protected
chiral moiré exciton states are confined at the twist boundary. These are one-dimensional and uni-
directional excitons with opposite velocities for excitons composed by electronic states with opposite
valley/spin character, enabling intrinsic, guided, and far reaching valley-polarized exciton currents.

I. INTRODUCTION

Recent advances in fabrication and manipulation of
two-dimensional (2D) materials have enabled precisely
controlled stacking and twisting of transition-metal
dichalcogenides (TMDs) in van der Waals (vdW) hetero-
bilayers1–3. In such atomic scale systems, the moiré pat-
tern created by the mismatch between the crystal lattices
of the stacked layers plays an important role4,5: it pro-
duces an in-plane potential landscape for inter-layer ex-
citons (ILEs), with potential minima at the vertices of a
honeycomb superlattice which, in the case of MoS2/WSe2
vdW hetero-bilayers, is formed by regions with either Rh

h
or RX

h stacking6. Since these two stacking registries form
different energy minima, the band structure resulting
from such a moiré potential exhibits a gapped Dirac cone
for the lowest-energy moiré exciton7,8. These moiré exci-
tons were experimentally evidenced e.g. in Ref. [9], in the
series of exciton peaks associated to ILE confined in the
minimum of the moiré potential landscape, as well as in
Ref. [10] through changes in magnetic field dependence
of exciton peaks as a function of the twist angle. Previous
works have proposed that moiré-trapped excitons could
be used as quantum simulators of many-body physics,
and as coherent quantum emitters7,11–13. In general, the
synergy between opto-electronics and twistronics encoun-
tered in such moiré trapped ILEs has made them an ex-
citing topic of research towards control and enhancement
of light-matter interactions in 2D semiconductors14–16.

Often, atomically thin materials exhibit defect lines
and grain or twin boundaries17,18 that separate adjacent
regions with different lattice orientations. Although great
effort has been put into the theoretical understanding
of mechanical and electronic properties of grain bound-
aries in monolayer graphene19,20 and TMDs21, the role
of extended lattice defects in vdW hetero-bilayers is yet
to be investigated in greater detail. In particular, the
fact that defect lines due to chalcogen vacancies in mono-
layer TMDs lead to a misorientation angle in the lattice
crystal21,22 brings the prospect of spatially engineering
the inter-layer twist angles in TMD vdW hetero-bilayers.

This can be realized by stacking a TMD monolayer with
a defect line or a twin boundary over a pristine mono-
layer of another TMD using layer transfer techniques23.
Such a hetero-bilayer would then contain twist boundaries
between regions where moiré excitons may behave strik-
ingly differently, due to the locally different inter-layer
twist angles.

In this Letter, we ask a subsequent question: what
physics is then to be expected at the twist-boundary
itself? To illuminate this, we theoretically investigate
moiré excitons in a MoS2/WSe2 vdW hetero-bilayer
where one of the layers contains a twin boundary, as
illustrated in Fig. 1(a). The twin boundary separates
the system into two regions with opposite signs of the
inter-layer twist angle. As a consequence, moiré exci-
ton states exhibit opposite pseudo-spin character in the
two regions. As we will demonstrate, this leads to a
topologically protected, confined moiré exciton state ly-
ing exactly at the boundary. Such confined moiré exci-
tons have a twist-tunable velocity with spin-dependent
direction along the twist boundary, making the latter a
rather convenient and versatile platform for both exciton
transport and spintronics.

Controllable transport of excitons represents a ma-
jor development towards signal processing based on op-
tics, rather than on electronics, which is fundamental
for faster communication technologies. Uni-directional
transport of excitons in vdW hetero-bilayers has been
proposed and experimentally observed24 by using a non-
uniform perpendicular electric field to guide the excitons.
Our proposal, using moiré exciton that is confined and
propagating along the twist boundaries, represents a vi-
able yet advantageous alternative for exciton transport.
Besides being energy efficient (not requiring any exter-
nal drive), our concept provides control over exciton cur-
rents composed by spin-polarized electronic states that
are topologically protected against back-scattering along
the twist boundary.
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FIG. 1: (color online) (a) Sketch of the twisted MoS2-WSe2
hetero-bilayer with a twin boundary in the MoS2 layer. As
a consequence, twist angle θ on the left side of the boundary
changes to twist angle −θ

′ on the right side, and the R
h

h and
R

X

h stacking regions at the vertices of the moiré honeycomb
lattice (dashed line) are mirror-reflected. (b) Greyscale map
of the moiré potential landscape for ILE on two sides of the
twist boundary. Regions with R

M

h stacking, in the center of
each moiré hexagon (dashed line), exhibit maximal potential
(white), whereas the potential minima (dark) are in the R

X

h

and R
h

h regions. Insets show the potential profile along the in-
dicated dotted lines. δ denotes the energy difference between
the minima at the A and B sites of the moiré hexagon. (c)
The energy gaps on two sides of the twist boundary are the
same for any θ and θ

′, but the pseudo-spin character of the
involved bands is different, as represented by solid and dashed
lines. In such a case, the confined moiré exciton is expected
right at the twist boundary.

II. THEORETICAL BACKBONE

As sketched in Fig. 1(a), the moiré pattern on each
side of the twist boundary is composed of regions with
Rh

h (blue) and RX
h (red) stacking registry, forming two in-

terspersed triangular sub-lattices which, combined, yield
a honeycomb moiré superlattice. Due to the opposite sign
of the twist angles, those sub-lattices are mirror-reflected
across the twist boundary. The energy minima for ILEs
in the moiré potential landscape are found where the
crystal exhibits one of these two stacking registries, with
Rh

h being the one with the lowest energy, as shown in the
greyscale map in Fig. 1(b). Details on the calculation of

the moiré potential landscape are given in the Appendix.
We consider a vdW hetero-bilayer composed by stacked
monolayers of MoS2 and WSe2. The difference between
the potential minima in Rh

h and RX
h for this choice of

materials is δ = 0.022 eV. In principle, other combina-
tions of TMDs, with twist angles close to either 0◦ or
to 60◦ (namely, with a moiré pattern of H-type stacking
registries) are also expected to produce results qualita-
tively similar to those we will discuss here, provided the
resulting potential landscape for the exciton, originating
from their moiré patterns, also exhibits a honeycomb lat-
tice of significantly deep confining potentials.7 However,
we found the choice of a MoS2/WSe2 vdW heterostruc-
ture to be particularly convenient, since we verified, with
standard ab initio calculations, that the gap in this com-
bination of materials remains direct at the K-point of
the Brillouin zone for all stacking configurations consid-
ered here, which helps us to avoid possible complications
originating e.g. from indirect exciton states.

Such a honeycomb superlattice of confining potentials
for ILEs in each side yields an energy dispersion for the
moiré exciton which exhibits a gap given by the difference
δ between the energy minima of the potential landscape,
thus resembling that of a Dirac fermion with non-zero
mass. Such gapped Dirac cone exhibits a conserved topo-
logical charge whose sign depends on the sign of δ. How-
ever, due to the changing sign of the twist angle across the
twist boundary, the pseudo-spin of this Dirac-like quasi-
particle is flipped from one side to the other, and so is the
sign of the topological charge. This is illustrated by solid
and dashed lines in Fig. 1(c), representing the pseudo-
spin character of the band edges of the gapped moiré ex-
citon band structure across grain the boundary. In fact,
this situation is similar to the one where a staggered,
gap-opening potential, e.g. due to a BN or SiC sub-
strate, changes sign across a defect line in the substrate,
thus changing the sign of the mass term in the Dirac-
like Hamiltonian for low-energy electrons25,26. It is also
equivalent to the case of bilayer graphene where the inter-
layer bias changes sign across a line27–30. In both latter
cases topologically protected states were found, with en-
ergy lower than the gap δ in each side, confined along the
interface between the two sides. This is a consequence
of the sign change of the topological charge, which pro-
duces an in-gap chiral channel along the boundary.31 In
the case of bilayer graphene, these states were experimen-
tally probed32,33 and even proposed as a base for valley
filtering and beam-splitting devices34. More information
on the topological charge of massive Dirac cones and the
formation of in-gap confined chiral states can be found
e.g. in Refs. [35,36]. As we will demonstrate, a moiré
exciton is analogously confined at the twist boundary of
the vdW hetero-bilayer sketched in Fig. 1(a), with a
non-zero spin-dependent propagation velocity that can
be controlled by the twist angle.

Considering each side of our system as a separate hon-
eycomb moiré lattice of confining potentials for ILEs,
with lattice constant b (left) and b′ (right), the moiré



3

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

C
o
n
fi
n
e
m

e
n
t 
p
o
te

n
ti
a
l 
(e

V
)

B B AA

(b)(a)

FIG. 2: (color online) (a) Band structure of the moiré exciton
at either side of the considered system, for different spins
(arrows). Hexagons represent the moiré Brillouin zone. The
band structure exhibits Dirac-Weyl cones with δ gap at Γm

and at the Km (−Km) vertices for excitons composed by spin
up (down) electronics states. (b) Potential profile in two sides
of the considered vdW bilayer for different applied electric
field.

excitons obey the tight-binding Hamiltonian,37

Hmex =

(

VA − tAF (k) t0Z0(k) + t2Z2(k)
t0Z

∗
0 (k) + t2Z

∗
2 (k) VB − tBF (k)

)

, (1)

where t0 (t2) are the first (third) nearest-neighbor hop-
pings, tA and tB are the second nearest-neighbor hop-
pings between sites of the A and B sub-lattices, and the
on-site potentials have opposite sign for different sub-
lattices, VA = ±δ/2 and VB = ∓δ/2 (changing signs
across the twist boundary). The structure factors for
this Hamiltonian are

F (k) = 2 cos [k · (a1 − a2)− sθs] +

2 [cos(k · a1 + sθs) + cos(k · a2 − sθs)] ,

Z0(k) = 1 + e−i(k·a1+sθs) + e−i(k·a2−sθs),

Z2(k) = e−ik·(a1+a2) + 2 cos [k · (a1 − a2) + sθs], (2)

where ~a1 and ~a2 are the moiré lattice vectors and the
spin-dependent θs = 4πs/3 term originates from the
complex part of the hopping parameters of the moiré
exciton7,38, with spin sign s = ±1. Without loss of qual-
itative generality, we assume tA = tB = t. The band
structure obtained by diagonalization of Hmex in Eq. (1)
exhibits gapped Dirac-Weyl cones at the Γm and +Km (-
Km) points of the moiré Brillouin zone for ILE composed
by spin up (down) electronic states, as illustrated by the
green (orange) domes in Fig. 2(a).
We point out that the spin label s defined here refers

to the spin states of the electrons and holes that compose
the exciton, rather than the spin of the exciton itself. The
latter is in a spin singlet state and carries zero net spin
momentum for the near zero inter-layer twist angles con-
sidered here. On the other hand, the electron and hole
that form the exciton exhibit a spin polarization directly
linked to their valley degree of freedom.39 As we will dis-
cuss further, the K and K’ valleys of the first Brillouin
zone of the MoS2 and WSe2 crystals can be separately
accessed by circularly polarized light in opposite direc-
tions, thus allowing one to control the spin character of
the electrons and holes in the moiré exciton state.

FIG. 3: (color online) (a) Moiré exciton band structures for
ILE in θ = 3◦ uniformly twisted MoS2/WSe2 hetero-bilayer.
(b-d) Band structure for the sample with a twin twist bound-
ary, with δ tuned by electric field to 22, 8 and 4 meV, re-
spectively. Results for ILE composed by spin up and down
electronic states are shown as green and orange curves, re-
spectively. (e) Probability density distribution of the moiré
exciton state confined at the twist boundary, for two values
of the gap δ. Symbols are the values in each site of the moiré
potential minima along the armchair direction of the honey-
comb moiré lattice. (f) Sketch of the propagating inter-layer
excitons in K (green) and K’ (orange) valleys, which are linked
to spin up and down electron-hole states, respectively.

In the presence of the defect line, the band structures
for a given spin state are similar in both sides of the sys-
tem, differing only by their pseudo-spin nature. Notice
that in general θ 6= θ′, which causes b 6= b′. Neverthe-
less, provided the signs of the twist angles in each side of
the twist boundary are opposite, the stacking registries
of A and B sub-lattices in Fig. 1 will always be inter-
changed from one side to the other and, consequently,
the pseudo-spin character of the moiré excitons in each
side will be opposite. Therefore, consequences of such
a twist boundary, and the existence of there confined
moiré excitons discussed in this paper, are expected to
be ubiquitous for any MoS2/WSe2 vdW hetero-bilayer
where one of the layers contains a grain or twin bound-
ary. Moreover, with current layer transfer techniques23,
one can always align the two layers in a symmetric way
with respect to the twist boundary, such that θ = θ′.
Therefore, from here onward, without loss of generality,
we will consider the b = b′ case, as results for the case
b 6= b′ are qualitatively similar.

Since the inter-layer distance depends on the stack-
ing registry, the Rh

h and RX
h regions of the moiré pat-

tern will be differently affected by an applied electric
field E , perpendicular to the vdW hetero-bilayer plane.
The potential minima at the A and B sub-lattices illus-
trated in Fig. 1(b) depend on the field as VA(B)(E) =



4

VA(B)(0) − edA(B)E , where dA(B) is the inter-layer dis-
tance at the A(B) sites. Consequently, the difference
between these minima, which determines the gap of the
moiré exciton band structure, depends on the field as
δ(E) = δ(0) − (dA − dB)eE . Ab initio calculations yield
dA − dB = 0.048 nm for R-type MoS2/WSe2 bilayer,
therefore, fields E > 0.46 V/nm are able to invert the
gap in both sides and, consequently, flip the pseudo-spin
character of the moiré exciton states. This suggests that
the moiré exciton bandgap can be conveniently tuned by
the external field E , as demonstrated in Fig. 2(b), where
the potential profile is shown for E=0 (solid), -0.425V/nm
(dashed) and -0.85 V/nm (dotted line).

III. INTERFACE-CONFINED MOIRÉ

EXCITONS

Figure 3(a) shows the band structure of moiré ILE
composed by spin up and spin down electronic states in
MoSe2/WS2, in the absence of applied electric field and
any defect line, in the vicinity of the Γm point, as ob-
tained by numerical diagonalization of a real-space tight-
binding Hamiltonian for the moiré superlattice, assuming
periodic boundary conditions, that corresponds to the
Bloch Hamiltonian in Eq. (1). As previously mentioned,
the spin up and down electronic states are linked to the
K and K’ valleys of the monolayer crystals, therefore,
the green and yellow bands in Fig. 3 are equivalently
regarded as valley polarized bands. The moiré exciton
energies form a δ = 22 meV gapped Dirac-Weyl band
structure, as previously discussed. However, in the pres-
ence of the twist boundary illustrated in Fig. 1, the en-
ergy spectrum in Fig. 3(b) for δ = 22 meV exhibits two
states inside the gap, one for each spin orientation/valley
label of the electronic states that compose the exciton.
The energies of these states decrease as the effective gap
is reduced by increasing the perpendicular electric field,
as shown in Figs. 3(c) and 3(d). In the latter, for δ = 4
meV, the gap states appear even at zero momentum and
zero energy.
In all cases, the probability density distribution of the

gap states is highly confined at the twist boundary, al-
though for a δ = 4 meV gap, it is spread over more
minima of the moiré potential, as shown in Fig. 3(e).
In this case, the gap is lower than the first nearest-
neighbor hopping energy t0 between moiré potential min-
ima, which allows us to investigate the system using a lin-
ear approximation on the Bloch Hamiltonian in Eq. (1)
that yields a Dirac-Weyl Hamiltonian for low momentum
moiré excitons, i.e. in close vicinity of the Γm point of
the moiré Brillouin zone (mBZ). Such low momentum
excitons are expected due to the low momentum of the
photon exciting the exciton. Details on this approxima-
tion are given in the Appendix. Indeed, diagonalization
of this Dirac-Weyl approximate Hamiltonian leads to a
linearly increasing (decreasing) band for a s = +1(−1)
spin state. This explains the numerically obtained energy

dispersion of the moiré exciton states inside the gap in
Fig. 3(d), which are monotonically decreasing (increas-
ing) functions of ky for spin up (down) states, approxi-
mately linear around ky = 0. The linear energy disper-
sion of the exciton states inside the gap as a function of
ky indicates that these are propagating moiré excitons,
with non-zero group velocity, even at ky = 0. For each
spin orientation of the electronic states that compose the
exciton, only one confined moiré exciton band is found
inside the gap, and its velocity is opposite for opposite
spin states. Thus, even a zero-momentum moiré exciton
is trapped at the interface and propagates with non-zero
velocity, resulting in a valley-polarized exciton current,
where excitons are composed by electronic states with
opposite spin-polarization for different valleys, as illus-
trated in Fig. 3(f).
From the analytical solution for the propagating moiré

exciton states, one observes that their velocity does not
depend on the bandgap δ for δ < t0, i.e. in the case
where the zero energy propagating moiré excitons are
observed as Dirac-Weyl quasi-particles (see Appendix).
On the other hand, it depends on the hopping parame-
ters t0, t and t2 of the moiré lattice, which are a func-
tion of the moiré lattice constant b. This lattice constant
is controlled by the twist angle: for small twist angles,
it can be approximated as b(θ) ≈ a0/

√
θ2 +∆2, where

∆ = |a0 − a′0|/a0, and a0 (a′0) is the inter-atomic dis-
tance in MoS2 (WSe2). For twist angles between zero
and 3◦, one obtains t0 values from 2.78 meV to 5.1 meV,
respectively37. Even so, we have verified that propaga-
tion velocities are only weakly dependent on θ, with val-
ues between ≈ 50 nm/ps for near-zero twist angles to
≈ 58 nm/ps at the θ = 3◦ case considered here. For
comparison, this velocity is roughly 20 times smaller
than the Fermi velocity for Dirac-like low-energy elec-
trons in monolayer graphene. Since the inter-layer exci-
ton lifetime is typically of the order of hundreds of pico-
seconds40–42, one can estimate that such confined inter-
layer moiré exciton, if it inherits lifetimes of the same
order of magnitude, is thus expected to easily propagate
several microns along the interface before recombination,
which thus facilitates the experimental verification of this
phenomenon, as well as its use in future technologies.

IV. DISCUSSION

As previously discussed, if the twist angles on two sides
of the twist boundary are not symmetric, one has an in-
terface between two regions with different moiré lattice
constants, thus leading to different hopping parameters
on each side. However, our numerical results show that
the interface-confined states are still present in this case,
with propagation velocities that match those of the sym-
metric problem, with an angle θ given by the average of
the twist angles on the two sides.
As shown in Fig. 2(b), an electric field can be used to

tune the energy difference between A and B sub-lattices
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FIG. 4: (color online) Moiré exciton dispersion for twisted
MoS2/WSe2 hetero-bilayer, obtained by tight-binding calcu-
lations (symbols) along the twist boundary, for two values of
applied electric field E = −0.395 V/nm (a) and −0.525 V/nm
(b). Solid lines show the approximate analytical dispersion of
the confined moiré exciton.

minima and, consequently, the moiré exciton bandgap δ.
Fig. 4(a) shows our numerical results for propagating
moiré excitons in twisted MoS2/WSe2 hetero-bilayer un-
der E = −0.395 V/nm, which corresponds to a δ = 0.6t0
gapped system, where, since δ < t0, the analytical re-
sults from the Dirac-Weyl Hamiltonian provide a good
approximation of the numerical results. Indeed, analyti-
cal results in the Dirac-Weyl approximation are shown as
solid lines and agree well with the numerical results (see
Appendix), especially at low energies. For fields larger
than this value, the sign of δ in each side of the system
eventually switches, consequently switching the propa-
gation direction of the spin states. For a field of -0.525
V/nm [Fig. 4(b)], the energy of the A (B) minima in the
left (right) side of the sample becomes larger than that
of the B (A) minima and, consequently, the propagation
velocities of spin up and down states are inverted with
respect to Fig. 4(a). Such control of the valley-polarized
moiré exciton current by means of a perpendicularly ap-
plied electric field strengthens the appeal of this system
for future spintronic applications.

We point out that the interface-confined states in-
vestigated here at the twin boundary between regions
with near-zero inter-layer twist angles are fundamen-
tally different from the type-II excitons expected to oc-
cur at the interface between TMDs in a side-by-side
heterostructure.43,44 On the other hand, they bear a re-
semblance to those found at the lateral interface between
R-type and H-type stacked vdW hetero-bilayers, which
have been discussed in Ref. [45]. While, in the case
studied here, the moiré excitons are confined even in the
absence of fields and the application of the perpendicular
electric field switches the sign of δ in both sides of the
interface, thus reversing the propagation direction of the
spin up and spin down interface states, such field in the
R-type/H-type vdW hetero-bilayers is shown to change
the sign of δ only in the R-stacking side,45 which can be
used to turn off the interface confined gap states, since

these states occur only when δ in the R-stacking and H-
stacking sides have opposite signs.
It is important to recall that grain boundaries and lat-

tice defects can produce confined states inside the gap of
monolayer semiconductors (as observed e.g. in monolayer
WSe2

46) or even to modify the bandgap of the material47.
We note that our analysis concerns an inter-layer exciton
that is trapped by the gap in the moiré band structure,
rather than by the gap of the hetero-bilayer or its mono-
layer constituents. Provided that such inter-layer states
have a different energy compared to the defect states,
the results discussed here will hold. The mechanism of
confinement in our case introduces a linear dispersion on
the trapped exciton, which yields uni-directional exciton
propagation. The fact that there is only one energy band
in Fig. 3(d) for each moiré exciton valley state, with a
single velocity direction, suggests that this is a topolog-
ically protected state that cannot be scattered back by
impurities, such as e.g. chalcogen vacancies at a grain
boundary. This absence of backscattering is analogous
to the one investigated in details in Ref. [48] in the sim-
ilar context of in-gap states in biased bilayer graphene.
Notice that these valley-polarized propagating exci-

tons, composed by spin-polarized electronic states, at the
twist boundary actually simply require an interface be-
tween two adjacent honeycomb lattices of exciton con-
fining potentials with (i) sizeable hopping energies and
(ii) energy differences between A and B sub-lattice po-
tentials that interchange sign across the interface. The
vdW hetero-bilayer with a twist boundary naturally has
these two ingredients, but one expects analogous results
in any artificial lattice with these same characteristics,
produced e.g. by periodic strain patterns or other local
confining potentials.
By taking advantage of the optical selection rules

of TMDs, one can produce initial exciton states that
are fully valley polarized and, consequently, composed
by spin-polarized electronic states, by exciting the sys-
tem with circularly polarized light.39,49,50 Opposite val-
ley/spin states are accessible by using circular light po-
larization in the opposite direction, thus allowing one to
control the exciton transport direction via light polar-
ization. Nevertheless, even when both K and K’ excitons
are accessed as the initial state, e.g. for linear light polar-
ization, our results demonstrate that the exciton current
in this system will eventually polarize valley/spin states
by producing currents that run in opposite directions for
moiré excitons lying in different valleys.

V. CONCLUSIONS

Twisted van der Waals hetero-bilayers may contain a
novel type of extended defect, namely a twist boundary
formed by a grain or twin boundary in one of the lay-
ers. We demonstrated that such an extended defect,
separating two regions of opposite inter-layer twist an-
gle, confines a topologically protected moiré exciton state.
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Moreover, this moiré exciton has a non-zero Fermi veloc-
ity along the twist boundary, with sign that depends on
the spin orientation of the electronic states that com-
pose the exciton. For the materials considered here, and
small twist angles, the moiré exciton velocity exceeds
50 nm/ps, allowing its transport over several microns
of distance prior to recombination. This far propagat-
ing photo-excited neutral quasi-particle may be one of
the key ingredients in the development of novel opto-
electronic devices where energy transfer and light trans-
port are of essence, whereas the spin-dependent nature
of the propagation opens pathways towards possible spin-
tronic applications.
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Appendix

Moiré potential landscape

The moiré potential landscape illustrated in Fig. 1(b)
of the main manuscript is given by V (~r) = Egap +
Eg,1|f1(~r)|2 + Eg,2|f2(~r)|2, where Egap is the optical
gap of ILEs in the R-stacked hetero-bilayer, f1(~r) =

(e−i ~K·~r + e−iĈ3
~K·~r + e−iĈ2

3
~K·~r)/3, and f2(~r) = (e−i ~K·~r +

e−iĈ3
~K·~r+θs/2 + e−iĈ2

3
~K·~r+θs)/35. The Ĉ3 operator rep-

resents a 120◦ rotation, and we have defined θs = 4π/3.
Eg,1 and Eg,2 are material dependent and, for R-stacked
MoS2/WSe2 hetero-bilayer, are found to be -0.116 eV
and -0.094 eV, respectively7. The Egap term in V (~r) is
constant and, therefore, does not play a role in our cal-
culations.

Analytical solution within the Dirac-Weyl

approximation

When the energy difference between the minima of
the honeycomb potential is lower than the first nearest-
neighbor hopping energy t0 between them, such as in
the δ = 4 meV case in Fig. 3(d) of the main manuscript,
the system can be analytically investigated using a Dirac-
Weyl approximate Hamiltonian for low momentum moiré
excitons close to the Γm point of the moiré Brillouin zone
(mBZ), based on the Bloch Hamiltonian in Eq. (1). In
this case, the structure factors in Eq. (1) for the left side

of our system can be expanded up to first order in ~k, so
the Hamiltonian becomes

HΓ =

(

δ − 3t −iαkx + βsky
iαkx + βsky −δ − 3t

)

, (3)

where α = 3b(t2 − t0/2), β = 3t0b/2. HΓ is identified
as a Dirac-Weyl Hamiltonian, leading to a band struc-
ture composed of Dirac-Weyl cones gapped by δ. Similar
analysis can be made in the vicinity of the ±Km points
of the mBZ.

One possible eigenstate of this Hamiltonian, for the left
side, is an exponentially increasing pseudo-spinor

ψl =
eκxeikyy

√

1 +
ακ+sβky

E+δ+3t

(

1
ακ+sβky

E+δ+3t

)

, (4)

where κ =
√

β2k2y − [(E + 3t)2 − δ2]/α. For the right

side of the system, we choose an exponentially decaying
pseudo-spinor ψr, i.e. with similar form as Eq. (4), but
with κ → −κ and δ → −δ, due to the opposite sign of
the twist angle. Assuming the twist boundary at x = 0,
one can verify that these exponential solutions at two
sides satisfy the continuity boundary condition ψl(0, y) =
ψr(0, y) for four energy states, namely E±

k = −3t ± βky
and E±

δ = −3t ± δ, which are found with the require-
ment that sign((E + 3t)sβky) > 0. This requirement
forbids the E−

δ solution for ky > 0, and E+
δ for ky < 0.

Since these flat bands are not continuous along the entire
ky-axis, they are neglected from here onward.25,29 Sim-

ilarly, only the E
+(−)
k solution is found to be valid for

s = +1(−1). Moreover, since we are searching for solu-
tions confined at the interface between the two different
moiré pattern regions, where the exponential functions in
Eq. (4) decay towards either x→ +∞ or x→ −∞, only
solutions with real κ are valid. Nevertheless, this con-

dition is met for |(E + 3t)| <
√

β2k2y + δ2, which also

holds for the aforementioned E
+(−)
k state. Therefore,

even though the boundary condition suggests the exis-
tence of four different solutions, we end up with only one

state inside the gap, namely E
+(−)
k , which is a linearly

increasing (decreasing) band for a s = +1(−1) spin state.

Notice that, in order to match the numerical results
in Fig. 4 of the main manuscript, one has to make a
hardshift on the numerical energy spectra, as to set the
energy reference as the point where the two interface-
confined states cross.

From the obtained expression for the E
+(−)
k states,

one infers that, within the regime where the propagating
moiré exciton behaves as a Dirac-Weyl quasi-particle, its
velocity does not depend on the bandgap δ.

∗ Electronic address: andrey@fisica.ufc.br † Electronic address: milorad.milosevic@uantwerpen.be
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