toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A. pdf  doi
openurl 
  Title Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
  Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 46 Issue 39 Pages 395201  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000324810400007 Publication Date 2013-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 36 Open Access  
  Notes Approved Most recent IF: 2.588; 2013 IF: 2.521  
  Call Number UA @ lucian @ c:irua:109904 Serial 1684  
Permanent link to this record
 

 
Author Neyts, E.C.; Yusupov, M.; Verlackt, C.C.; Bogaerts, A. pdf  doi
openurl 
  Title Computer simulations of plasmabiomolecule and plasmatissue interactions for a better insight in plasma medicine Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 29 Pages 293001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficultif not impossibleto obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasmabiomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000338860300001 Publication Date 2014-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 28 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:117853 Serial 472  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Ghorbi, T.; Yusupov, M.; Zhang, Y.; Zhao, T.; Shali, P.; Bogaerts, A. url  doi
openurl 
  Title Effects of Nitro-Oxidative Stress on Biomolecules: Part 1—Non-Reactive Molecular Dynamics Simulations Type A1 Journal Article
  Year 2023 Publication Biomolecules Abbreviated Journal Biomolecules  
  Volume 13 Issue 9 Pages 1371  
  Keywords A1 Journal Article; plasma medicine; reactive oxygen and; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071356400001 Publication Date 2023-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes This research received no external funding. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:200380 Serial 8958  
Permanent link to this record
 

 
Author van Dijk, J.; Kroesen, G.M.W.; Bogaerts, A. doi  openurl
  Title Plasma modelling and numerical simulation Type Editorial
  Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 42 Issue 19 Pages 190301,1-190301,14  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000269993100001 Publication Date 2009-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 64 Open Access  
  Notes Approved Most recent IF: 2.588; 2009 IF: 2.083  
  Call Number UA @ lucian @ c:irua:78166 Serial 2637  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title On the kinetics and equilibria of plasma-based dry reforming of methane Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 405 Issue Pages 126630  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma reactors are interesting for gas-based chemical conversion but the fundamental relation between the plasma chemistry and selected conditions remains poorly understood. Apparent kinetic parameters for the loss and formation processes of individual components of gas conversion processes, can however be extracted by performing experiments in an extended residence time range (2–75 s) and fitting the gas composition to a firstorder kinetic model of the evolution towards partial chemical equilibrium (PCE). We specifically investigated the differences in kinetic characteristics and PCE state of the CO2 dissociation and CH4 reforming reactions in a dielectric barrier discharge reactor (DBD), how these are mutually affected when combining both gases in the dry reforming of methane (DRM) reaction, and how they change when a packing material (non-porous SiO2) is added to the reactor. We find that CO2 dissociation is characterized by a comparatively high reaction rate of 0.120 s−1 compared to CH4 reforming at 0.041 s−1; whereas CH4 reforming reaches higher equilibrium conversions, 82% compared to 53.6% for CO2 dissociation. Combining both feed gases makes the DRM reaction to proceed at a relatively high rate (0.088 s−1), and high conversion (75.4%) compared to CO2 dissociation, through accessing new chemical pathways between the products of CO2 and CH4. The addition of the packing material can also distinctly influence the conversion rate and position of the equilibrium, but its precise effect depends strongly on the gas composition. Comparing different CO2:CH4 ratios reveals the delicate balance of the combined chemistry. CO2 drives the loss reactions in DRM, whereas CH4 in the mixture suppresses back reactions. As a result, our methodology provides some of the insight necessary to systematically tune the conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621197700003 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; grant number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:172458 Serial 6411  
Permanent link to this record
 

 
Author Li, S.; Liu, C.; Bogaerts, A.; Gallucci, F. url  doi
openurl 
  Title Editorial: Special issue on CO2 utilization with plasma technology Type Editorial
  Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 61 Issue Pages 102017  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma technology has advanced significantly in recent years, with application ranging from chemical conversion, to surface treatment, material development and several other fields. Special attention has been paid to the development of possible novel approaches for the conversion of chemicals in a more sustainable way. Plasma technology offers advantages over thermochemical routes such as high process versatility, mild reaction condition, one-step synthesis, fast reaction and instant control. More importantly, it can be easily combined with elec­tricity generated from various renewable sources and is suitable for energy storage via the conversion of intermittent renewable energy into carbon-neutral fuels or other chemicals. In recent years, there has been a growing interest in the development of plasma technology for CO2 uti­lization. Investigation on different reactions such as CO2 splitting, dry reforming of methane (DRM) and CO2 hydrogenation with different types of plasma reactors and catalysts have been reported by researchers worldwide. Although technological maturity still needs to be increased, the potential of plasma has been well-recognized by the scientific community and industry. More research output in the future is expected as a result of intensive research activities and various kinds of invest­ment. In this context, we present this special issue on CO2 utilization with plasma technology, which collects 22 articles, covering topics in related areas such as plasma reactor design, plasma catalysis, plasmamaterial interaction, modeling and new ideas for possible applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000798071200005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.7  
  Call Number PLASMANT @ plasmant @c:irua:188287 Serial 7058  
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Pinpointing energy losses in CO 2 plasmas – Effect on CO 2 conversion Type A1 Journal article
  Year 2018 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util  
  Volume 24 Issue Pages 479-499  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma technology is gaining increasing interest for CO2 conversion, but to maximize the energy efficiency, it is important to track the different energy transfers taking place in the plasma. In this paper, we study these mechanisms by a 0D chemical kinetics model, including the vibrational kinetics, for different conditions of reduced electric field, gas temperature and ionization degree, at a pressure of 100 mbar. Our model predicts a maximum conversion and energy efficiency of 32% and 47%, respectively, at conditions that are particularly beneficial for energy efficient CO2 conversion, i.e. a low reduced electric field (10 Td) and a low gas temperature (300 K). We study the effect of the efficiency by which the vibrational energy is used to dissociate CO2, as well as of the activation energy of the reaction CO2+O→CO+O2, to elucidate the theoretical limitations to the energy

efficiency. Our model reveals that these parameters are mainly responsible for the limitations in the energy efficiency. By varying these parameters, we can reach a maximum conversion and energy efficiency of 86%. Finally, we derive an empirical formula to estimate the maximum possible energy efficiency that can be reached under the assumptions of the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428234500054 Publication Date 2018-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 6 Open Access Not_Open_Access: Available from 16.03.2020  
  Notes We acknowledge financial support from the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement no. 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We would also like to thank Prof. Richard van de Sanden (DIFFER) for the interesting talks. Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:149645 Serial 4912  
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Based CO2Conversion: To Quench or Not to Quench? Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 34 Pages 18401-18415  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma technology is gaining increasing interest for CO2 conversion. The gas temperature in (and after) the plasma reactor largely affects the performance. Therefore, we examine the effect of cooling/quenching, during and after the plasma, on the CO2 conversion and energy efficiency, for typical “warm” plasmas, by means of chemical kinetics modeling. For plasmas at low specific energy input (SEI ∼ 0.5 eV/molecule), it is best to quench at the plasma end, while for high-SEI plasmas (SEI ∼ 4 eV/molecule), quenching at maximum conversion is better. For low-SEI plasmas, quenching can even increase the conversion beyond the dissociation in the plasma, known as superideal quenching. To better understand the effects of quenching at different plasma conditions, we study the dissociation and recombination rates, as well as the vibrational distribution functions (VDFs) of CO2, CO, and O2. When a high vibrational−translational (VT) nonequilibrium exists at the moment of quenching, the dissociation and recombination reaction rates both increase. Depending on the conversion degree at the moment of quenching, this can lead to a net increase or decrease of CO2 conversion. In general, however, and certainly for equilibrium plasmas at high temperature, quenching after the plasma helps prevent recombination reactions and clearly enhances the final CO2 conversion. We also investigate the effect of different quenching cooling rates on the CO2 conversion and energy efficiency. Finally, we compare plasma-based conversion to purely thermal conversion. For warm plasmas with typical temperatures of 3000−4000 K, the conversion is roughly thermal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566481000003 Publication Date 2020-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; This research was supported by the FWO project (grant no. G.0383.16N) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:172052 Serial 6407  
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Plasma Technology: An Emerging Technology for Energy Storage Type A1 Journal article
  Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett  
  Volume 3 Issue 4 Pages 1013-1027  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma technology is gaining increasing interest for gas conversion applications, such as CO2 conversion into value-added chemicals or renewable fuels, and N2 fixation from the air, to be used for the production of small building blocks for, e.g., mineral fertilizers. Plasma is generated by electric power and can easily be switched on/off, making it, in principle, suitable for using intermittent renewable electricity. In this Perspective article, we explain why plasma might be promising for this application. We briefly present the most common types of plasma reactors with their characteristic features, illustrating why some plasma types exhibit better energy efficiency than others. We also highlight current research in the fields of CO2 conversion (including the combined conversion of CO2 with CH4, H2O, or H2) as well as N2 fixation (for NH3 or NOx synthesis). Finally, we discuss the major limitations and steps to be taken for further improvement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430369600035 Publication Date 2018-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 56 Open Access OpenAccess  
  Notes Universiteit Antwerpen, TOP research project 32249 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0254.14N G.0383.16N ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:150358 Serial 4919  
Permanent link to this record
 

 
Author Aerts, R.; Somers, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
  Year 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 8 Issue 8 Pages 702-716  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000349954400019 Publication Date 2015-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 131 Open Access  
  Notes Approved Most recent IF: 7.226; 2015 IF: 7.657  
  Call Number c:irua:123930 Serial 279  
Permanent link to this record
 

 
Author Vervloessem, E.; Aghaei, M.; Jardali, F.; Hafezkhiabani, N.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Based N2Fixation into NOx: Insights from Modeling toward Optimum Yields and Energy Costs in a Gliding Arc Plasmatron Type A1 Journal article
  Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 8 Issue 26 Pages 9711-9720  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma technology provides a sustainable, fossil-free method for N2 fixation, i.e., the conversion of inert atmospheric N2 into valuable substances, such as NOx or ammonia. In this work, we present a novel gliding arc plasmatron at atmospheric pressure for NOx production at different N2/O2 gas feed ratios, offering a promising NOx yield of 1.5% with an energy cost of 3.6 MJ/mol NOx produced. To explain the underlying mechanisms, we present a chemical kinetics model, validated by experiments, which provides insight into the NOx formation pathways and into the ambivalent role of the vibrational kinetics. This allows us to pinpoint the factors limiting the yield and energy cost, which can help to further improve the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000548456600013 Publication Date 2020-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Herculesstichting; Universiteit Antwerpen; Vlaamse regering; H2020 European Research Council, 810182 ; N2 Applied; Excellence of Science FWO – FNRS project, 30505023 GoF9618n ; Approved Most recent IF: 8.4; 2020 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:170138 Serial 6392  
Permanent link to this record
 

 
Author Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Fridman, A.; Lu, X.; Ostrikov, K.; Hori, M.; Stapelmann, K.; Miller, V.; Reuter, S.; Laux, C.; Mesbah, A.; Walsh, J.; Jiang, C.; Thagard, S.M.; Tanaka, H.; Liu, D.; Yan, D.; Yusupov, M. pdf  url
doi  openurl
  Title Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap Type A1 Journal article
  Year 2022 Publication IEEE transactions on radiation and plasma medical sciences Abbreviated Journal IEEE Trans. Radiat. Plasma Med. Sci.  
  Volume 6 Issue 2 Pages 127-157  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma, the fourth and most pervasive state of matter in the visible universe, is a fascinating medium that is connected to the beginning of our universe itself. Man-made plasmas are at the core of many technological advances that include the fabrication of semiconductor devices, which enabled the modern computer and communication revolutions. The introduction of low temperature, atmospheric pressure plasmas to the biomedical field has ushered a new revolution in the healthcare arena that promises to introduce plasma-based therapies to combat some thorny and long-standing medical challenges. This article presents an overview of where research is at today and discusses innovative concepts and approaches to overcome present challenges and take the field to the next level. It is written by a team of experts who took an in-depth look at the various applications of plasma in hygiene, decontamination, and medicine, made critical analysis, and proposed ideas and concepts that should help the research community focus their efforts on clear and practical steps necessary to keep the field advancing for decades to come.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000750257400005 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-7311 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Research Foundation—Flanders, 1200219N ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:185875 Serial 6907  
Permanent link to this record
 

 
Author Van Alphen, S.; Slaets, J.; Ceulemans, S.; Aghaei, M.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: Can this major component in industrial emissions improve the energy efficiency? Type A1 Journal Article;Plasma-based CO2-CH4 conversion
  Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 54 Issue Pages 101767  
  Keywords A1 Journal Article;Plasma-based CO2-CH4 conversion; Effect of N2; Plasma chemistry; Computational modelling; Gliding arc plasmatron; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) Plasma-based CO2 and CH4 conversion is gaining increasing interest, and a great portion of research is dedicated to adapting the process to actual industrial conditions. In an industrial context, the process needs to be able to process N2 admixtures, since most industrial gas emissions contain significant amounts of N2, and gas separations are financially costly. In this paper we therefore investigate the effect of N2 on the CO2 and CH4 conversion in a gliding arc plasmatron reactor. The addition of 20 % N2 reduces the energy cost of the conversion process by 21 % compared to a pure CO2/CH4 mixture, from 2.9 down to 2.2 eV/molec (or from 11.5 to 8.7 kJ/L), yielding a CO2 and CH4 (absolute) conversion of 28.6 and 35.9 % and an energy efficiency of 58 %. These results are among the best reported in literature for plasma-based DRM, demonstrating the benefits of N2 present in the mix. Compared to DRM results in different plasma reactor types, a low energy cost was achieved. To understand the underlying mechanisms of N2 addition, we developed a combination of four different computational models, which reveal that the beneficial effect of N2 addition is attributed to (i) a rise in the electron density (increasing the plasma conductivity, and therefore reducing the plasma power needed to sustain the plasma, which reduces the energy cost), as well as (ii) a rise in the gas temperature, which accelerates the CO2 and CH4 conversion reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000715057300005 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innova­ tion programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and through long-term structural fund­ing (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:184044 Serial 6827  
Permanent link to this record
 

 
Author Bogaerts, A.; Wang, W.; Berthelot, A.; Guerra, V. pdf  url
doi  openurl
  Title Modeling plasma-based CO2conversion: crucial role of the dissociation cross section Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055016  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-based CO2 conversion is gaining increasing interest worldwide. A large research effort is devoted to improving the energy efficiency. For this purpose, it is very important to understand the underlying mechanisms of the CO2 conversion. The latter can be obtained by computer modeling, describing in detail the behavior of the various plasma species and all relevant chemical processes. However, the accuracy of the modeling results critically depends on the accuracy of the assumed input data, like cross sections. This is especially true for the cross section of electron impact dissociation, as the latter process is believed

to proceed through electron impact excitation, but it is not clear from the literature which excitation channels effectively lead to dissociation. Therefore, the present paper discusses the effect of different electron impact dissociation cross sections reported in the literature on the calculated CO2 conversion, for a dielectric barrier discharge (DBD) and a microwave (MW) plasma. Comparison is made to experimental data for the DBD case, to elucidate which cross section might be the most realistic. This comparison reveals that the cross sections proposed

by Itikawa and by Polak and Slovetsky both seem to underestimate the CO2 conversion. The cross sections recommended by Phelps with thresholds of 7 eV and 10.5 eV yield a CO2 conversion only slightly lower than the experimental data, but the sum of both cross sections overestimates the values, indicating that these cross sections represent dissociation, but most probably also include other (pure excitation) channels. Our calculations indicate that the choice of the electron impact dissociation cross section is crucial for the DBD, where this process is the dominant mechanism for CO2 conversion. In the MW plasma, it is only significant at pressures up to 100 mbar, while it is of minor importance for higher pressures, when dissociation proceeds mainly through collisions of CO2 with heavy particles.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384030600001 Publication Date 2016-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 57 Open Access  
  Notes The authors would like to thank R Snoeckx and S Heijkers for the interesting discussions. This research was supported by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska-Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the FWO project (grant G.0383.16N), and the Network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7), supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. VG was partially supported by the Portuguese FCT— Fundação para a Ci Approved Most recent IF: 3.302  
  Call Number c:irua:135070 Serial 4111  
Permanent link to this record
 

 
Author Li, S.; Sun, J.; Gorbanev, Y.; van’t Veer, K.; Loenders, B.; Yi, Y.; Kenis, T.; Chen, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling Type A1 Journal Article
  Year 2023 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 11 Issue 42 Pages 15373-15384  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) Plasma-based dry reforming of methane (DRM) into

high-value-added oxygenates is an appealing approach to enable

otherwise thermodynamically unfavorable chemical reactions at

ambient pressure and near room temperature. However, it suffers

from coke deposition due to the deep decomposition of CH4. In this

work, we assess the DRM performance upon O2 addition, as well as

varying temperature, CO2/CH4 ratio, discharge power, and gas

residence time, for optimizing oxygenate production. By adding O2,

the main products can be shifted from syngas (CO + H2) toward

oxygenates. Chemical kinetics modeling shows that the improved

oxygenate production is due to the increased concentration of

oxygen-containing radicals, e.g., O, OH, and HO2, formed by electron

impact dissociation [e + O2 → e + O + O/O(1D)] and subsequent

reactions with H atoms. Our study reveals the crucial role of oxygen-coupling in DRM aimed at oxygenates, providing practical

solutions to suppress carbon deposition and at the same time enhance the oxygenates production in plasma-assisted DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082603900001 Publication Date 2023-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, S001619N ; China Scholarship Council, 202006060029 ; National Natural Science Foundation of China, 21975018 ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:201013 Serial 8966  
Permanent link to this record
 

 
Author Kelly, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Nitrogen fixation in an electrode-free microwave plasma Type A1 Journal Article
  Year 2021 Publication Joule Abbreviated Journal Joule  
  Volume 5 Issue 11 Pages 3006-3030  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) Plasma-based gas conversion has great potential for enabling carbon-free fertilizer production powered by renewable electricity. Sustaining an energy-efficient plasma process without eroding the containment vessel is currently a significant challenge, limiting scaling to higher powers and throughputs. Isolation of the plasma from contact with any solid surfaces is an advantage, which both limits energy loss to the walls and prevents material erosion that could lead to disastrous soil contamination. This paper presents highly energy-efficient nitrogen fixation from air into NOx by microwave plasma, with the plasma filament isolated at the center of a quartz tube using a vortex gas flow. NOx production is found to scale very efficiently when increasing both gas flow rate and absorbed power. The lowest energy cost recorded of ~2 MJ/mol, for a total NOx production of ~3.8%, is the lowest reported up to now for atmospheric pressure plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723010700018 Publication Date 2021-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4351 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes We acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182 – SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. We thank Dr. Waldo Bongers and Dr. Floran Peeters of the DIFFER institute for their help and advice in the initial phase of the project, as well as Mr. Luc van‘t Dack, Dr. Karen Leyssens and Ing. Karel Venken for their technical assistance. We thank Dr. Klaus Werner, executive director of the RF Energy Alliance, for his extensive expertise and helpful discourse regarding solid-state MW technology. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:184250 Serial 6835  
Permanent link to this record
 

 
Author Tsonev, I.; O’Modhrain, C.; Bogaerts, A.; Gorbanev, Y. url  doi
openurl 
  Title Nitrogen Fixation by an Arc Plasma at Elevated Pressure to Increase the Energy Efficiency and Production Rate of NOx Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1888-1897  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-based nitrogen fixation for fertilizer production is an attractive alternative to the fossil fuel-based industrial processes. However, many factors hinder its applicability, e.g., the commonly observed inverse correlation between energy consumption and production rates or the necessity to enhance the selectivity toward NO2, the desired product for a more facile formation of nitrate-based fertilizers. In this work, we investigated the use of a rotating gliding arc plasma for nitrogen fixation at elevated pressures (up to 3 barg), at different feed gas flow rates and composition. Our results demonstrate a dramatic increase in the amount of NOx produced as a function of increasing pressure, with a record-low EC of 1.8 MJ/(mol N) while yielding a high production rate of 69 g/h and a high selectivity (94%) of NO2. We ascribe this improvement to the enhanced thermal Zeldovich mechanism and an increased rate of NO oxidation compared to the back reaction of NO with atomic oxygen, due to the elevated pressure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000924366700001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0G2322N ; Horizon 2020 Framework Programme, 965546 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:194281 Serial 7239  
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. url  doi
openurl 
  Title From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal article
  Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci  
  Volume 14 Issue 5 Pages 2520-2534  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-based NO<sub>X</sub>synthesis<italic>via</italic>the Birkeland–Eyde process was one of the first industrial nitrogen fixation methods. However, this technology never played a dominant role for nitrogen fixation, due to the invention of the Haber–Bosch process. Recently, nitrogen fixation by plasma technology has gained significant interest again, due to the emergence of low cost, renewable electricity. We first present a short historical background of plasma-based NO<sub>X</sub>synthesis. Thereafter, we discuss the reported performance for plasma-based NO<sub>X</sub>synthesis in various types of plasma reactors, along with the current understanding regarding the reaction mechanisms in the plasma phase, as well as on a catalytic surface. Finally, we benchmark the plasma-based NO<sub>X</sub>synthesis process with the electrolysis-based Haber–Bosch process combined with the Ostwald process, in terms of the investment cost and energy consumption. This analysis shows that the energy consumption for NO<sub>X</sub>synthesis with plasma technology is almost competitive with the commercial process with its current best value of 2.4 MJ mol N<sup>−1</sup>, which is required to decrease further to about 0.7 MJ mol N<sup>−1</sup>in order to become fully competitive. This may be accomplished through further plasma reactor optimization and effective plasma–catalyst coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000639255800001 Publication Date 2021-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited Open Access OpenAccess  
  Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; This research was supported by the TKI-Energie from Toeslag voor Topconsortia voor Kennis en Innovatie (TKI) from the Ministry of Economic Affairs and Climate Policy, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). Approved Most recent IF: 29.518  
  Call Number PLASMANT @ plasmant @c:irua:178173 Serial 6763  
Permanent link to this record
 

 
Author Van Alphen, S.; Ahmadi Eshtehardi, H.; O'Modhrain, C.; Bogaerts, J.; Van Poyer, H.; Creel, J.; Delplancke, M.-P.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 443 Issue Pages 136529  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-based NOx production is of interest for sustainable N2 fixation, but more research is needed to improve its performance. One of the current limitations is recombination of NO back into N2 and O2 molecules immediately after the plasma reactor. Therefore, we developed a novel so-called “effusion nozzle”, to improve the perfor­mance of a rotating gliding arc plasma reactor for NOx production, but the same principle can also be applied to other plasma types. Experiments in a wide range of applied power, gas flow rates and N2/O2 ratios demonstrate an enhancement in NOx concentration by about 8%, and a reduction in energy cost by 22.5%. In absolute terms, we obtain NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol, which are the best values reported to date in literature. In addition, we developed four complementary models to describe the gas flow, plasma temperature and plasma chemistry, aiming to reveal why the effusion nozzle yields better performance. Our simulations reveal that the effusion nozzle acts as very efficient heat sink, causing a fast drop in gas tem­perature when the gas molecules leave the plasma, hence limiting the recombination of NO back into N2 and O2. This yields an overall higher NOx concentration than without the effusion nozzle. This immediate quenching right at the end of the plasma makes our effusion nozzle superior to more conventional cooling options, like water cooling In addition, this higher NOx concentration can be obtained at a slightly lower power, because the effusion nozzle allows for the ignition and sustainment of the plasma at somewhat lower power. Hence, this also explains the lower energy cost. Overall, our experimental results and detailed modeling analysis will be useful to improve plasma-based NOx production in other plasma reactors as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000800010600003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Approved Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:188283 Serial 7057  
Permanent link to this record
 

 
Author Andersen, J.A.; Christensen, J.M.; Østberg, M.; Bogaerts, A.; Jensen, A.D. url  doi
openurl 
  Title Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor Type A1 Journal article
  Year 2022 Publication International Journal Of Hydrogen Energy Abbreviated Journal Int J Hydrogen Energ  
  Volume 47 Issue 75 Pages 32081-32091  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-catalytic ammonia decomposition as a method for producing hydrogen was studied in a packed-bed dielectric barrier discharge (DBD) reactor at ambient pressure and a fixed plasma power. The influence of packing the plasma zone with various dielectric materials, typically used as catalyst supports, was examined. At conditions (21 W, 75 Nml/min NH3) where an NH3 conversion of 5% was achieved with plasma alone, an improved decomposition was found when introducing dielectric materials with dielectric constants between 4 and 30. Of the tested materials, MgAl2O4 yielded the highest conversion (15.1%). The particle size (0.3-1.4 mm) of the MgAl2O4 packing was found to have a modest influence on the conversion, which dropped from 15.1% to 12.6% with increasing particle size. Impregnation of MgAl2O4 with different metals was found to decrease the NH3 conversion, with the Ni impregnation still showing an improved conversion (7%) compared to plasma-only. The plasma-assisted ammonia decomposition occurs in the gas phase due to micro-discharges, as evident from a linear correlation between the conversion and the frequency of micro-discharges for both plasma alone and with the various solid packing materials. The primary function of the solid is thus to facilitate the gas phase reaction by assisting the creation of micro-discharges. Lastly, insulation of the reactor to raise the temperature to 230 degrees C in the plasma zone was found to have a negative effect on the conversion, as a change from volume discharges to surface discharges occurred. The study shows that NH3 can be decomposed to provide hydrogen by exposure to a non-thermal plasma, but further developments are needed for it to become an energy efficient technology. (C)2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865421200012 Publication Date 2022-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.2  
  Call Number UA @ admin @ c:irua:191512 Serial 7191  
Permanent link to this record
 

 
Author Andersen, Ja.; Holm, Mc.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor: A combined experimental study and kinetic modeling Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 457 Issue Pages 141294  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor has emerged as a possible route for electrification of nitrogen fixation. In this study, we use a combination of experiments and a plasma kinetic model to investigate the ammonia synthesis from N2 and H2, both with and without a solid packing material in the plasma zone. The effect of plasma power, feed flow rate, N2:H2 feed ratio, gas residence time, temperature, and packing material (MgAl2O4 alone or impregnated with Co or Ru) on the ammonia synthesis rate were examined in the experiments. The kinetic model was employed to improve our understanding of the ammonia formation pathways and identify possible changes in these pathways when altering the N2:H2 feed ratio. A higher NH3 synthesis rate was achieved when increasing the feed flow rate, as well as when increasing the gas tem-perature from 100 to 200 ◦C when a packing material was present in the plasma. At the elevated temperature of 200 ◦C, an optimum in the NH3 synthesis rate was observed at an equimolar feed ratio (N2:H2 =1:1) for the plasma alone and MgAl2O4, while a N2-rich feed was favored for Ru/MgAl2O4 and Co/MgAl2O4. The optimum in the synthesis rate with the N2-rich feed, where high energy electrons are more likely to collide with N2, suggests that the rate-limiting step is the dissociation of N2 in the gas phase. This is supported by the kinetic model when packing material was used. However, for the plasma alone, the model found that the N2 dissociation is only rate limiting in H2-rich feeds, whereas the limited access to H in N2-rich feeds makes the hydrogenation of N species limiting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001058978000001 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the catalytic materials used in the study, the research group PLASMANT (University of Antwerp) for sharing their plasma kinetic model and allocating time on their cluster for the calculations, and the Department of Chemical and Biochemical Engineering (Technical University of Denmark) for funding the project. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195877 Serial 7234  
Permanent link to this record
 

 
Author van ‘t Veer, K.; Engelmann, Y.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 42 Pages 22871-22883  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract (up) Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley−Rideal and Langmuir−Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000585970300002 Publication Date 2020-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ;This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182-SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Järi Van den Hoek and Dr. Yury Gorbanev for providing the experimentally measured electrical characteristics and Dr. Fatme Jardali for creating the TOC graphics. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:173587 Serial 6428  
Permanent link to this record
 

 
Author Cui, Z.; Meng, S.; Yi, Y.; Jafarzadeh, A.; Li, S.; Neyts, E.C.; Hao, Y.; Li, L.; Zhang, X.; Wang, X.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic methanol synthesis from CO₂ hydrogenation over a supported Cu cluster catalyst : insights into the reaction mechanism Type A1 Journal article
  Year 2022 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 12 Issue 2 Pages 1326-1337  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-catalytic CO, hydrogenation for methanol production is gaining increasing interest, but our understanding of its reaction mechanism remains primitive. We present a combined experimental/computational study on plasma-catalytic CO, hydrogenation to CH3OH over a size-selected Cu/gamma-Al2O3 catalyst. Our experiments demonstrate a synergistic effect between the Cu/gamma-Al2O3 catalyst and the CO2/H-2 plasma, achieving a CO2 conversion of 10% at 4 wt % Cu loading and a CH3OH selectivity near 50% further rising to 65% with H2O addition (for a H2O/CO2 ratio of 1). Furthermore, the energy consumption for CH3OH production was more than 20 times lower than with plasma only. We carried out density functional theory calculations over a Cu-13/gamma-Al2O3 model, which reveal that the interfacial sites of the Cu-13 cluster and gamma-Al2O3 support show a bifunctional effect: they not only activate the CO2 molecules but also strongly adsorb key intermediates to promote their hydrogenation further. Reactive plasma species can regulate the catalyst surface reactions via the Eley-Rideal (E-R) mechanism, which accelerates the hydrogenation process and promotes the generation of the key intermediates. H2O can promote the CH3OH desorption by competitive adsorption over the Cu-13/gamma-Al2O3 surface. This study provides new insights into CO2 hydrogenation through plasma catalysis, and it provides inspiration for the conversion of some other small molecules (CH4, N-2, CO, etc.) by plasma catalysis using supported-metal clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000742735600001 Publication Date 2022-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.9  
  Call Number UA @ admin @ c:irua:186416 Serial 7192  
Permanent link to this record
 

 
Author Loenders, B.; Michiels, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions Type A1 Journal Article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 85 Issue Pages 501-533  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) Plasma-catalytic dry reforming of CH4 (DRM) is promising to convert the greenhouse gasses CH4 and CO2 into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock for the chemical industry. However, while many experiments have been dedicated to plasma-catalytic DRM, there is no consensus yet in literature on the optimal choice of catalyst for targeted products, because the underlying mechanisms are far from understood. Indeed, plasma catalysis is very complex, as it encompasses various chemical and physical interactions between plasma and catalyst, which depend on many parameters. This complexity hampers the comparison of experimental results from different studies, which, in our opinion, is an important bottleneck in the further development of this promising research field. Hence, in this perspective paper, we describe the important physical and chemical effects that should be accounted for when designing plasma-catalytic experiments in general, highlighting the need for standardized experimental setups, as well as careful documentation of packing properties and reaction conditions, to further advance this research field. On the other hand, many parameters also create many windows of opportunity for further optimizing plasma-catalytic systems. Finally, various experiments also reveal the lack of improvement in plasma catalysis compared to plasma-only, specifically for DRM, but the underlying mechanisms are unclear. Therefore, we present our newly developed coupled plasma-surface kinetics model for DRM, to provide more insight in the underlying reasons. Our model illustrates that transition metal catalysts can adversely affect plasmacatalytic DRM, if radicals dominate the plasma-catalyst interactions. Thus, we demonstrate that a good understanding of the plasma-catalyst interactions is crucial to avoiding conditions at which these interactions negatively affect the results, and we provide some recommendations for improvement. For instance, we believe that plasma-catalytic DRM may benefit more from higher reaction temperatures, at which vibrational excitation can enhance the surface reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the FWO-SBO project PlasMa- CatDESIGN (FWO grant ID S001619N), the FWO fellowship of R. Michiels (FWO grant ID 1114921N), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198159 Serial 8806  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Hussain, S.; Kovacevic, E.; Brault, P.; Boulmer-Leborgne, C.; Neyts, E.C. pdf  url
doi  openurl
  Title Nanoscale mechanisms of CNT growth and etching in plasma environment Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 50 Pages 184001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-enhanced chemical deposition (PECVD) of carbon nanotubes has already been shown to allow chirality control to some extent. In PECVD, however, etching may occur simultaneously with the growth, and the occurrence of intermediate processes further significantly complicates the growth process.

We here employ a computational approach with experimental support to study the plasma-based formation of Ni nanoclusters, Ni-catalyzed CNT growth and subsequent etching processes, in order to understand the underpinning nanoscale mechanisms. We find that hydrogen is the dominant factor in both the re-structuring of a Ni film and the subsequent appearance of Ni nanoclusters, as well as in the CNT nucleation and etching processes. The obtained results are compared with available theoretical and experimental studies and provide a deeper understanding of the occurring nanoscale mechanisms in plasma-assisted CNT nucleation and growth.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398300900001 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 6 Open Access OpenAccess  
  Notes UK gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof A C T van Duin for sharing the ReaxFF code. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @ c:irua:141918 Serial 4533  
Permanent link to this record
 

 
Author Heirman, P.; Van Boxem, W.; Bogaerts, A. pdf  doi
openurl 
  Title Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 24 Pages 12881-12894  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-treated liquids have great potential for biomedical applications. However, insight into the underlying mechanisms and the exact chemistry is still scarce. In this study, we present the combination of a 0D chemical kinetics and a 2D fluid dynamics model to investigate the plasma treatment of a buffered water solution with the kINPen (R) plasma jet. Using this model, we calculated the gas and liquid flow profiles and the transport and chemistry of all species in the gas and the liquid phase. Moreover, we evaluated the stability of the reactive oxygen and nitrogen species after plasma treatment. We found that of all species, only H2O2, HNO2/NO2-, and HNO3/NO3- are stable in the buffered solution after plasma treatment. This is because both their production and loss processes in the liquid phase are dependent on short-lived radicals (e.g. OH, NO, and NO2). Apart from some discrepancy in the absolute values of the concentrations, which can be explained by the model, all general trends and observations in our model are in qualitative agreement with experimental data and literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472214000012 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:161314 Serial 6320  
Permanent link to this record
 

 
Author Xu, W.; Van Alphen, S.; Galvita, V.V.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation Type A1 Journal Article
  Year 2024 Publication ChemSusChem Abbreviated Journal ChemSusChem  
  Volume Issue Pages  
  Keywords A1 Journal Article; CO2 conversion · Plasma · Gliding arc plasmatron · Temperature profiles · Computational modelling; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) Plasma‐based CO<sub>2</sub>conversion has attracted increasing interest. However, to understand the impact of plasma operation on post‐plasma processes, we studied the effect of adding N<sub>2</sub>, N<sub>2</sub>/CH<sub>4</sub>and N<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O to a CO<sub>2</sub>gliding arc plasmatron (GAP) to obtain valuable insights into their impact on exhaust stream composition and temperature, which will serve as feed gas and heat for post‐plasma catalysis (PPC). Adding N<sub>2</sub>improves the CO<sub>2</sub>conversion from 4 % to 13 %, and CH<sub>4</sub>addition further promotes it to 44 %, and even to 61 % at lower gas flow rate (6 L/min), allowing a higher yield of CO and hydrogen for PPC. The addition of H<sub>2</sub>O, however, reduces the CO<sub>2</sub>conversion from 55 % to 22 %, but it also lowers the energy cost, from 5.8 to 3 kJ/L. Regarding the temperature at 4.9 cm post‐plasma, N<sub>2</sub>addition increases the temperature, while the CO<sub>2</sub>/CH<sub>4</sub>ratio has no significant effect on temperature. We also calculated the temperature distribution with computational fluid dynamics simulations. The obtained temperature profiles (both experimental and calculated) show a decreasing trend with distance to the exhaust and provide insights in where to position a PPC bed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200297300001 Publication Date 2024-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access  
  Notes We acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692) for financial support. We acknowledge Gilles Van Loon for his help to make the quartz and steel devices for the reactor. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). Approved Most recent IF: 8.4; 2024 IF: 7.226  
  Call Number PLASMANT @ plasmant @c:irua:205101 Serial 9128  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Tinck, S.; de Marneffe, J.-F.; Zhang, L.; Bogaerts, A. pdf  url
doi  openurl
  Title Mechanisms for plasma cryogenic etching of porous materials Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 111 Issue 17 Pages 173104  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Porous materials are commonly used in microelectronics, as they can meet the demand for continuously shrinking electronic feature dimensions. However, they are facing severe challenges in plasma etching, due to plasma induced damage. In this paper, we present both the plasma characteristics and surface processing during the etching of porous materials. We explain how the damage occurs in the porous material during plasma etching for a wide range of chuck temperatures and the responsible mechanism for plasma damage-free etching at cryogenic temperature, by a combination of experiments and numerical modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413863400032 Publication Date 2017-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 2 Open Access OpenAccess  
  Notes We acknowledge the support from Marie Skłodowska- Curie actions (Grant Agreement-702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. L. Zhang and J.-F. de Marneffe acknowledge Dr. M. Cooke and A. Goodyear from Oxford Instruments Plasma Technology for processing the samples at their Yatton facility in the United Kingdom. Approved Most recent IF: 3.411  
  Call Number PLASMANT @ plasmant @c:irua:147022 Serial 4762  
Permanent link to this record
 

 
Author Van Aelst, J.; Philippaerts, A.; Bartholomeeusen, E.; Fayad, E.; Thibault-Starzyk, F.; Lu, J.; Schryvers, D.; Ooms, R.; Verboekend, D.; Jacobs, P.; Sels, B. url  doi
openurl 
  Title Towards biolubricant compatible vegetable oils by pore mouth hydrogenation with shape-selective Pt/ZSM-5 catalysts Type A1 Journal article
  Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol  
  Volume 6 Issue 6 Pages 2820-2828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Pt/ZSM-5 catalysts with various crystal sizes were prepared via competitive ion-exchange, followed by a slow activation procedure. Even when using very large ZSM-5 crystals, highly dispersed Pt nano-clusters were contained within the zeolite crystal's voids, as ascertained by 2D pressure-jump IR spectroscopy of adsorbed CO and focussed ion-beam transmission electron microscopy. The shape-selective properties of the Pt/ZSM-5 catalysts were evaluated in the partial hydrogenation of soybean oil. Unique hydrogenation selectivities were observed, as the fatty acids located at the central position of the triacylglycerol (TAG) molecules were preferentially hydrogenated. The resulting oil has therefore high levels of intermediately melting TAGs, which are compatible with biolubricants due to their improved oxidative stability and still appropriate low-temperature fluidity. The TAG distribution in the partially hydrogenated soybean oil samples was independent from the zeolite crystal size, while the hydrogenation activity linearly increases with the crystal's external surface area. This trend was confirmed with a Pt loaded mesoporous ZSM-5 zeolite, obtained via a mild alkaline treatment. These observations imply and confirm a genuine pore mouth catalysis mechanism, in which only one fatty acid chain of the TAG is able to enter the micropores of ZSM-5, where the double bonds are hydrogenated by the crystal encapsulated Pt-clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374790200031 Publication Date 2016-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.773 Times cited 5 Open Access  
  Notes The research was funded through a PhD grant to J. V. A. of the Agency for Innovation by Science and Technology in Flanders (IWT). A. P. and D. V. acknowledge the F. W. O.-Vlaanderen (Research Foundation Flanders) for a post-doctoral fellowship. E. B. was kindly funded by an F. W. O.-Vlaanderen project. This work was performed in the framework of an Associated International Laboratory between FWO and CNRS. Approved Most recent IF: 5.773  
  Call Number EMAT @ emat @ c:irua:138981 Serial 4335  
Permanent link to this record
 

 
Author Attri, P.; Yusupov, M.; Park, J.H.; Lingamdinne, L.P.; Koduru, J.R.; Shiratani, M.; Choi, E.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 34419  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.  
  Address Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385172300001 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 23 Open Access  
  Notes We gratefully acknowledge the grant received from the SRC program of the National Research Foundation of Korea (NRF), funded by the Korean Government (MEST) (No. 20100029418). PA is thankful to FY 2015 Japan Society for the Promotion of Science (JSPS) invitation fellowship. This work was partly supported by MEXT KAKENHI Grant Number 24108009 and JSPS KAKENHI Grant Number JP16H03895. M. Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant number 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @ c:irua:135847 Serial 4283  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: