|
Record |
Links |
|
Author |
Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. |
|
|
Title |
From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Energy & Environmental Science |
Abbreviated Journal |
Energ Environ Sci |
|
|
Volume |
14 |
Issue |
5 |
Pages |
2520-2534 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma-based NO<sub>X</sub>synthesis<italic>via</italic>the Birkeland–Eyde process was one of the first industrial nitrogen fixation methods. However, this technology never played a dominant role for nitrogen fixation, due to the invention of the Haber–Bosch process. Recently, nitrogen fixation by plasma technology has gained significant interest again, due to the emergence of low cost, renewable electricity. We first present a short historical background of plasma-based NO<sub>X</sub>synthesis. Thereafter, we discuss the reported performance for plasma-based NO<sub>X</sub>synthesis in various types of plasma reactors, along with the current understanding regarding the reaction mechanisms in the plasma phase, as well as on a catalytic surface. Finally, we benchmark the plasma-based NO<sub>X</sub>synthesis process with the electrolysis-based Haber–Bosch process combined with the Ostwald process, in terms of the investment cost and energy consumption. This analysis shows that the energy consumption for NO<sub>X</sub>synthesis with plasma technology is almost competitive with the commercial process with its current best value of 2.4 MJ mol N<sup>−1</sup>, which is required to decrease further to about 0.7 MJ mol N<sup>−1</sup>in order to become fully competitive. This may be accomplished through further plasma reactor optimization and effective plasma–catalyst coupling. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000639255800001 |
Publication Date |
2021-03-31 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1754-5692 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
29.518 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; This research was supported by the TKI-Energie from Toeslag voor Topconsortia voor Kennis en Innovatie (TKI) from the Ministry of Economic Affairs and Climate Policy, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). |
Approved |
Most recent IF: 29.518 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:178173 |
Serial |
6763 |
|
Permanent link to this record |