|
Record |
Links |
|
Author |
Khalilov, U.; Bogaerts, A.; Hussain, S.; Kovacevic, E.; Brault, P.; Boulmer-Leborgne, C.; Neyts, E.C. |
|
|
Title |
Nanoscale mechanisms of CNT growth and etching in plasma environment |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Journal of physics: D: applied physics |
Abbreviated Journal |
J Phys D Appl Phys |
|
|
Volume |
50 |
Issue |
50 |
Pages |
184001 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma-enhanced chemical deposition (PECVD) of carbon nanotubes has already been shown to allow chirality control to some extent. In PECVD, however, etching may occur simultaneously with the growth, and the occurrence of intermediate processes further significantly complicates the growth process.
We here employ a computational approach with experimental support to study the plasma-based formation of Ni nanoclusters, Ni-catalyzed CNT growth and subsequent etching processes, in order to understand the underpinning nanoscale mechanisms. We find that hydrogen is the dominant factor in both the re-structuring of a Ni film and the subsequent appearance of Ni nanoclusters, as well as in the CNT nucleation and etching processes. The obtained results are compared with available theoretical and experimental studies and provide a deeper understanding of the occurring nanoscale mechanisms in plasma-assisted CNT nucleation and growth. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000398300900001 |
Publication Date |
2017-04-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-3727 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.588 |
Times cited |
6 |
Open Access |
OpenAccess |
|
|
Notes |
UK gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof A C T van Duin for sharing the ReaxFF code. |
Approved |
Most recent IF: 2.588 |
|
|
Call Number |
PLASMANT @ plasmant @ c:irua:141918 |
Serial |
4533 |
|
Permanent link to this record |