|
Record |
Links |
|
Author |
van ‘t Veer, K.; Engelmann, Y.; Reniers, F.; Bogaerts, A. |
|
|
Title |
Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Journal Of Physical Chemistry C |
Abbreviated Journal |
J Phys Chem C |
|
|
Volume |
124 |
Issue |
42 |
Pages |
22871-22883 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT) |
|
|
Abstract |
Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley−Rideal and Langmuir−Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000585970300002 |
Publication Date |
2020-10-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1932-7447 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.7 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ;This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182-SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Järi Van den Hoek and Dr. Yury Gorbanev for providing the experimentally measured electrical characteristics and Dr. Fatme Jardali for creating the TOC graphics. |
Approved |
Most recent IF: 3.7; 2020 IF: 4.536 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:173587 |
Serial |
6428 |
|
Permanent link to this record |