toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kalashami, H.G.; Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Slippage dynamics of confined water in graphene oxide capillaries Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal  
  Volume 2 Issue 7 Pages 074004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The permeation of water between neighboring graphene oxide (GO) flakes, i.e., 2D nanochannels, are investigated using a simple model for the GO membrane. We simulate the hydrophilic behavior of nanocapillaries and study the effect of surface charge on the dynamical properties of water flow and the influence of Na+ and Cl- ions on water permeation. Our approach is based on extensive equilibrium molecular dynamics simulations to obtain a better understanding of water permeation through charged nanochannels in the presence of ions. We found significant change in the slippage dynamics of confined water such as a profound increase in viscosity/slip length with increasing charges over the surface. The slip length decreases one order of magnitude (i.e., 1/30) with increasing density of surface charge, while it increases by a factor of 2 with ion concentration. We found that commensurability induced by nanoconfinement plays an important role on the intrinsic dynamical properties of water.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication College Park, Md Editor  
  Language Wos 000439435200006 Publication Date 2018-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 1 Open Access  
  Notes ; We acknowledge fruitful discussions with Andre K. Geim, Irina Grigorieva, and Rahul R. Nair. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:152409UA @ admin @ c:irua:152409 Serial 5128  
Permanent link to this record
 

 
Author Shayeganfar, F.; Vasu, K.S.; Nair, R.R.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Monolayer alkali and transition-metal monoxides : MgO, CaO, MnO, and NiO Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal  
  Volume 95 Issue 14 Pages 144109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional crystals with strong interactions between layers has attracted increasing attention in recent years in a variety of fields. In particular, the growth of a single layer of oxide materials (e.g., MgO, CaO, NiO, and MnO) over metallic substrates were found to display different physical properties than their bulk. In this study, we report on the physical properties of a single layer of metallic oxide materials and compare their properties with their bulk and other two-dimensional (2D) crystals. We found that the planar structure of metallic monoxides are unstable whereas the buckled structures are thermodynamically stable. Also, the 2D-MnO and NiO exhibit different magnetic (ferromagnetic) and optical properties than their bulk, whereas band-gap energy and linear stiffness are found to be decreasing from NiO to MgO. Our findings provide insight into oxide thin-film technology applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399792400001 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 21 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152654 Serial 8278  
Permanent link to this record
 

 
Author Hassani, N.; Yagmurcukardes, M.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Chlorinated phosphorene for energy application Type A1 Journal article
  Year 2024 Publication Computational materials science Abbreviated Journal  
  Volume 231 Issue Pages 112625-112628  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of decoration with impurities and the composition dependent band gap in 2D materials has been the subject of debate for a long time. Here, by using Density Functional Theory (DFT) calculations, we systematically disclose physical properties of chlorinated phosphorene having the stoichiometry of PmCln. By analyzing the adsorption energy, charge density, migration energy barrier, structural, vibrational, and electronic properties of chlorinated phosphorene, we found that (I) the Cl-P bonds are strong with binding energy Eb =-1.61 eV, decreases with increasing n. (II) Cl atoms on phosphorene have anionic feature, (III) the migration path of Cl on phosphorene is anisotropic with an energy barrier of 0.38 eV, (IV) the phonon band dispersion reveal that chlorinated phosphorenes are stable when r <= 0.25 where r = m/n, (V) chlorinated phosphorenes is found to be a photonic crystal in the frequency range of 280 cm-1 to 325 cm-1, (VI) electronic band structure of chlorinated phosphorenes exhibits quasi-flat bands emerging around the Fermi level with widths in the range of 22 meV to 580 meV, and (VII) Cl adsorption causes a semiconducting to metallic/semi-metallic transition which makes it suitable for application as an electroactive material. To elucidate this application, we investigated the change in binding energy (Eb), specific capacity, and open-circuit voltage as a function of the density of adsorbed Cl. The theoretical storage capacity of the chlorinated phosphorene is found to be 168.19 mA h g-1with a large average voltage (similar to 2.08 V) which is ideal number as a cathode in chloride-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110003400001 Publication Date 2023-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202125 Serial 9008  
Permanent link to this record
 

 
Author Michel, K.H.; Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Static flexural modes and piezoelectricity in 2D and layered crystals Type A1 Journal article
  Year 2016 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 253 Issue 253 Pages 2311-2315  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Piezo- and flexoelectricity are manifestations of electromechanical coupling in solids with potential applications in nanoscale materials. Naumov etal. [Phys. Rev. Lett. 102, 217601 (2009)] have shown by first principles calculations that a monolayer BN sheet becomes macroscopically polarized in-plane when in a corrugated state. Here, we investigate the interplay of layer corrugation and in-plane polarization by atomistic lattice dynamics. We treat the coupling between static flexural modes and in-plane atomic ion displacements as an anharmonic effect, similar to the membrane effect that is at the origin of negative thermal expansion in layered crystals. We have derived analytical expressions for the corrugation-induced static in-plane strains and the optical displacements with the resulting polarization response functions. Beyond h-BN, the theory applies to transition metal dichalcogenides and dioxides. Numerical calculations show that the effects are considerably stronger for 2D h-BN than for 2H-MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000390339000002 Publication Date 2016-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.674 Times cited 5 Open Access  
  Notes ; The authors acknowledge useful discussions with L. Wirtz, A. Molina-Sanchez, and C. Sevik. This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.674  
  Call Number UA @ lucian @ c:irua:140309 Serial 4462  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neek-Amal, M.; Partoens, B.; Neyts, E.C. pdf  url
doi  openurl
  Title The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes Type A1 Journal article
  Year 2017 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 687 Issue Pages 188-193  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000412453700030 Publication Date 2017-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.815 Times cited 2 Open Access Not_Open_Access: Available from 01.11.2019  
  Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 1.815  
  Call Number UA @ lucian @ c:irua:146646 Serial 4795  
Permanent link to this record
 

 
Author Seyed-Talebi, S.M.; Beheshtian, J.; Neek-Amal, M. doi  openurl
  Title Doping effect on the adsorption of NH3 molecule onto graphene quantum dot : from the physisorption to the chemisorption Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 12 Pages 124307-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The adsorption of ammonia molecule onto a graphene hexagonal flake, aluminum (Al) and boron (B) doped graphene flakes (graphene quantum dots, GQDs) are investigated using density functional theory. We found that NH3 molecule is absorbed to the hollow site through the physisorption mechanism without altering the electronic properties of GQD. However, the adsorption energy of NH3 molecule onto the Al- and B-doped GQDs increases with respect GQD resulting chemisorption. The adsorption of NH3 onto the Al-doped and B-doped GQDs makes graphene locally buckled, i.e., B-doped and Al-doped GQDs are not planar. The adsorption mechanism onto a GQD is different than that of graphene. This study reveals important features of the edge passivation and doping effects of the adsorption mechanism of external molecules onto the graphene quantum dots. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000325391100057 Publication Date 2013-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.068 Times cited 10 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF Fellowship/299855 for M.-N.A. ; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:112201 Serial 750  
Permanent link to this record
 

 
Author Jalali, H.; Ghorbanfekr, H.; Hamid, I.; Neek-Amal, M.; Rashidi, R.; Peeters, F.M. url  doi
openurl 
  Title Out-of-plane permittivity of confined water Type A1 Journal article
  Year 2020 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 102 Issue 2 Pages 022803  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The dielectric properties of confined water is of fundamental interest and is still controversial. For water confined in channels with height smaller than h = 8 angstrom, we found a commensurability effect and an extraordinary decrease in the out-of-plane dielectric constant down to the limit of the dielectric constant of optical water. Spatial resolved polarization density data obtained from molecular dynamics simulations are found to be antisymmetric across the channel and are used as input in a mean-field model for the dielectric constant as a function of the height of the channel for h > 15 angstrom. Our results are in excellent agreement with a recent experiment [L. Fumagalli et al., Science 360, 1339 (2018)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000560660400004 Publication Date 2020-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755; 1550-2376 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.366 Times cited 25 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171157 Serial 6574  
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M. doi  openurl
  Title Cation-controlled permeation of charged polymers through nanocapillaries Type A1 Journal article
  Year 2023 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 107 Issue 3 Pages 034501-34510  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are used to study the effects of different cations on the permeation of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that, despite being monovalent, Li+ , Na+ , and K+ cations have different effects on polymer permeation, which consequently affects their transmission speed throughout those capillaries. We attribute this phenomenon to the interplay of the cations' hydration free energies and the hydrodynamic drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different surface versus bulk preferences in small clusters of water under the influence of an external electric field. This paper presents a tool to control the speed of charged polymers in confined spaces using cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000955986000006 Publication Date 2023-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.4; 2023 IF: 2.366  
  Call Number UA @ admin @ c:irua:196089 Serial 7586  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Buckled circular monolayer graphene : a graphene nano-bowl Type A1 Journal article
  Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue 4 Pages 045002-045002,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the stability of circular monolayer graphene subjected to a radial load using non-equilibrium molecular dynamics simulations. When monolayer graphene is radially stressed, after some small circular strain (~0.4%) it buckles and bends into a new bowl-like shape. Young's modulus is calculated from the linear relation between stress and strain before the buckling threshold, which is in agreement with experimental results. The prediction of elasticity theory for the buckling threshold of a radially stressed plate is presented and its results are compared to the one of our atomistic simulation. The Jarzynski equality is used to estimate the difference between the free energy of the non-compressed states and the buckled states. From a calculation of the free energy we obtain the optimum radius for which the system feels the minimum boundary stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000286142800003 Publication Date 2010-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.649 Times cited 27 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:88043 Serial 259  
Permanent link to this record
 

 
Author Lajevardipour, A.; Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Thermomechanical properties of graphene : valence force field model approach Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 17 Pages 175303-175303,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the valence force field model of Perebeinos and Tersoff (2009 Phys. Rev. B 79 241409(R)), different energy modes of suspended graphene subjected to tensile or compressive strain are studied. By carrying out Monte Carlo simulations it is found that: (i) only for small strains (vertical bar epsilon vertical bar (sic) 0.02) is the total energy symmetrical in the strain, while it behaves completely differently beyond this threshold; (ii) the important energy contributions in stretching experiments are stretching, angle bending, an out-of-plane term, and a term that provides repulsion against pi-pi misalignment; (iii) in compressing experiments the two latter terms increase rapidly, and beyond the buckling transition stretching and bending energies are found to be constant; (iv) from stretching-compressing simulations we calculated the Young's modulus at room temperature 350 +/- 3.15 N m(-1), which is in good agreement with experimental results (340 +/- 50 N m(-1)) and with ab initio results (322-353) N m(-1); (v) molar heat capacity is estimated to be 24.64 J mol(-1) K-1 which is comparable with the Dulong-Petit value, i. e. 24.94 J mol(-1) K-1, and is almost independent of the strain; (vi) nonlinear scaling properties are obtained from height-height correlations at finite temperature; (vii) the used valence force field model results in a temperature independent bending modulus for graphene, and (viii) the Gruneisen parameter is estimated to be 0.64.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000303499700012 Publication Date 2012-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.649 Times cited 29 Open Access  
  Notes ; We acknowledge helpful comments by V Perebeinos, S Costamagna, A Fasolino and J H Los. This work was supported by the Flemish science foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:99123 Serial 3639  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Electronic properties of graphene nano-flakes : energy gap, permanent dipole, termination effect, and Raman spectroscopy Type A1 Journal article
  Year 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 140 Issue 7 Pages 074304-74309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C-Nc X-Nx (X = F or H). We studied GNFs with 10 < N-c < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Delta between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N-c, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000332039900020 Publication Date 2014-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.965 Times cited 30 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 2.965; 2014 IF: 2.952  
  Call Number UA @ lucian @ c:irua:115857 Serial 1002  
Permanent link to this record
 

 
Author Hamid, I.; Jalali, H.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Abnormal in-plane permittivity and ferroelectricity of confined water : from sub-nanometer channels to bulk Type A1 Journal article
  Year 2021 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 154 Issue 11 Pages 114503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dielectric properties of nano-confined water are important in several areas of science, i.e., it is relevant in the dielectric double layer that exists in practically all heterogeneous fluid-based systems. Molecular dynamics simulations are used to predict the in-plane dielectric properties of confined water in planar channels of width ranging from sub-nanometer to bulk. Because of suppressed rotational degrees of freedom near the confining walls, the dipole of the water molecules tends to be aligned parallel to the walls, which results in a strongly enhanced in-plane dielectric constant (epsilon (parallel to)) reaching values of about 120 for channels with height 8 angstrom < h < 10 angstrom. With the increase in the width of the channel, we predict that epsilon (parallel to) decreases nonlinearly and reaches the bulk value for h > 70 angstrom. A stratified continuum model is proposed that reproduces the h > 10 angstrom dependence of epsilon (parallel to). For sub-nanometer height channels, abnormal behavior of epsilon (parallel to) is found with two orders of magnitude reduction of epsilon (parallel to) around h similar to 7.5 angstrom, which is attributed to the formation of a particular ice phase that exhibits long-time (similar to mu s) stable ferroelectricity. This is of particular importance for the understanding of the influence of confined water on the functioning of biological systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000629831900001 Publication Date 2021-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.965 Times cited 9 Open Access OpenAccess  
  Notes Approved Most recent IF: 2.965  
  Call Number UA @ admin @ c:irua:177579 Serial 6967  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Defected graphene nanoribbons under axial compression Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 15 Pages 153118,1-153118,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The buckling of defected rectangular graphene nanoribbons when subjected to axial stress with supported boundary conditions is investigated using atomistic simulations. The buckling strain and mechanical stiffness of monolayer graphene decrease with the percentage of randomly distributed vacancies. The elasticity to plasticity transition in the stress-strain curve, at low percentage of vacancies, are found to be almost equal to the buckling strain thresholds and they decrease with increasing percentage of vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000283216900069 Publication Date 2010-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.411 Times cited 43 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (WO-Vl) and the Belgian Science Policy (IAP) ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:85789 Serial 624  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Effect of grain boundary on the buckling of graphene nanoribbons Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 10 Pages 101905-101905,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The buckling of graphene nano-ribbons containing a grain boundary is studied using atomistic simulations where free and supported boundary conditions are invoked. We consider the buckling transition of two kinds of grain boundaries with special symmetry. When graphene contains a large angle grain boundary with theta = 21.8 degrees, the buckling strains are larger than those of perfect graphene when the ribbons with free (supported) boundary condition are subjected to compressive tension parallel (perpendicular) to the grain boundary. This is opposite for the results of theta = 32.2 degrees. The shape of the deformations of the buckled graphene nanoribbons depends on the boundary conditions, the presence of the particular used grain boundaries, and the direction of applied in-plane compressive tension. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692573]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000301655500021 Publication Date 2012-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.411 Times cited 18 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:97794 Serial 809  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Graphene on boron-nitride : Moiré pattern in the van der Waals energy Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 4 Pages 041909-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The spatial dependence of the van der Waals (vdW) energy between graphene and hexagonal boron-nitride (h-BN) is investigated using atomistic simulations. The van der Waals energy between graphene and h-BN shows a hexagonal superlattice structure identical to the observed Moire pattern in the local density of states, which depends on the lattice mismatch and misorientation angle between graphene and h-BN. Our results provide atomistic features of the weak van der Waals interaction between graphene and BN which are in agreement with experiment and provide an analytical expression for the size of the spatial variation of the weak van der Waals interaction. We also found that the A-B-lattice symmetry of graphene is broken along the armchair direction. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331209900028 Publication Date 2014-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.411 Times cited 61 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A was supported by the EU-Marie Curie IIF postdoctoral Fellowship/299855. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:115802 Serial 1374  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Graphene on hexagonal lattice substrate : stress and pseudo-magnetic field Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 17 Pages 173106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Moire patterns in the pseudo-magnetic field and in the strain profile of graphene (GE) when put on top of a hexagonal lattice substrate are predicted from elasticity theory. The van der Waals interaction between GE and the substrate induces out-of-plane deformations in graphene which results in a strain field, and consequently in a pseudo-magnetic field. When the misorientation angle is about 0.5 degrees, a three-fold symmetric strain field is realized that results in a pseudo-magnetic field very similar to the one proposed by F. Guinea, M. I. Katsnelson, and A. K. Geim [Nature Phys. 6, 30 (2010)]. Our results show that the periodicity and length of the pseudo-magnetic field can be tuned in GE by changing the misorientation angle and substrate adhesion parameters and a considerable energy gap (23 meV) can be obtained due to out-of-plane deformation of graphene which is in the range of recent experimental measurements (20-30 meV). (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000336142500066 Publication Date 2014-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.411 Times cited 14 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:117724 Serial 1375  
Permanent link to this record
 

 
Author Neek-Amal, M.; Sadeghi, A.; Berdiyorov, G.R.; Peeters, F.M. doi  openurl
  Title Realization of free-standing silicene using bilayer graphene Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue 26 Pages 261904-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e. g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 angstrom and without any lattice distortion. We found that these stacked layers are stable well above room temperature. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000329977400022 Publication Date 2013-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.411 Times cited 74 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. ; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:114849 Serial 2837  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M. url  doi
openurl 
  Title Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 8 Pages 085417-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515659700007 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.7 Times cited 24 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:167760 Serial 6640  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Two-dimensional graphitic carbon nitrides: strain-tunable ferromagnetic ordering Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 16 Pages 165407-165408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principle calculations, we systematically study strain tuning of the electronic properties of two- dimensional graphitic carbon nitride nanosheets with empirical formula CnNm. We found the following: (i) the ferromagnetic ordered state in the metal-free systems (n, m) = (4,3), (10,9), and (14,12) remains stable in the presence of strain of about 6%. However, the system (9,7) loses its ferromagnetic ordering when increasing strain. This is due to the presence of topological defects in the (9,7) system, which eliminates the asymmetry between spin up and spin down of the p(z) orbitals when strain is applied. (ii) By applying uniaxial strain, a band gap opens in systems which are initially gapless. (iii) In semiconducting systems which have an initial gap of about 1 eV, the band gap is closed with applying uniaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523630200012 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.7 Times cited 22 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168560 Serial 6643  
Permanent link to this record
 

 
Author Shekarforoush, S.; Jalali, H.; Yagmurcukardes, M.; Milošević, M.V.; Neek-Amal, M. url  doi
openurl 
  Title Optoelectronic properties of confined water in angstrom-scale slits Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 23 Pages 235406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The optoelectronic properties of confined water form one of the most active research areas in the past few years. Here we present the multiscale methodology to discern the out-of-plane electronic and dipolar dielectric constants (epsilon(el)(perpendicular to) and epsilon(diP)(perpendicular to)) of strongly confined water. We reveal that epsilon(perpendicular to el) and epsilon(diP)(perpendicular to) become comparable for water confined in angstrom-scale channels (with a height of less than 15 angstrom) within graphene (GE) and hexagonal boron nitride (hBN) bilayers. Channel height (h) associated with a minimum in both epsilon(e)(l)(perpendicular to) and epsilon(dip)(perpendicular to) is linked to the formation of the ordered structure of ice for h approximate to (7 -7.5) angstrom. The recently measured total dielectric constant epsilon(T)(perpendicular to) of nanoconfined water [L. Fumagalli et al., Science 360, 1339 (2018)] is corroborated by our results. Furthermore, we evaluate the contribution from the encapsulating membranes to the dielectric properties, as a function of the interlayer spacing, i.e., the height of the confining channel for water. Finally, we conduct analysis of the optical properties of both confined water and GE membranes, and show that the electron energy loss function of confined water strongly differs from that of bulk water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595856100004 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.7 Times cited 1 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO). M.Y. gratefully acknowledges his FWO postdoctoral mandate. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:175051 Serial 6695  
Permanent link to this record
 

 
Author Ahmadkhani, S.; Alihosseini, M.; Ghasemi, S.; Ahmadabadi, I.; Hassani, N.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Multiband flattening and linear Dirac band structure in graphene with impurities Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 7 Pages 075401-75408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Flat bands in the energy spectrum have attracted a lot of attention in recent years because of their unique properties and promising applications. Special arrangement of impurities on monolayer graphene are proposed to generate multiflat bands in the electronic band structure. In addition to the single midgap states in the spectrum of graphene with low hydrogen density, we found closely spaced bands around the Fermi level with increasing impurity density, which are similar to discrete lines in the spectrum of quantum dots, as well as the unusual Landau-level energy spectrum of graphene in the presence of a strong magnetic field. The presence of flat bands crucially depends on whether or not there are odd or even electrons of H(F) atoms bound to graphene. Interestingly, we found that a fully hydrogenated (fluoridated) of a hexagon of graphene sheet with six hydrogen (fluorine) atoms sitting on top and bottom in consecutive order exhibits Dirac cones in the electronic band structure with a 20% smaller Fermi velocity as compared to the pristine graphene. Functionalizing graphene introduces various C-C bond lengths resulting in nonuniform strains. Such a nonuniform strain may induce a giant pseudomagnetic field in the system, resulting in quantum Hall effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994364500006 Publication Date 2023-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197431 Serial 8822  
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Shakouri, K.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure of a hexagonal graphene flake subjected to triaxial stress Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 11 Pages 115428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic properties of a triaxially strained hexagonal graphene flake with either armchair or zigzag edges are investigated using molecular dynamics simulations and tight-binding calculations. We found that (i) the pseudomagnetic field in strained graphene flakes is not uniform neither in the center nor at the edge of zigzag terminated flakes, (ii) the pseudomagnetic field is almost zero in the center of armchair terminated flakes but increases dramatically near the edges, (iii) the pseudomagnetic field increases linearly with strain, for strains lower than 15% but increases nonlinearly beyond it, (iv) the local density of states in the center of the zigzag hexagon exhibits pseudo-Landau levels with broken sublattice symmetry in the zeroth pseudo-Landau level, and in addition there is a shift in the Dirac cone due to strain induced scalar potentials, and (v) there is size effect in pseudomagnetic field. This study provides a realistic model of the electronic properties of inhomogeneously strained graphene where the relaxation of the atomic positions is correctly included together with strain induced modifications of the hopping terms up to next-nearest neighbors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000324690400008 Publication Date 2013-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.836 Times cited 46 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:111168 Serial 1011  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Graphene nanoribbons subjected to axial stress Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 8 Pages 085432-085432,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomistic simulations are used to study the bending of rectangular graphene nanoribbons subjected to axial stress both for free boundary and supported boundary conditions. The shapes of the deformations of the buckled graphene nanoribbons, for small values of the stress, are sine waves where the number of nodal lines depend on the longitudinal size of the system and the applied boundary condition. The buckling strain for the supported boundary condition is found to be independent of the longitudinal size and estimated to be 0.86%. From a calculation of the free energy at finite temperature we find that the equilibrium projected two-dimensional area of the graphene nanoribbon is less than the area of a flat sheet. At the optimum length the boundary strain for the supported boundary condition is 0.48%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281065100007 Publication Date 2010-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.836 Times cited 92 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84583 Serial 1373  
Permanent link to this record
 

 
Author Schoelz, J.K.; Xu, P.; Meunier, V.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M. url  doi
openurl 
  Title Graphene ripples as a realization of a two-dimensional Ising model : a scanning tunneling microscope study Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 045413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ripples in pristine freestanding graphene naturally orient themselves in an array that is alternately curved-up and curved-down; maintaining an average height of zero. Using scanning tunneling microscopy (STM) to apply a local force, the graphene sheet will reversibly rise and fall in height until the height reaches 60%-70% of its maximum at which point a sudden, permanent jump occurs. We successfully model the ripples as a spin-half Ising magnetic system, where the height of the graphene plays the role of the spin. The permanent jump in height, controlled by the tunneling current, is found to be equivalent to an antiferromagnetic-to-ferromagnetic phase transition. The thermal load underneath the STM tip alters the local tension and is identified as the responsible mechanism for the phase transition. Four universal critical exponents are measured from our STM data, and the model provides insight into the statistical role of graphene's unusual negative thermal expansion coefficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000348762200011 Publication Date 2015-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.836 Times cited 21 Open Access  
  Notes ; This work was supported in part by Office of Naval Research (USA) under Grant No. N00014-10-1-0181 and National Science Foundation (USA) under Grant No. DMR-0855358. F. M. Peeters and M. Neek-Amal were supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:123866 Serial 1377  
Permanent link to this record
 

 
Author Beheshtian, J.; Sadeghi, A.; Neek-Amal, M.; Michel, K.H.; Peeters, F.M. url  doi
openurl 
  Title Induced polarization and electronic properties of carbon-doped boron nitride nanoribbons Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 19 Pages 195433-195438  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic properties of boron nitride nanoribbons (BNNRs) doped with a line of carbon atoms are investigated using density functional calculations. By replacing a line of alternating B and N atoms with carbons, three different configurations are possible depending on the type of the atoms which bond to the carbons. We found very different electronic properties for these configurations: (i) the NCB arrangement is strongly polarized with a large dipole moment having an unexpected direction, (ii) the BCB and NCN arrangements are nonpolar with zero dipole moment, (iii) the doping by a carbon line reduces the band gap regardless of the local arrangement of the borons and the nitrogens around the carbon line, and (iv) the polarization and energy gap of the carbon-doped BNNRs can be tuned by an electric field applied parallel to the carbon line. Similar effects were found when either an armchair or zigzag line of carbon was introduced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000311694200006 Publication Date 2012-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.836 Times cited 41 Open Access  
  Notes ; We would like to thank J. M. Pereira and S. Goedecker for helpful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CONGRAN. M. N.-A is supported by EU-Marie Curie IIF postdoc Fellowship/299522. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:105136 Serial 1603  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Lattice thermal properties of graphane : thermal contraction, roughness, and heat capacity Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 23 Pages 235437-235437,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic simulations, we determine the roughness and the thermal properties of a suspended graphane sheet. As compared to graphene, we found that (i) hydrogenated graphene has a larger thermal contraction, (ii) the roughness exponent at room temperature is smaller, i.e., ≃ 1.0 versus ≃ 1.2 for graphene, (iii) the wavelengths of the induced ripples in graphane cover a wide range corresponding to length scales in the range 30125 Å at room temperature, and (iv) the heat capacity of graphane is estimated to be 29.32±0.23 J/mol K, which is 14.8% larger than that for graphene, i.e., 24.98±0.14 J/mol K. Above 1500 K, we found that graphane buckles when its edges are supported in the x-y plane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292253400011 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.836 Times cited 42 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90921 Serial 1803  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 23 Pages 11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279336000001 Publication Date 2010-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.836 Times cited 44 Open Access  
  Notes ; Financial support was provided by the Hungarian Research Foundation (Contracts No. OTKA K68312, No. K77771, No. K73361, and No. F68726). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83857 Serial 1820  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Melting of graphene clusters Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134103-134109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nanoclusters C-N with N = 2-55. The minimum-energy configurations for different clusters are used as starting configurations for the study of the temperature effects on the bond breaking and rotation in carbon lines (N < 6), carbon rings (5 < N < 19), and graphene nanoflakes. The larger the rings (graphene nanoflakes) the higher the transition temperature (melting point) with ring-to-line (perfect-to-defective) transition structures. The melting point was obtained by using the bond energy, the Lindemann criteria, and the specific heat. We found that hydrogen-passivated graphene nanoflakes (CNHM) have a larger melting temperature with a much smaller dependence on size. The edges in the graphene nanoflakes exhibit several different metastable configurations (isomers) during heating before melting occurs. DOI: 10.1103/PhysRevB.87.134103  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317390700001 Publication Date 2013-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF Postdoctoral Fellowship No. 299855 (for M.N.-A.), the ESF-EuroGRAPHENE Project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108467 Serial 1987  
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Qi, D.; Thibado, P.M.; Nyakiti, L.O.; Wheeler, V.D.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Peeters, F.M. url  doi
openurl 
  Title Membrane amplitude and triaxial stress in twisted bilayer graphene deciphered using first-principles directed elasticity theory and scanning tunneling microscopy Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 6 Pages 064101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Twisted graphene layers produce a moire pattern (MP) structure with a predetermined wavelength for a given twist angle. However, predicting the membrane corrugation amplitude for any angle other than pure AB-stacked or AA-stacked graphene is impossible using first-principles density functional theory (DFT) due to the large supercell. Here, within elasticity theory, we define the MP structure as the minimum-energy configuration, thereby leaving the height amplitude as the only unknown parameter. The latter is determined from DFT calculations for AB-and AA-stacked bilayer graphene in order to eliminate all fitting parameters. Excellent agreement with scanning tunneling microscopy results across multiple substrates is reported as a function of twist angle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339995800001 Publication Date 2014-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.836 Times cited 12 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoctoral Fellowship No. 299855. P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. L.O.N. acknowledges the support of the American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the US Naval Research Laboratory is supported by the Office of Naval Research. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:118774 Serial 1991  
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Nanoengineered nonuniform strain in graphene using nanopillars Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 4 Pages 041405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent experiments showed that nonuniform strain can be produced by depositing graphene over pillars. We employed atomistic calculations to study the nonuniform strain and the induced pseudomagnetic field in graphene on top of nanopillars. By decreasing the distance between the nanopillars a complex distribution for the pseudomagnetic field can be generated. Furthermore, we performed tight-binding calculations of the local density of states (LDOS) by using the relaxed graphene configuration obtained from atomistic calculations. We find that the quasiparticle LDOS are strongly modified near the pillars, both at low energies showing sublattice polarization and at high energies showing shifts of the van Hove singularity. Our study shows that changing the specific pattern of the nanopillars allows us to create a desired shape of the pseudomagnetic field profile while the LDOS maps provide an input for experimental verification by scanning tunneling microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000306313900001 Publication Date 2012-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 3.836 Times cited 51 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1) and the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100765 Serial 2255  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: