|
Record |
Links |
|
Author |
Ahmadkhani, S.; Alihosseini, M.; Ghasemi, S.; Ahmadabadi, I.; Hassani, N.; Peeters, F.M.; Neek-Amal, M. |
|
|
Title |
Multiband flattening and linear Dirac band structure in graphene with impurities |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
Physical review B |
Abbreviated Journal |
|
|
|
Volume |
107 |
Issue |
7 |
Pages |
075401-75408 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Flat bands in the energy spectrum have attracted a lot of attention in recent years because of their unique properties and promising applications. Special arrangement of impurities on monolayer graphene are proposed to generate multiflat bands in the electronic band structure. In addition to the single midgap states in the spectrum of graphene with low hydrogen density, we found closely spaced bands around the Fermi level with increasing impurity density, which are similar to discrete lines in the spectrum of quantum dots, as well as the unusual Landau-level energy spectrum of graphene in the presence of a strong magnetic field. The presence of flat bands crucially depends on whether or not there are odd or even electrons of H(F) atoms bound to graphene. Interestingly, we found that a fully hydrogenated (fluoridated) of a hexagon of graphene sheet with six hydrogen (fluorine) atoms sitting on top and bottom in consecutive order exhibits Dirac cones in the electronic band structure with a 20% smaller Fermi velocity as compared to the pristine graphene. Functionalizing graphene introduces various C-C bond lengths resulting in nonuniform strains. Such a nonuniform strain may induce a giant pseudomagnetic field in the system, resulting in quantum Hall effect. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000994364500006 |
Publication Date |
2023-02-02 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
3.7 |
Times cited |
1 |
Open Access |
OpenAccess |
|
|
Notes |
|
Approved |
Most recent IF: 3.7; 2023 IF: 3.836 |
|
|
Call Number |
UA @ admin @ c:irua:197431 |
Serial |
8822 |
|
Permanent link to this record |