|
Record |
Links |
|
Author |
Singh, S.K.; Neek-Amal, M.; Peeters, F.M. |
|
|
Title |
Electronic properties of graphene nano-flakes : energy gap, permanent dipole, termination effect, and Raman spectroscopy |
Type |
A1 Journal article |
|
Year |
2014 |
Publication |
The journal of chemical physics |
Abbreviated Journal |
J Chem Phys |
|
|
Volume |
140 |
Issue |
7 |
Pages |
074304-74309 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C-Nc X-Nx (X = F or H). We studied GNFs with 10 < N-c < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Delta between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N-c, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy. (C) 2014 AIP Publishing LLC. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000332039900020 |
Publication Date |
2014-02-20 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-9606;1089-7690; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.965 |
Times cited |
30 |
Open Access |
|
|
|
Notes |
; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; |
Approved |
Most recent IF: 2.965; 2014 IF: 2.952 |
|
|
Call Number |
UA @ lucian @ c:irua:115857 |
Serial |
1002 |
|
Permanent link to this record |