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Atomistic simulations are used to study the bending of rectangular graphene nanoribbons subjected to axial
stress both for free boundary and supported boundary conditions. The shapes of the deformations of the
buckled graphene nanoribbons, for small values of the stress, are sine waves where the number of nodal lines
depend on the longitudinal size of the system and the applied boundary condition. The buckling strain for the
supported boundary condition is found to be independent of the longitudinal size and estimated to be 0.86%.
From a calculation of the free energy at finite temperature we find that the equilibrium projected two-
dimensional area of the graphene nanoribbon is less than the area of a flat sheet. At the optimum length the
boundary strain for the supported boundary condition is 0.48%.
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I. INTRODUCTION

Graphene is a newly discovered almost flat one-atom-
thick layer of carbon atoms which exhibits unique electronic
properties and unusual mechanical properties.1,2 Recent ex-
periments showed that compressed rectangular monolayer
graphene on a substrate with size 30�100 �m2 is buckled
at about 0.7% strain.3 Moreover tensional strain in mono-
layer graphene affects the electronic properties of graphene.
The strain can generate a bulk spectral gap in the absence of
electron-electron interactions as was found within linear
elasticity theory and a tight-binding approach.4 Different
morphological patterns of carbon nanostructures subjected
to external stress were obtained by using atomistic
simulations.5 Furthermore, atomistic simulations showed that
the Young modulus and the fracture strength decrease only
weakly with the width of the graphene nanoribbon.6

In this paper we study the deformations and the stability
of rectangular monolayer graphene nanoribbons �GNRs�
subjected to axial stress using atomistic simulations and the
Jarzynski theorem to calculate the free energy.7 Recently,
Colonna et al. applied the free-energy integration-based
method to explain the melting properties of graphite.8 We
will compare the obtained critical buckling force with the
one predicted by elasticity theory. We found several longitu-
dinal deformation modes and predict that the axial buckling
boundary strain is independent of the size in the case of
laterally supported GNRs. Moreover, from a calculation of
the free energy, uncompressed GNR is thermodynamically
less stable than the GNR at the buckling threshold. But the
buckled state is less stable than the GNR at its optimum
length.

This paper is organized as follows. In Sec. II we introduce
the atomistic model and the simulation method. Section III
contains a discussion of the elasticity theory predictions for
both free boundary condition and laterally supported bound-
ary condition. We also give the buckling thresholds and the
obtained deformations and compare our results to those from
elasticity theory. Results for the Young’s modulus and
prestresses are presented and compared to available experi-

mental results. The stability of buckled GNRs are studied in
the last part of Sec. III. In Sec. IV we will conclude the
paper.

II. METHOD AND MODEL

Classical atomistic molecular-dynamics �MD� simulations
are employed to simulate compressed GNRs using Brenner’s
bond-order potential.9 Our system is a rectangular GNR with
dimensions a�b, in x and y directions with armchair and
zigzag edges, respectively. For simplicity we set the lateral
dimension b=10ny

�3a0, where a0=0.142 nm, ny =3,4, and
the longitudinal dimension a=30nxa0 with nx=2,3 , . . . ,10.
In Fig. 1 we depict a schematic model for a GNR under axial
strain with free boundary condition �at y=0 and y=b� and
list all relevant variables describing GNR under axial strain.
Note that nx and ny are two integer numbers that are related
to the number of atoms in the armchair and zigzag directions,
respectively. The corresponding values for length and width
of GNRs can be found in Table I.

Initially the coordinates of all atoms are put in a flat sur-
face of a honeycomb lattice with nearest-neighbor distance
equal to a0 and the initial velocities were extracted from a
Maxwell-Boltzman distribution at the given temperature. Be-
fore starting the compression, the system is equilibrated dur-
ing 50 ps �100.000 time steps�. Compressing direction is
always x and two rows of atoms in both right and left edges,
x=0 and x=a, are fixed during the compression steps ��x
=0.04 Å� with the rate �=1.6 m /s. The boundary axial
strain after t compression steps is

�x = t�0, �0 = 2�x/�30a0nx� , �1�

where �0= 0.188
nx

% is the strain after a single compression step.
After each compression step, we wait 2.5 ps to allow the
system to relax. For the edges at y=0 and y=b, we used the
supported boundary condition and the free boundary condi-
tion. We simulated the system at room temperature and em-
ployed a Nosé-Hoover thermostat.
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III. BUCKLING GRAPHENE NANORIBBONS AND
COMPARISON WITH ELASTICITY THEORY

A. Free boundary condition

For a simple bar with length a, under an axial symmetric
load applied at its ends, classical Euler’s column equation
describes basically the buckling problem.10 Governing differ-
ential equation for the deflection value, �w, becomes the har-
monic oscillator equation

�w� + �2�w = 0. �2�

Here �2= fc / P, where fc is the buckling force �or critical
force�, P is a parameter which is related to the Young’s
modulus and the moment of inertia of the rod cross-sectional
axis that is perpendicular to the buckling plane. The solution
is �w=A sin��x�+B cos��x�. For the boundary condition
with zero deflection at the ends, we have �w=A sin� n�

a x�
which are sine waves. Substituting �= n�

a yields the buckling
force

fc =
n2�2P

a2 �n = 1,2, . . .� . �3�

The buckling stress can be written as �c=
fc

S , where S is the
area of the cross section of the bar. If the bar is thin enough
or long enough buckling can happen elastically independent
of the type of material.10

The shape of the lowest mode �n=1�, after and close to
the buckling threshold, is a half sine wave. Higher modes are

possible only if the column is physically constrained from
buckling into the lower modes by supporting mid points.10

For GNRs under axial compression with free boundary
condition we focused on the system with ny =3. After many
compression steps GNRs starts to buckle, but the shape of
the deformed GNRs depends on their size. Figure 2�a� shows
some snapshots for the deformed GNRs with various sizes
when 	x=0.768 nm, i.e., beyond the buckling threshold. We
will discuss on the obtained shapes later. By measuring the
buckling threshold, we find the forces which cause a sudden
change in the shape of GNRs. This threshold is found from a
direct visualization of the nanoribbon and in addition from
the sudden increase in the average out-of-plane displacement
of the GNR atoms ��h2��. The variation in �h2� versus �x for
systems with nx=3 and 10 are shown in Fig. 2�b�. The longer
GNRs have a smaller buckling strain, �c�1.2%, 2.1% for
nx=10, 3, respectively.

On the other hand, as can be seen from the simulation
snapshots in Fig. 2�a�, even for large samples, in contrast to
the large deformations along the x direction, the deforma-
tions along the y direction for each x value and also defor-
mations at the boundaries �y=0 and y=b� for each x value
are negligible. Therefore the rod assumption for GNRs under
axial strain is a good approximation. Now, considering the
GNR as a rod with length a and estimating the buckling
forces, allow us to calculate the variation fc versus GNR
length, i.e., a. Furthermore, note that throughout the present
paper, we calculate the force per width. Since for nx
5 we
found only deformations with n=1 in the beginning of the

TABLE I. Length a and width b of GNRs which are related to the integer numbers nx and ny through b=10ny
�3a0 and a=30nxa0, where

a0=0.142 nm.

nx 2 3 4 5 6 7 8 9 10 ny 3 4

a �Å� 85.2 127.8 170.4 213 255.6 298.2 340.8 383.4 426 b �Å� 98.38 122.96

h0, h Thickness of GNR, Out of plane of GNRs atom
ε0, εx, εc, εm Strain in each step, Total strain, Critical strain, Strain at optimum length

σ0, σx, σc, σm Pre-stress, Total stress, Critical stress, Stress at optimum length

E, ν, D Young’s modulus, Poisson’s ratio, Flexural rigidity
f, fc, fmn, f’mn Force, Critical force, Critical force from elasticity theory for h0=0.1 nm and h0=a0
n,m Sinusoidal modes in x and y direction
t, µ Compression step in simulation, Compression rate

∆W, ∆F Difference of total work and free energy between initial and strained states

b

a

h0 ∆x/2

0bh
f

x ====σσσσ

δw

xy
z

FIG. 1. �Color online� Schematic model for a plate under axial strain with free boundary condition �a model for elasticity theory�,
dashed-dotted rectangle is the initial noncompressed plane. We list all relevant variables describing the GNR.
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buckling, hence using Eq. �3� is justified. Figure 2�c� shows
the variation in the critical load versus a in log-log scale
where the dots are from our simulation results and the
dashed line is �2P

a2 . Here we used Eq. �3� for the buckling
force, but, since our system is not a rod, the definition of an
axial moment of inertia is not meaningful. Therefore, we
define an effective bending constant for GNRs, i.e., P. Tak-
ing the parameter P as a fitting parameter, we found P
�0.56 eV. The corresponding number for a covalent carbon
bond is 4.0 eV.11 Clearly the bending stiffness for a single
covalent C-C bond should be much larger than a long rod
made of GNR.

Here we discuss the shapes of the deformation. As we
mentioned above, at the start of the buckling the shape of
systems with nx
5 is found to be almost the same as for a
buckled rod width n=1, which is similar to half sine waves.
Note that we should neglect the few rows of atoms at both
ends which are fixed during the compression resulting in flat
ends �see Sec. II�. By continuing the compression up to the
time 0.5 ns, GNRs acquire a parabolic shape. The top two
pictures in Fig. 2�a� show two snapshots of the obtained
deformations after the buckling threshold when �x=2�

0.34
nx

=6%,3.6% for nx=3,5, respectively. For a fixed reduction in
the length, 	x, the system with larger nx has a smaller am-
plitude, i.e., 2.609 nm and 3.412 nm for nx=5 and nx=3,
respectively. For larger GNRs �nx�6�, i.e., a is larger than
21.3 nm, the deformations �two bottom figures in Fig. 2�a��
first show the next higher mode with n�2 and after a longer
simulation time �depending on the size� they transit slowly to
the mode n=1. When the length of GNRs exceeds almost 22
nm, half of this size is comparable to the chrematistic length
of graphene, i.e., 8–10 nm.12 Since the chrematistic length is
a measure of the range over which deformations in one re-
gion of graphene are correlated with those in another region,
so the applied boundary stresses on the edges do not affect
the system beyond this characteristic length and in the begin-
ning of the buckling we expect the n�2 mode. For GNR
with nx�6 we did not find a simple relation between the
critical buckling force and the length. For larger systems
�nx�10� the deformations are no longer sine waves at least
during our simulations time.

Before ending this section, we calculate the stress-strain
curve. Before the buckling threshold, we found a linear rela-
tion between stress and strain, i.e., �x=E�x+�0, where �0 is
the prestress in the system.1 The linear relation is valid for
small strains.1,13 In our simulations, when the GNRs are not
flat and thus not compressed, they are not in equilibrium and
some boundary tension exist, i.e., prestress.1 For instance,
when nx=8 we calculate the applied stress on the right-hand
side edge using f

bh0
�by using the thickness of graphene equal

to h0=0.1 nm �Ref. 14�� and we show the obtained stress-
strain curve in Fig. 3. The dashed line is the fitted line. The
slope of this line gives us Young’s modulus 1.3
0.07 TPa
and �0=−3.3
0.2 GPa �negative sign indicates the direc-
tion of compression, i.e., −x�. For the other GNRs we found
Young’s modulus in the same range �e.g., E
=1.1
0.08 TPa and �0=−3.3
0.2 GPa for nx=10, etc.�.
These numbers are comparable to those found
experimentally.1

B. Supported boundary condition

For a rectangular plate subjected to the supported bound-
ary condition �when movements at x=0, x=a, y=0, and y
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FIG. 2. �Color online� �a� Buckled graphene nanoribbons for four different length nx. Here 	x=0.768 nm. �b� Variation in the out-of-
plane displacement in log scale for GNRs with two different lengths versus strain. �c� Symbols are the calculated buckling force in log-log
scale and dashed line is the curve fc= �2P

a2 .

εx(%)

-σ
x(

G
P

a)

0 0.1 0.2 0.3

-2

0
nx=8

FIG. 3. �Color online� Stress-strain curve for the GNR with nx

=8 under axial stress before the buckling threshold where.
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=b along y and z directions are not allowed�, elasticity
theory10 tells us that the governing equation for the buckled
rectangular under uniform compressive axial load per width
�f� in the x direction, can be written as

D�4��w� + f��wxx� = 0, �4�

where �w is the transverse deflection, �wxx is the correspond-
ing curvature, and D=Eh0

3 / �12�1−�2�� is the flexural rigidity
of the plate with thickness h0 and Young’s modulus E. The
general solution for the deflection can be written as a double
Fourier series

�w = 	
m,n=1

�

w̃mn sin�n�x/a�sin�m�y/b� , �5�

where �m ,n� are integers in order to satisfy the supported
boundary condition and w̃mn is the amplitude of each mode
�m ,n�. Including the appropriate strain energy and using Eq.
�5�, buckling occurs when10

fmn =
�2a2D

n2 
�n

a
�2

+ �m

b
�2
2

. �6�

Lowest value of fmn with respect to the two discrete variables
m ,n gives the buckling force, fc. The minimum buckling
force for the considered systems always occurs for m=1 and
various values of n. It is equivalent to a single half wave in
the lateral y direction and various harmonics n in the com-
pression direction, i.e., x.

We performed several atomistic simulations for GNRs un-
der supported boundary condition for different nx and fixed
ny =3. In Fig. 4�a�, we depict four typical snapshots for dif-
ferent sizes of the buckled GNRs �where �x is always larger
than the buckling strain, �c�. As can be seen from this figure,
those satisfy the condition m=1, and by increasing the size
of the system, we obtained higher longitudinal modes. Fur-
thermore, higher strains ��x��c� increase the amplitude of
the deformations and increase the number n slightly �usually
n�=n+1,n+2�. Similar to the free boundary condition case,
the buckling thresholds, for smaller nx, are obtained at
smaller axial strains. In Table II, we list our calculated buck-

ling forces per width �fc�, buckling strains and the prediction
from elasticity theory according to Eq. �6�. To calculate fmn,
we used E=340 N /m2 and �=0.165 �Ref. 1� with h0
�0.1 nm, as a typical thickness for GNR. Larger thickness
yields a larger fmn so that h0=a0 yields a better agreement
between fc� and fmn. Note that elasticity theory is not appli-
cable to GNRs under strain3 for the critical values for force
or strains. For instance, although elasticity theory predicts
that the very small thickness of graphene yields a zero flex-
ural rigidity but the bond-angle effects on the interatomic
interactions of graphene �three body terms in Brenner’s po-
tential� gives a nonzero flexural rigidity for graphene3 �see
Refs. 28 and 29 in Ref. 3�. Therefore, because of the nonzero
flexural rigidity in graphene, larger critical forces with re-
spect to the predictions from elasticity theory, are to be ex-
pected.

Figure 4�b� shows the variation in �h2� versus �x for sys-
tems with nx=3,6 ,10 when ny =3. Vertical dashed line
shows the transition points to the buckled state. Clearly the
behavior of �h2� is the same for all cases. As we see, surpris-
ingly, the buckling strain is independent of the longitudinal
size �vertical dashed line in Fig. 4�b�� of GNRs and it varies
in the range 0.84–0.89 % while for larger width, e.g., ny
=4, the buckling strain varies in the range 0.8–0.93 %. The
average for ny =3 is 0.8688% and for ny =4 is 0.8677%
which are very close. Therefore we conclude that the buck-
ling strain is independent of the longitudinal dimension and
depends only weakly on the width of the GNR.

It is important to note that higher �x �especially for the
smaller system with small nx� results in instabilities which
makes the GNRs partially crumple �see Fig. 5�. This is due to
the sp2 bond breaking at the nonuniform deformed
�crumpled� region of edges. Red horizontal arrow in Fig.
4�b� indicates the instability point for nx=3. To find the in-
stabilities and the buckling thresholds, we calculated the
variation in the boundary forces versus �x. The force on the
left-hand side �LHS� edge is shown in Fig. 4�c�. The forces
on the LHS edge decrease to zero before the buckling thresh-
olds which mean that GNRs at those points have an optimum
length where the system does not feel any external forces
�Fig. 5�a��. We will return to this point later. In Fig. 4�c� the
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FIG. 4. �Color online� �a� Buckled graphene nanoribbons for four different length subjected to a lateral supported boundary condition.
Here applied strains are larger than the buckling strains. �b� Variation in the out-of-plane displacement in log-log scale for GNRs for three
different lengths versus strain. �c� Force applied on the boundaries for three different sizes: nx=2,4 ,6. Horizontal arrow shows the instability
point and vertical dashed line shows the buckling point.
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vertical dashed line indicates the buckling threshold and the
arrow gives the first sudden changes in the force �for three
systems with nx=2,4 ,6� which indicates an instability in the
shape of the GNR.

As we mentioned above, Fig. 5 shows three snapshots of
a GNR �having nx=2 size� at three different strains. For Fig.
5�a� strain is �=�m �strain at optimum length�. Two other
snapshots are GNR before �Fig. 5�b�� and after �Fig. 5�c�� the
first instability point in Figs. 4�b� and 4�c�. The strain �and
compression steps� in Fig. 5�c� is larger than in Fig. 5�b�.
Both strains in Figs. 5�b� and 5�c� are larger than the critical
strain ��c�. Brenner’s potential is not responsible for the oc-
curred nonhexagonal structures �bond-breaking effects� in
some nonuniform deformed regions of Fig. 5�c�. The reason
is that in common covalent potentials, people use a drastic
reduction in cutoff distance �here �2 Å� which has resulted
in a good description of the material before fracture or bond
breaking. But, it leads to an overestimation of critical loads
and shear stresses in fracture mechanics and tribology, where
bond breaking occurs.15 Here we do not study the bond-
breaking situation or fracture mechanism that can occur in
GNRs by a continuous compression beyond the buckling
state. Modification to Brenner’s potential have been pro-
posed in order to include fracture mechanisms and bond-
breaking situations.16 The idea to those modifications is to

find nearest neighbors by a criterion other than distance16

and this by employing empirical screening functions as in-
troduced in Ref. 17.

Static buckling deformations and the stability of buckled GNRs

In the last part of this paper, we calculate the change in
the free energy of laterally supported GNRs subjected to
axial strain. Due to the application of an external force on the
boundary, an equilibrium approach is no longer applicable
and a nonequilibrium MD is needed. Independent of the path
and for a finite evolution rate, Jarzynski found an equality
between the difference of the free energy and the total work
done on the system �W� during a nonequilibrium evolution7

	F = − �−1 ln�exp�− �W�� , �7�

where �=1 /kBT. The averaging is done over the realization
of the switching process between the initial and the final
states. Equation �7� makes a connection between the differ-
ence of the equilibrium free energy and the nonequilibrium
work.

Using Eq. �7� we calculated the changes in the free energy
when compressing the GNR of size nx=10 and plot the re-
sults in Fig. 6�a�. The inset shows the total work done on the
system for ten simulations with different initial conditions.
Comparing the curve for �W� and 	F shows that the differ-
ence of the free energies are smaller than the total work
which agree with �W��	F as can be derived from Eq. �7�.7
Figure 6�b� shows the change in W for systems having dif-
ferent values for nx. The minimum in the free-energy curve
corresponds to an equilibrium length, also to an amount of
strain ��m� where there is zero force on the boundaries at x
=0, x=a �see Fig. 4�b��.

Notice that our noncompressed GNRs �in the beginning of
the simulations� are flat honeycomb lattice structures which
are not in a thermomechanically equilibrium state at finite
temperature. Therefore the free energy of this state should be
higher than the equilibrium state. It is well known that at
finite temperature the equilibrium state of suspended
graphene is not exactly a flat sheet and some intrinsic ripples

TABLE II. The periodicity number �n� of the sine waves observed in the buckled laterally supported GNRs in the longitudinal direction
versus the length of the GNR. The calculated buckling force from our MD calculations �fc� and results from elasticity theory according to
Eq. �6�, fmn, for two widths ny =3,4. When calculating fmn we used h0=0.1 nm and h0=a0 was used for fmn� . �c is the strain at which the
GNR buckles.

ny nx→ 2 3 4 5 6 7 8 9 10

3 n 3 4 5 7 9 11 11 14 14

fc 0.45 0.43 0.47 0.47 0.40 0.43 0.37 0.4 0.36

fmn 0.14 0.12 0.11 0.13 0.14 0.15 0.12 0.15 0.13

fmn� 0.40 0.34 0.31 0.36 0.40 0.42 0.35 0.42 0.36

�c�%� 0.84 0.87 0.89 0.89 0.88 0.84 0.85 0.88 0.88

4 n 2 3 5 6 7 8 9 11 12

fc 0.38 0.37 0.34 0.33 0.32 0.34 0.32 0.32 0.32

fmn 0.07 0.07 0.09 0.09 0.08 0.08 0.08 0.09 0.09

fmn� 0.19 0.19 0.24 0.25 0.24 0.23 0.22 0.25 0.25

�c�%� 0.90 0.93 0.93 0.91 0.87 0.89 0.87 0.8 0.80

nx=2

(a)

(c)

(b)

FIG. 5. �Color online� �a� GNR with nx=2 size at its optimum
length, �b� before, and �c� after the instability.
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are present.12 At the optimum length our suspended GNRs
are rippled �Fig. 5�a�� and the system is in the equilibrium
state. Figure 6�a� shows the variation in the total free energy
versus applied strain. As we see from Fig. 6�a� the rippled
state �minimum point in free-energy curve� has a lower free
energy with respect to the initial noncompressed GNRs,
�	F=−2.27 eV�. The inset of Fig. 6�a� depicts the corre-
sponding change in the total performed work on the system
for ten simulations with different initial conditions. On the
other hand, since the optimum length of the suspended GNR
is less than the initial noncompressed length �a�, we may
conclude that at finite temperature the projected two-
dimensional area �a�1−�m��b� of the GNR is less than the
area of a flat GNR �a�b�. Surprisingly, as we see from Fig.
6�b� the boundary strain at the optimum length �m=0.48% is

size independent. The vertical dashed lines in Figs. 6�a� and
6�b� indicate the buckling strain, i.e., �c and the strain at the
optimum length, i.e., �m, respectively. Free energy in the
buckling point is less than the free energy of the initial non-
compressed system but it is higher than the free energy for
the rippled state �minimum value�. Difference between the
free energy of the rippled state and the buckled state is
−1.87 eV. For the nx=10 system we stopped the compres-
sion after the buckling threshold and equilibrated the system
during a very long time and found static and stable sine wave
deformations in the GNR.

IV. CONCLUSIONS

Deformations in the graphene nanoribbons subjected to
axial boundary compression are static sine waves with dif-
ferent number of nodal lines, depending on the length of the
GNRs. The deformations predicted from elasticity theory for
the buckled rod and rectangular plate are similar to those
obtained for the buckled GNRs in the case of free boundary
condition and also for the laterally supported boundary con-
dition. However, the critical force and flexural rigidity of
GNRs are larger than predicted from elasticity theory. We
found a linear relation for the stress-strain curve for small
strains �i.e., before the buckling threshold�. The buckling
strain �0.86%� and the strain caused by the equilibrium
length �0.48%� are independent of the longitudinal size of
the system and they depend weakly on the width of GNRs.
From the free energy of the GNRs at the buckling threshold,
we found that they are thermodynamically more stable than
those before compression, i.e., flat GNRs.
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