|
Record |
Links |
|
Author |
Kalashami, H.G.; Neek-Amal, M.; Peeters, F.M. |
|
|
Title |
Slippage dynamics of confined water in graphene oxide capillaries |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Physical review materials |
Abbreviated Journal |
|
|
|
Volume |
2 |
Issue |
7 |
Pages |
074004 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
The permeation of water between neighboring graphene oxide (GO) flakes, i.e., 2D nanochannels, are investigated using a simple model for the GO membrane. We simulate the hydrophilic behavior of nanocapillaries and study the effect of surface charge on the dynamical properties of water flow and the influence of Na+ and Cl- ions on water permeation. Our approach is based on extensive equilibrium molecular dynamics simulations to obtain a better understanding of water permeation through charged nanochannels in the presence of ions. We found significant change in the slippage dynamics of confined water such as a profound increase in viscosity/slip length with increasing charges over the surface. The slip length decreases one order of magnitude (i.e., 1/30) with increasing density of surface charge, while it increases by a factor of 2 with ion concentration. We found that commensurability induced by nanoconfinement plays an important role on the intrinsic dynamical properties of water. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Physical Society |
Place of Publication |
College Park, Md |
Editor |
|
|
|
Language |
|
Wos |
000439435200006 |
Publication Date |
2018-07-23 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2475-9953 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
|
Times cited |
1 |
Open Access |
|
|
|
Notes |
; We acknowledge fruitful discussions with Andre K. Geim, Irina Grigorieva, and Rahul R. Nair. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; |
Approved |
Most recent IF: NA |
|
|
Call Number |
UA @ lucian @ c:irua:152409UA @ admin @ c:irua:152409 |
Serial |
5128 |
|
Permanent link to this record |